Buscar

PLATAFORMAS MOLECULARES. AULAS TEMAS 01 A 04

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 215 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 215 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 215 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

/
DESCRIÇÃO
A construção história da Biologia Molecular e seu emprego no estudo das moléculas presentes
nas células responsáveis pela manutenção da vida, como o DNA, o RNA e as proteínas.
PROPÓSITO
Compreender como o RNA e o DNA foram descobertos e a importância destas moléculas para as
células procariontes e eucariontes.
OBJETIVOS
/
MÓDULO 1
Descrever a história da Biologia Molecular, a origem da vida e a organização gênica nos
organismos
MÓDULO 2
Reconhecer alguns dos mecanismos de regulação da expressão gênica nos procariotos e
eucariotos
INTRODUÇÃO
A Biologia Molecular é a área da Biologia que estuda as moléculas presentes nas células
responsáveis pela manutenção da vida. Vamos iniciar nosso aprendizado sobre, possivelmente, as
moléculas mais importantes para a existência da vida na Terra: Os ácidos nucleicos RNA e DNA.
Você sabia que até mesmo os vírus, microrganismos intracelulares obrigatórios apresentam ácidos
nucleicos? Não existe sequer um ser vivo que não tenha moléculas de RNA ou DNA.
Vamos explorar um breve histórico sobre como começaram os estudos da Biologia Molecular,
passando pela provável origem da vida na Terra, conhecendo as estruturas e composições dos
ácidos nucleicos e observando como é dada a organização deste material em diferentes seres
vivos. Aprenderemos alguns dos mecanismos de regulação gênica dos procariotos e os eucariotos
e por fim noções de epigenética.
Vamos juntos?
MÓDULO 1
/
 Descrever a história da Biologia Molecular, a origem da vida e a organização gênica nos
organismos
HISTÓRICO DA BIOLOGIA MOLECULAR
Nosso histórico começa em 1869 com um bioquímico suíço chamado Johannes Friedrich Miescher
(Figura 1). Em seus estudos, ele buscava determinar quais os componentes químicos que existem
dentro dos glóbulos brancos (leucócitos), presentes no pus de feridas, que, de modo geral,
possuem um núcleo grande e bem definido. No interior desse núcleo, ele observou uma grande
quantidade de um composto ácido que continha átomos de nitrogênio e fósforo, nomeando-o de
nucleína por estar localizado no núcleo. Mal ele sabia da importância desta descoberta!
GLÓBULOS BRANCOS
Os glóbulos brancos receberam esse nome devido as características físicas do sangue após
a centrifugação, que apresentam uma camada fina de células brancas, compostas pelos
leucócitos.
javascript:void(0)
/
 
Fonte: Wikimedia
 Figura 1: Friedrich Miescher.
Diversos outros cientistas continuaram investigando o tal composto nucleína, entre eles Albrecht
Kossel, que em 1880 demonstrou que na nucleína existiam diferentes bases nitrogenadas.
Richard Altmann em 1889 conseguiu purificar a nucleína e nomeou o purificado de ácido
nucleico. Com o tempo, os ácidos nucleicos foram ainda mais estudados, pareciam muito
importantes já que praticamente todas as células possuíam esse material. Foram descobertas
quatro diferentes bases nitrogenadas, as bases púricas: adenina e guanina e as bases
pirimídicas: citosina e timina, todas com um glicídio desoxirribose (Figura 2).
/
 
Fonte: Wikimedia
 Figura 2: Nucleotídeo, contendo a base nitrogenada, o fosfato e a pentose.
Essas bases podiam estar ligadas entre si, sempre obedecendo a um padrão, onde a adenina se
associava à timina por 2 ligações de hidrogênio e a guanina se associava à citosina por 3
ligações, sendo esta interação a mais estável devido à maior quantidade de ligações (Figura 3).
 
Fonte: Wikimedia
 Figura 3: Bases nitrogenadas e suas interações por ligação de hidrogênio. 
O grupamento R nas riboses consiste em um OH e nas desoxirriboses de um H.
/
Entretanto, havia um fato curioso: a presença de uma base diferente, chamada de uracila, em
alguns desses materiais. Essa base apresentava uma ribose no lugar da desoxirribose e se ligava
à timina no lugar da adenina. As moléculas que continham desoxirribose foram nomeadas de
ácido desoxirribonucleico (ADN), em inglês Deoxyribonucleic Acid, o famoso DNA. As
moléculas com ribose como glicídio foram nomeadas de ácido ribonucleico (ARN), em inglês
Ribonucleic Acid, conhecido como RNA (Figura 4).
RIBOSE
Aldopentose (apresenta um grupo funcional aldeído), com cinco átomos de carbono
(pentose) e um grupamento hidroxila (-OH) na posição 2.
 
Fonte: Wikimedia
 Figura 4: Todas as bases nitrogenadas.
Vamos agora juntar todos os conceitos estabelecidos para entendermos como é a estrutura do
DNA e do RNA. Um nucleotídeo é um conjunto formado por uma base nitrogenada, que pode
ser uma purina ou pirimidina. Dentre as purinas, temos a adenina e a guanina; entre as
pirimidinas, temos a citosina e a timina, no caso de uma molécula de DNA, e o uracil(a), no
caso de uma molécula de RNA. A ligação entre as bases é realizada entre a molécula de açúcar,
javascript:void(0)
/
de uma ribose para o RNA ou uma desoxirribose para o DNA, com o grupamento fosfato da
base adjacente, na ligação conhecida como ligação fosfodiéster (Figura 5).
 
Fonte: Wikimedia
 Figura 5: Ligação fosfodiéster entre nucleotídeos da mesma fita de DNA.
A estrutura do DNA se encontra em fita dupla. A união entre as duas fitas se dá por ligações de
hidrogênio entre as bases nitrogenadas, como demonstrado na Figura 3.
FIGURA 3
javascript:void(0)
/
 
Fonte: Wikimedia
 Figura 3: Bases nitrogenadas e suas interações por ligação de hidrogênio. 
O grupamento R nas riboses consiste em um OH e nas desoxirriboses de um H.
Vamos voltar para a nossa história. Em 1953, uma dupla de cientistas, James Watson e Francis
Crick, publicou um artigo na revista Nature chamado de Molecular Structure of Nucleic Acids. Eles
eram contrários às ideias que existiam na época a respeito da estrutura do DNA. Entre os modelos
antigos, o que mais se destacou foi o de Linus Pauling; ele acreditava que o DNA era interligado
pelos grupamentos fosfatos, formando uma coluna. Watson e Crick, baseados em uma foto
tirada por Rosalind Franklin, propuseram uma nova estrutura para essa molécula. A estrutura era
uma dupla hélice, com as bases nitrogenadas purinas se ligando às pirimidinas no centro da hélice
espiralada, sendo muito parecida com a que usamos até hoje (Figura 6).
DNA DE LINUS PAULING
javascript:void(0)
javascript:void(0)
/
 
Fonte: Wikimedia
FOTO
Foto tirada utilizando difração de raios X, técnica onde um feixe de raios atravessa uma
molécula cristalizada e mancha um filme atrás, revelando assim uma imagem por onde
esses raios X foram difratados. É semelhante aos nossos raios X atuais de ossos, mas com
pequenas moléculas.
/
 
Fonte: Wikimedia
 Figura 6: Foto de raios X tirada por Rosalind Franklin, 
responsável pelas conclusões de Watson e Crick.
Com a estrutura do DNA resolvida e com o conhecimento sobre a química dessas moléculas,
faltava agora entender a atuação e a organização delas nas células e porque eram tão
importantes. Ao longo dos anos, o conhecimento sobre o DNA e o RNA vem crescendo. Hoje, com
técnicas de sequenciamento do DNA, podemos, por exemplo, ver rapidamente se algum indivíduo
possui propensão a determinado câncer analisando a sua sequência de DNA. Estamos
começando a ter mais segurança na edição genética, e um dia poderemos curar doenças que
ainda nem se manifestaram.
Atualmente, podemos quantificar esse material genético que expressamos para diagnosticar
doenças, como a COVID-19, e modificar outros organismos para que produzam nossas proteínas.
É dessa forma que algumas das insulinas vendidas na farmácia são produzidas. Existem inúmeras
possibilidades decorrentes do desenvolvimento da Biologia Molecular.
A ORIGEM DA VIDA
javascript:void(0)
/
A origem da vida sempre despertou curiosidade. Ao longo dos anos, existiram diversas teorias,
algumas se provaram erradas e outras se mantêm até hoje.
Você imagina como a vida começou? Vamos conhecer um pouco dessas teorias?
Sabemos que átomos podem fazer ligações de maneira espontânea desde que estejam em um
ambiente favorável e tenham afinidade um pelo outro, ou seja, ao se ligaremencontram uma
estabilidade, assim são construídas as moléculas. Dentre as teorias existentes, uma delas, a
teoria de Oparin e Haldane, era justamente a ideia da formação espontânea de pequenas
moléculas orgânicas, as quais, com o tempo, passaram a se organizar de maneira cada vez mais
complexa até se replicarem e evoluírem, formando as células primitivas.
Em 1953, Stanley Miller tentou provar que era possível existir a criação espontânea de
moléculas orgânicas na Terra, desde que o ambiente fosse favorável. Ele fez um experimento
simulando como possivelmente era a atmosfera primitiva da Terra, cerca de 4 bilhões de anos
atrás. No seu experimento, tinham moléculas, como gás hidrogênio, metano e vapor de água, que
eram bastante comuns no ambiente primitivo. Esses gases, na presença de uma descarga
elétrica, como um raio, ligavam-se formando diversas moléculas orgânicas, dentre elas os
aminoácidos alanina, glicina e ácido aspártico (Figura 07).
Fonte: Wikimedia
 Figura 7: Experimento de Miller.
/
A teoria de Oparin e Haldane continuou ganhando relevância à medida que novos estudos foram
realizados, dentre eles os estudos do geólogo Michael Russell. Russell demonstrou que existem
fontes de águas termais no fundo dos oceanos aquecidas pelo manto da Terra, que jorram água
alcalina. Essas fontes são ricas em minérios de ferro, níquel e enxofre dissolvidos. A reação
desses minérios com o gás carbônico, hidrogênio reativo e moléculas de água é capaz de produzir
compostos orgânicos, como hidrocarbonetos e até mesmo nucleotídeos!
Uma das descobertas mais incríveis sobre essas fontes termais são as reações químicas que lá
ocorrem e como a geração dessas moléculas orgânicas acontece. As fontes termais são ricas em
minerais, sendo assim, possuem um elemento que pode ser oxidado, como o ferro. O elétron
oriundo da oxidação é carregado pelos núcleos metálicos desses minerais até chegar ao aceptor
final de elétrons, este pode ser o monóxido ou o dióxido de carbono, que vai ser reduzido gerando
a energia necessária para a confecção das moléculas orgânicas.
Você já ouviu falar de um mecanismo parecido com esse anteriormente? Onde um elétron
percorre uma cadeia até chegar ao seu aceptor gerando energia?
Exatamente! É de maneira muito semelhante a esta que diversos seres vivos produzem energia
como nós! Esse mecanismo ocorre durante a fosforilação oxidativa nas mitocôndrias, etapa
metabólica da nossa respiração celular. Isso mostra um elo entre todos os nossos ancestrais,
fortalecendo a hipótese de que a vida se originou dessas fontes de águas termais há muitos anos.
No entanto, ainda temos diversas perguntas para serem respondidas. Nos dias atuais, essa é a
teoria melhor aceita para a origem da vida (Figura 8).
/
 
Fonte: Wikimedia
 Figura 8: Fonte termal vulcânica, a possível origem da vida.
A teoria da panspermia surgiu a partir da observação de compostos orgânicos presentes em
meteoritos e ganhou força a partir de 1997 com a análise do Meteorito de Muchinson (Figura 9).
Os pesquisadores encontraram diversos aminoácidos e adenina, presente no nosso DNA, que
datavam de aproximadamente 7 bilhões de anos, sendo assim mais antigos que nosso próprio
planeta, que possui cerca de 4,5 bilhões de anos. Apesar de muito interessante, essa teoria não
possui evidências científicas suficientes para explicar a origem da vida no nosso planeta, diferente
da teoria de Oparin e Haldane.
/
 
Fonte: Wikimedia
 Figura 9: Fragmento de meteorito.
FRAGMENTO DE METEORITO
Tradução - “Este é um fragmento do meteorito que caiu em Muchinson, na Austrália, em
1969. O meteorito de Muchinson e outros como ele são chamados de condritos carbonáceos
e foram datados por radiometria. Acreditamos que são remanescentes do nascimento do
sistema solar.
Nestas rochas extraterrestres incrivelmente antigas, cientistas encontraram minerais, traços
de aminoácidos e outros compostos orgânicos. A forma com que estes materiais foram
criados os torna mais antigos que o próprio planeta Terra. É possível que os condritos
carbonáceos sejam a fonte de compostos orgânicos responsável por dar origem a vida na
Terra.
Entretanto, é muito interessante imaginar que, em outros lugares do Universo, existem compostos
orgânicos e quem sabe até mesmo vida. Essas amostras extraterrestres evidenciaram também
javascript:void(0)
/
que é possível a criação de matéria orgânica, incluindo bases presentes no DNA e no RNA.
Em um mundo onde existiam alguns nucleotídeos, aminoácidos e hidrocarbonetos, essas
moléculas começaram a interagir entre si, formando cadeias cada vez mais complexas, ligações
entre diferentes nucleotídeos formaram os primeiros RNAs e ligações entre diferentes
aminoácidos formaram os oligopeptídeos. A interação entre os oligopeptídeos e o RNA leva a
benefícios mútuos, gerando, por exemplo, estabilidade na estrutura de ambos, originando maiores
quantidades de determinadas estruturas. Imagine essas diversas interações por milhares e
milhares de anos, é natural que, com o tempo, estruturas mais complexas se formem e se
mantenham.
Hoje em dia, temos o conhecimento que tanto o RNA quanto pequenos peptídeos conseguem
realizar reações químicas com diversas funções (neurotransmissores, hormônios, regulação
gênica etc). Recentemente, foi descoberto que o RNA seria capaz até mesmo de se autorreplicar,
gerando outras moléculas de RNA também capazes de se autorreplicarem, assim a evolução
poderia acontecer ainda mais rápido, isso é o chamado “Mundo RNA”.
Naquele mesmo ambiente, existiam outros compostos orgânicos, como os primeiros lipídeos
oriundos dos hidrocarbonetos formados.
Você já jogou um pouco de óleo na água? Sabe que não se misturam certo?
Isso se dá a partir da característica anfipática dos lipídeos que, em um ambiente aquoso, tendem
a formar micelas, estruturas circulares formadas naturalmente devido à forma que interagem com
a água, expondo a parte hidrofílica e escondendo a parte hidrofóbica da água.
HIDROFÍLICA
Polares, que tendem a interagir com a água. “Hidro” deriva de água e “fílica” deriva de
amizade.
javascript:void(0)
javascript:void(0)
/
HIDROFÓBICA
Apolares, que não interagem com a água. “Fóbica” deriva de medo.
 ATENÇÃO
Nem todos os lipídeos possuem características anfipáticas, portanto nem todos são capazes de
formar estruturas de micelas. Dos lipídeos anfipáticos, o mais importante na formação da
membrana celular é o fosfolipídeo.
Desse modo, esses lipídeos formavam grandes micelas, originando “membranas” celulares
rudimentares com moléculas de RNA em seu interior, surgindo as primeiras células primitivas, com
material genético com capacidade replicativa. Hoje em dia, grande parte dos seres vivos ainda
possui seu material genético disperso no citoplasma, chamamos esses organismos de
procariontes ou procariotos (Figura 10).
É importante ressaltar que, ao longo dos anos, o mundo RNA evoluiu, o DNA, constituído de uma
dupla fita, é mais estável que o RNA. Sendo assim, possui uma maior confiabilidade para
armazenar informações de um determinado ser vivo e tem as informações responsáveis pela
manutenção da vida. O DNA passa pelo processo de transcrição que dá origem a um RNA
mensageiro (RNAm), este pode ser traduzido e passa a ser uma proteína, unidade que vai
realizar as funções que a célula precisa, como catalisar reações, servir para replicar o DNA,
formar estruturas etc.
/
 
Fonte: Nature
 Figura 10: Como poderiam ser as primeiras células vivas da Terra.
/
ENTENDENDO MELHOR COMO A VIDA PODE
TER SURGIDO
ORGANIZAÇÃO DO MATERIAL GENÉTICO EM
PROCARIOTOS
Os procariotos são os organismos mais antigos da Terra. Todos são unicelulares e não possuem
um núcleo organizado, ou seja, o seu material genético, o DNA, não é separado por uma
membrana nuclear, chamada de carioteca, muito parecido com as primeiras células encontradas
no nosso planeta. Esses organismos são os mais simples e toda a sua expressão gênica é
diferente da nossa.Nós, seres humanos, pertencemos ao grupo dos eucariontes, temos o material
genético separado do citoplasma pela carioteca (Figura 11).
EXPRESSÃO GÊNICA
Expressão gênica é o processo em que uma informação contida no DNA é transcrita e
traduzida para a formação de proteínas. A proteína é a expressão da informação presente no
DNA.
javascript:void(0)
/
 
Fonte: Wikipedia
 Figura 11: Núcleo disperso nas células procariontes e núcleo compartimentado pela carioteca
nas células eucariontes.
Antes de falar da organização do material genético dos procariotos, vamos conhecer alguns
conceitos básicos para lembrarmos de certas nomenclaturas:
 
Fonte: Blue Andy/Shutterstock
O GENE
/
É um segmento codificante do DNA, ou seja, de fato, será transcrito e traduzido.
 
Fonte: Sergei Drozd/Shutterstock
O GENOMA
Contém toda a informação hereditária, todo DNA que será passado da célula mãe para a células
filha, incluindo os genes e as sequências não codificantes.
/
 
Fonte: vchal/Shutterstock
O CROMOSSOMO
É uma estrutura formada por uma molécula de DNA altamente compactada e associada a
proteínas auxiliadoras, que ajudam a compactar e descompactar o DNA para facilitar o acesso de
outras proteínas a essa região, por exemplo.
Os procariotos possuem apenas um cromossomo linear ou circular que contém todo o seu
material genético, chamado de DNA cromossomal. Além do cromossomo, eles também podem
possuir elementos genéticos móveis (EGM), os responsáveis por transmitir algumas
características genéticas a outros indivíduos vizinhos a fim de conferir alguma vantagem ou
desvantagem.
O cromossomo dos procariotos possui uma quantidade de DNA que pode variar entre 0,16 a 13
Mpb. Apenas para termos um exemplo, o DNA da bactéria E. coli possui cerca de 4,6 Mpb contido
em uma célula de 2 μm! Esse volume só é possível devido ao alto grau de condensação do DNA.
A condensação é feita através da formação de grandes alças na molécula de DNA, que originam
alças menores, possibilitando que o DNA ocupe um menor volume na célula. As alças são
javascript:void(0)
/
formadas com o auxílio das proteínas DNA girase e topoisomerase l, a região formada por este
único cromossomo condensado é chamada de nucleoide (Figura 12).
MPB
É a sigla para mega pares de base, sendo mega 106. Pb: indica pares de bases
 
Fonte: Fonte: O autor
 Figura 12: Compactação do DNA procarionte.
Os EGMs são partes fundamentais do DNA dos procariotos, mesmo não pertencendo ao
cromossomo e possuem diversas funções que serão detalhadas posteriormente. É importante
saber que existem diferentes tipos de EGMs, vamos estudar os três principais: plasmídeos,
bacteriófagos e os transposons.
Os plasmídeos são moléculas circulares de DNA fita dupla, independentes do cromossomo e
possuem capacidade de replicação autônoma. Seu tamanho é de cerca de 1 a 35 kpb. Cada
célula pode conter diversos ou nenhum plasmídeo, com uma ou várias cópias. Os plasmídeos são
considerados elementos de herança extracromossômica, já que possuem replicação autônoma,
independentemente do cromossomo. Eles também não são vitais, não causam malefícios à célula
hospedeira, geralmente, possuem informações que serão aproveitadas para produção de toxinas,
pilinas, adesinas e diversos outros tipos de proteínas que podem conferir algum tipo de vantagem
javascript:void(0)
/
para a célula hospedeira. Justamente por isso, podem ser chamados também de elementos
genéticos acessórios (Figura 13).
KPB
Quilo de pares de base, em que o K representa 103.
 
Fonte: Wikimedia
 Figura 13: Plasmídeo e DNA bacteriano.
Os plasmídeos não são normalmente sintetizados, e sim adquiridos através de um fenômeno
chamado conjugação bacteriana, onde uma bactéria transfere os seus plasmídeos para outra e
mantém uma cópia destes para si. Os plasmídeos são de grande importância na Biologia
Molecular pela facilidade de manuseio e replicação. São utilizados como vetores onde uma
sequência de interesse é inserida no plasmídeo, o qual é difundido entre os indivíduos de
determinada colônia de bactérias. As bactérias, ao se replicarem, possibilitam originar uma grande
quantidade de cópias da sequência de interesse. A partir disso, podemos purificar esse material e
usar para os mais diversos fins.
 EXEMPLO
/
Uma das formas de obtenção e produção de insulina é utilizando os plasmídeos como vetores.
Os bacteriófagos podem se inserir no DNA cromossomal e se replicar junto com o organismo.
Após a inserção, os genes contidos no bacteriófago são expressos e podem codificar fatores de
virulência e toxinas entre outras proteínas. Eles são perigosos porque podem transformar uma
bactéria não patogênica em uma bactéria patogênica. Alguns até mesmo podem produzir
capsídeo viral e se multiplicar diversas vezes, iniciando um ciclo lítico que termina na eclosão da
célula hospedeira (Figura 14).
CICLO LÍTICO
Processo em que um vírus insere o material genético em uma célula e se multiplica
exponencialmente, formando novos vírus e resultando no rompimento de dentro para fora da
membrana celular, liberando grande carga viral.
BACTERIÓFAGOS
São vírus que infectam bactérias, injetando o seu material genético.
javascript:void(0)
javascript:void(0)
/
 
Fonte: Axel_Kock/Shutterstock
 Figura 14: Bacteriófago.
Os transposons são pequenas sequências de DNA que serão inseridas de forma aleatória no
DNA do organismo hospedeiro, formando novos trechos de genoma, evento chamado de
transposição e catalisado por enzimas chamadas de transposases. As transposases são capazes
de cortar o DNA na região do transposon, liberando essas sequências, que se difundem pela
célula. Os transposons são identificados a partir de mudanças fenotípicas nas bactérias. Como
quase todo o DNA bacteriano é codificante, essas inserções podem causar algumas alterações
funcionais no procarioto, como a perda de atividade enzimática.
CODIFICANTE
DNA codificante é o termo utilizado para o DNA que de fato será transcrito e traduzido. DNA
não codificante é o termo utilizado para todo o DNA que não será transcrito.
Existem três principais subgrupos de transposons:
javascript:void(0)
/
As sequências de inserção (chamadas de IS, do inglês Insertion Sequence)
Os transposons compostos (simbolizados pela sigla Tn)
Transposons complexos ou elementos TnA
Os ISs são os transposons mais simples, podem se inserir tanto no cromossomo quanto nos
plasmídeos, possuem cerca de 700 a 2.500 pb e são nomeados pela sigla IS, seguido de um
número, por exemplo IS3 ou IS37. Eles contêm os genes responsáveis pelo próprio mecanismo de
transposição, que codificam as transposases e possuem sequências muito parecidas em suas
extremidades para que a sua respectiva transposase corte essa região, liberando o IS para ser
reinserido em um outro sítio. A transposição acontece no momento de abertura da dupla fita de
DNA, que antecede a replicação, onde o transposon é inserido na fita de DNA e replicado junto
com o DNA do procarioto (Figura 15).
 
Fonte: Wikimedia
 Figura 15: Estrutura esquemática do ISs.
O segundo subgrupo é formado pelos transposons compostos (Tn), são chamados de
transposons compostos porque são formados por duas sequencias de ISs em suas extremidades.
Os Tn podem conferir vantagens a bactérias como, por exemplo, o caso do Tn9, que gera
resistência ao antibiótico cloranfenicol.
Os transposons complexos (TnA), o último subgrupo, possuem cerca de 500 pb. Ao invés de ISs
em suas extremidades, possuem pequenas sequências indicando o local de corte pela
/
transposase. Os TnA induzem a replicação do procarioto com objetivo de se multiplicarem.
É importante destacar que os EGMs possibilitam que as bactérias troquem informação genética de
maneira muito rápida. Desse modo, caso apareça algum desses elementos como, por exemplo, a
capacidade de gerar resistência a um antibiótico, logo todas as bactérias daquela colônia também
ganham essa mesma resistência. Essas características foram fundamentaispara a evolução e
manutenção da vida dos organismos procariontes.
ORGANIZAÇÃO DO MATERIAL GENÉTICO EM
EUCARIOTOS
Conforme já aprendemos, a maior diferença entre procariotos e eucariotos é a presença da
carioteca, uma membrana nuclear que engloba o material genético, isolando o citoplasma, no
conjunto chamado de núcleo. O núcleo permite um maior nível de organização celular e modifica
a organização e a estrutura gênica.
Para começarmos a entender o nível de complexidade da organização do material genético em
eucariotos, vamos a algumas contas básicas.
Todo o genoma humano possui cerca de 3.2 Gpb, enquanto isso a espécie Polychaos dubium, um
pequeno parasita unicelular eucarionte, possui 670 Gpb, ou seja, cerca de 200 vezes maior que o
nosso. A esse fenômeno damos o nome de paradoxo do valor C, onde a complexidade do
organismo não está associada ao tamanho do seu material genético, uma vez que nós seres
humanos somos mais complexos que este parasita. O paradoxo do valor C pode ser explicado
pela maneira com que o DNA é codificado e processado.
Outro fator relevante é o nível de compactação do DNA. Vamos agora fazer um comparativo entre
duas células que já conhecemos os valores de pares de base existentes: a humana, com 3,2 Gpb,
e a E. coli, com 4,6 Mpb.
O DNA humano é contido em um diâmetro de cerca de 5 a 10 μm, enquanto na E. coli esse valor
é de 2 μm, ou seja, um DNA 700 vezes maior ocupando um espaço quase semelhante ao da
bactéria. Isso é possível graças a uma diferente forma de estruturação e compactação do DNA.
O genoma dos eucariotos é compactado em cinco níveis diferentes. No primeiro, todo DNA, que
possui 2 nm, é acoplado a proteínas chamadas histonas, essa estrutura é conhecida como
javascript:void(0)
/
nucleossomo. O nucleossomo possui 11 nm e se compacta formando uma estrutura solenoide
de 30 nm. Essas histonas ficam bem juntas formando uma estrutura ainda mais densa como se
fossem fibras. Nos terceiros e quartos níveis de compactação, são formadas alças dos solenoides
(parecidas com as alças dos procariotos), as quais possuem 300 e 700 nm, respectivamente. No
último grau de compactação, ocorre a formação de uma alça ainda maior, 1.400 nm, que dá
origem à estrutura chamada de cromátide cromossômica. Duas cromátides unidas por uma
estrutura chamada de centrômero formam o cromossomo. O conjunto de cromossomos, ou seja,
o DNA e as proteínas acessórias, principalmente, as histonas, formam a cromatina. O
cromossomo também possui em suas extremidades os telômeros, que são estruturas
fundamentais para a estabilidade do cromossomo e indicadores da idade celular, uma vez que um
pequeno trecho desse telômero é perdido devido à forma com que o DNA replica (Figura 16).
GPB
Giga de pares de base, onde G representa 109.
 
Fonte: Wikimedia
/
 Figura 16: Compactação do DNA em eucariotos.
O grau de compactação do DNA eucarionte pode variar de acordo com a fase do ciclo celular que
se encontra, pois a cromatina se organiza de diferentes formas, obedecendo à necessidade de
expressão gênica. Quando o DNA está menos condensado (um estado mais aberto), pode ser
exposto a toda a maquinaria de transcrição e/ou replicação existente, e a cromatina se encontra
em um estado de eucromatina.
Quando o DNA está bastante condensado, a célula não consegue expressar ou replicar tal
região, e ele se encontra no estado de heterocromatina.
Há ainda a heterocromatina constitutiva, formada por trechos que nunca serão transcritos
(Figura 17).
 SAIBA MAIS
Normalmente, chama-se estado de eucromatina/heterocromatina porque não é algo fixo. Logo, o
mesmo trecho pode ficar ora em estado de eucromatina ora em de heterocromatina. Porém, não é
errado chamar apenas de eucromatina ou heterocromatina.
 
Fonte: Wikipedia
/
 Figura 17: Transcrição do DNA descompactado.
Os eucariotos possuem também um DNA extracromossomal, presente nas mitocôndrias e nos
cloroplastos (nas células vegetais) e completamente independentes do DNA cromossomal.
Existem teorias de que essas organelas eram outros organismos que acabaram sendo inseridos
nas células eucariontes e lá permaneceram, pois o ambiente era favorável. Em troca do ambiente
seguro, eles geravam energia para as células hospedeiras, formando uma relação de simbiose.
SIMBIOSE
Associação entre duas ou mais espécies diferentes com vantagens mútuas, onde todas se
ajudam.
VERIFICANDO O APRENDIZADO
1. ESTUDAMOS AS TEORIAS DO SURGIMENTO DA VIDA E AS
CARACTERÍSTICAS ESTRUTURAIS DAS MOLÉCULAS QUE COMPÕEM O
GENOMA. SOBRE ESSES ASSUNTOS, LEIA AS AFIRMATIVAS ABAIXO E
RESPONDA. 
 
I. A TEORIA DE OPARIN E HALDANE ERA A MAIS ACEITA ATÉ A
DESCOBERTA DO METEORO DE MURCHINSON, A PARTIR DE ENTÃO A
TEORIA MAIS ACEITA FOI A DA PANSPERMIA. 
II. A TEORIA MAIS ACEITA ATUALMENTE PARA A ORIGEM DA VIDA NA
TERRA É DERIVADA DA TEORIA DE OPARIN E HALDANE, ONDE A VIDA
SURGIU DE FORMA ESPONTÂNEA A PARTIR DE PEQUENAS MOLÉCULAS
ORGÂNICAS. 
III. O RNA E O DNA SÃO MOLÉCULAS CAPAZES DE ARMAZENAR
javascript:void(0)
/
INFORMAÇÃO GENÉTICA, ENTRETANTO O DNA É MAIS ESTÁVEL E SE
CONSOLIDOU NESTA FUNÇÃO. 
IV. O MUNDO RNA DEPENDIA DE ORGANISMOS COMPLEXOS. 
 
ESTÃO CORRETAS AS AFIRMATIVAS:
A) I e II
B) I e III
C) II e III
D) II, III e IV
2. VIMOS AS PRINCIPAIS DIFERENÇAS NA ORGANIZAÇÃO DAS CÉLULAS
PROCARIONTES E EUCARIONTES. SOBRE A ORGANIZAÇÃO NOS
EUCARIOTOS, COMO VOCÊ ESPERA QUE ESTEJA ORGANIZADO O DNA
DE UMA CÉLULA PRONTA PARA SE REPLICAR?
A) DNA completamente enovelado em estado de eucromatina.
B) DNA parcialmente desenovelado, em estado de heterocromatina.
C) DNA desenovelado, em estado de eucromatina.
D) DNA desenovelado em estado de heterocromatina.
GABARITO
1. Estudamos as teorias do surgimento da vida e as características estruturais das
moléculas que compõem o genoma. Sobre esses assuntos, leia as afirmativas abaixo e
responda. 
 
I. A teoria de Oparin e Haldane era a mais aceita até a descoberta do meteoro de
Murchinson, a partir de então a teoria mais aceita foi a da panspermia. 
II. A teoria mais aceita atualmente para a origem da vida na Terra é derivada da teoria de
Oparin e Haldane, onde a vida surgiu de forma espontânea a partir de pequenas moléculas
/
orgânicas. 
III. O RNA e o DNA são moléculas capazes de armazenar informação genética, entretanto o
DNA é mais estável e se consolidou nesta função. 
IV. O mundo RNA dependia de organismos complexos. 
 
Estão corretas as afirmativas:
A alternativa "C " está correta.
 
Vamos analisar caso a caso. Apesar de surpreendente, a teoria da panspermia (vida vinda do
espaço) não apresenta evidências o suficiente. A teoria de Operin e Haldane se baseia na criação
da vida através de moléculas orgânicas criadas de forma espontânea em um ambiente favorável
que, com o tempo, formaram moléculas cada vez mais complexas. Essa teoria vem ganhando
cada vez mais força com novas descobertas. Os eucariotos e procariotos utilizam moléculas de
DNA para armazenar sua informação genética, a dupla fita de DNA é mais estável que o RNA. O
“mundo-RNA” é uma teoria que surgiu com a possibilidade de o RNA autorreplicar.
2. Vimos as principais diferenças na organização das células procariontes e eucariontes.
Sobre a organização nos eucariotos, como você espera que esteja organizado o DNA de
uma célula pronta para se replicar?
A alternativa "C " está correta.
 
Para a maquinaria de replicação ter acesso ao DNA, ele precisa estar exposto. No caso da
replicação, todo o material genético será copiado para dar origem a uma nova célula filha, portanto
todo o DNA precisa estar desenovelado, no estado de eucromatina. Heterocromatina seria com o
DNA enovelado, dessa forma, o DNA não teria como ser replicado.
MÓDULO 2
 Reconhecer alguns dos mecanismos de regulação da expressão gênica nos procariotos
e eucariotos
/
INTRODUÇÃO
Todos os seres vivos estão em um ambiente sujeito a constantes alterações. Às vezes, podem
faltar nutrientes, ou a temperatura fica muito alta. Existem inúmeraspossibilidades e nossos genes
precisam responder a essas variações. Se faltar nutriente, o indivíduo que melhor conseguir
economizar recursos, vai sobreviver; já aqueles que continuarem usando normalmente tendem a
morrer. Portanto, há uma seleção natural daqueles que conseguem se adaptar rapidamente ao
novo meio em detrimento dos que não têm essa habilidade.
Você sabe que isso tem a ver com a capacidade dos mecanismos de regulação gênica?
Poupar recursos depende que determinados genes que gastam muita energia fiquem menos
ativos, mais condensados. Já genes responsáveis pelo armazenamento de recursos, como os que
expressam as proteínas promotoras da formação do glicogênio, ficam mais ativos, ou seja,
descompactados, para que a maquinaria de transcrição possa acessá-los. É importante ressaltar
que existem ainda os genes que são essenciais para a manutenção da vida, chamados de genes
constitutivos. Não podemos simplesmente economizar energia expressando uma menor
quantidade desses genes, caso contrário, há uma alta possibilidade de isso levar à morte.
Vamos agora entender os ajustes finos e as diferentes estratégias entre procariotos e eucariotos
com relação à regulação da expressão gênica, começando pelos organismos procariontes.
MECANISMOS DE REGULAÇÃO GÊNICA EM
PROCARIOTOS
A regulação da expressão em procariotos pode acontecer em diferentes pontos, com maior custo
energético, durante a estabilização da proteína, que é o produto da fase de tradução, ou
durante a transcrição, com menor custo de energia, pois ainda não ocorreu a tradução do RNAm
(RNA mensageiro).
A transcrição ocorre a partir do acoplamento da RNA polimerase em uma sequência de DNA,
chamada de região promotora. Todos os genes (sequências de DNA codificantes) possuem uma
região promotora. Essa região pode inclusive favorecer uma maior ou menor expressão gênica,
/
fazendo um controle negativo ou positivo, dependendo da ligação de determinadas proteínas
conhecidas como fatores transcricionais, que inibem ou ativam a expressão gênica.
Vamos ver um exemplo mais concreto desse conceito de regulação baseado em fatores
transcricionais repressores (controle negativo) ou efetores (controle positivo). Uma
regulação negativa pode acontecer de algumas formas. Um fator repressor se liga à região
promotora e impede que a RNA polimerase acople na fita de DNA, inibindo a transcrição. Além
disso, um fator repressor pode se ligar a um fator efetor, impedindo a sua atuação e diminuindo a
expressão de determinado gene. O mesmo conceito pode ser aplicado inversamente, um fator
efetor se liga à região promotora aumentando a transcrição ou pode se ligar a um fator repressor e
impedir a inibição do gene (Figura 18).
 
Fonte: O autor
 Figura 18: Regulação da expressão gênica negativa (esquerda) e positiva (direta).
Antes de continuarmos, vamos relembrar a jornada que se inicia na molécula de DNA até a
formação de uma proteína. Um complexo proteico chamado RNA polimerase (existem diferentes
subtipos de polimerases, para fins didáticos, vamos considerar apenas como RNA polimerase)
acopla na região promotora de um gene e começa a construção de um RNAm. Nos procariotos, a
região codificante é chamada de operon e é composta por mais de um gene, geralmente, com
função final relacionada (de uma mesma via metabólica), ou seja, todos os genes de um
determinado operon irão formar proteínas com funções de alguma forma vinculadas umas às
outras, como veremos em breve. O RNAm oriundo da transcrição de um operon é formado por
mais de um gene e é chamado de RNAm policistrônico.
De modo diferente, nos eucariotos, todas as regiões promotoras estão associadas a apenas um
gene, logo o RNAm final possui informações apenas deste gene, sendo chamado de RNAm
monocistrônico; apesar do RNAm dos eucariotos ser formado por apenas um gene, ele precisa
ser processado para continuar a sua jornada (Figura 19).
/
 
Fonte: O autor
 Figura 19: Diferenças no RNAm de eucariontes e procariontes. 
UTR é uma sigla do termo inglês untranslated region que significa região não codificante.
Após a formação e o processamento do RNAm nos eucariotos, ele precisa sair do núcleo para
encontrar o ribossomo. Nos procariotos, por não possuir carioteca, o RNAm encontra-se no
citoplasma, e um RNAt (RNA transportador) é responsável por levar o RNAm contendo as
informações do DNA para o ribossomo, local onde irá iniciar a tradução. O processo de tradução
inicia a partir de um código de leitura presente no RNAm (conhecido como códon) e segue com a
leitura das bases de três em três nucleotídeos até um determinado ponto onde teremos um códon
de parada (Stop códon). Um conjunto de 3 bases de nucleotídeos traduzidas corresponde a 1
aminoácido, e a união dos aminoácidos origina uma cadeia polipeptídica, que é modelada por
proteínas conhecidas como chaperonas, dando origem a uma proteína funcional.
Vamos entender mais a fundo como o ribossomo traduz 3 bases de nucleotídeos em um
aminoácido verificando o exemplo a seguir:
Quando um ribossomo identifica os nucleotídeos UUA, insere um aminoácido a leucina a cadeia
peptídica que está sendo formada. Os códons e seus respectivos aminoácidos são os mesmo
para qualquer organismo, o código genético é universal.
 ATENÇÃO
Todos os seres vivos compartilham o mesmo código de códons. Esse é mais um indício da teoria
da evolução, segundo a qual todos nós viemos de um mesmo ancestral comum.
/
Agora, podemos continuar falando sobre a regulação gênica dos procariotos. Para facilitar a
compreensão, vamos ver um exemplo prático: a regulação do operon Lac da bactéria Escherichia
coli.
Esse operon é responsável pelo metabolismo da lactose, um açúcar importante para a nutrição
dessas bactérias. O operon Lac é composto de diferentes trechos, em sequência, temos:
P1, Promotor 1 (promotor do gene I)
Gene I (gene repressor)
O2, Operador 2 (operador secundário)
P2, Promotor 2 (promotor dos genes Z, Y e A)
O1, Operador 1 (operador secundário)
Gene Z
O3, Operador 3 (operador secundário)
Gene Y
Gene A
Os promotores são responsáveis por iniciar a transcrição do gene adjacente. Os operadores são
regiões regulatórias, onde podem ativar ou reprimir a transcrição do operon. Nesse caso, o O1 é
um sítio em que o repressor Lac se liga e O2 e O3 são operadores secundários. Os operadores
sempre se localizam próximos aos genes que regulam. Temos ainda os três genes estruturais
LacZ (gene Z), LacY (Gene Y) e LacA (Gene A), que codificam as enzimas β-galactosidase,
permease e transacetilase e o Gene 1, que codifica o inibidor do próprio operon, este possui
uma região promotora exclusiva para ele (Figura 20).
javascript:void(0)
javascript:void(0)
javascript:void(0)
/
Β-GALACTOSIDASE
Quebra de galactose em glicose e lactose.
PERMEASE
Facilita a entrada de galactose na bactéria.
TRANSACETILASE
Transferência de acetil-CoA no metabolismo da lactose.
 
Fonte: O autor
 Figura 20: Operon Lac.
Por ser um recurso muito valioso, as células tentam tornar o consumo de energia o mais eficiente
possível.
Na ausência de lactose, não existem motivos para que os genes Z, Y e A sejam expressos, uma
vez que são ligados ao metabolismo da lactose, mas a expressão do gene I é constitutiva, ou seja,
/
ele é sempre expresso mesmo quando não tem presença de lactose intracelular. O gene I dá
origem a uma proteína repressora do promotor 2 (repressor Lac) que se liga à região do O1,
inibindo a expressão de Z, Y e A, mesmo que a RNA polimerase acople em P2 os genes não são
expressos.
A lactose não atua diretamente no operon Lac, entretanto, quando algumas moléculas de
galactose entram na célula, as poucas enzimas β-galactosidase conseguem converter a galactose
em alolactose; essa se liga ao repressor Lac, favorecendo uma mudança conformacional da
proteína, que leva à desassociação entre o repressor e o operador 1, liberando o funcionamento
da RNA polimerase, que transcreve os genes Z, Y e A (Figura 21).
ALOLACTOSEA alolactose é um isômero da lactose responsável justamente por induzir a expressão do
operon Lac.
 
Fonte: O autor
javascript:void(0)
/
 Figura 21: Esquema de regulação do operon Lac mediado pela lactose. Pol: RNA polimerase,
mRNA lac: mRNA mensageiro lactose.
Outra forma de regulação é a dependente de glicose, cuja presença inibe o operon Lac, pois a
célula deve priorizar o metabolismo da glicose antes dos outros carboidratos. Quando os níveis
de glicose estão baixos, ocorre a ativação do operon Lac, a indução é feita por uma pequena
molécula efetora, o cAMP (AMP cíclico), e uma proteína regulatória chamada de CRP (sigla para
cAMP receptor protein, ou seja, proteína receptora de cAMP, CRP, também pode ser chamada de
CAP, catabolite activator protein).
Vamos entender como isso acontece?
Na ausência de glicose, a concentração de cAMP aumenta e essa molécula se liga ao CRP
(CAP), formando o complexo CRP-cAMP (ou CAP-cAMP). O complexo se liga ao DNA em uma
região operadora dependente de CAP-cAMP próxima ao operador 3, ativando a transcrição dos
genes Z, Y e A, para a metabolização da lactose. Na presença de glicose, os níveis de cAMP
diminuem e não é formado o complexo CAP-cAMP, logo o operon Lac fica inibido. É importante
destacar que, quando os níveis de glicose estão altos, a presença de lactose, não leva à
expressão dos genes Z, Y, A, devido à ausência do indutor CAP-cAMP. Esse fato é justificado
pela necessidade do consumo de glicose antes da lactose (Figura 22).
 
Fonte: O autor
/
 Figura 22: Regulação do operon Lac mediado por glicose. 
cAMP: AMP cíclico; CAP: proteína receptora de cAMP; Pol: RNA Polimerase; 
ATP: adenosina trifosfato; P: região promotora.
A regulação gênica do metabolismo de lactose para as bactérias E. coli é de grande importância
para a sobrevivência. Elas se adaptam ao meio e à presença de diferentes nutrientes,
consumindo-os de modo inteligente. Estudar o operon Lac nos possibilita entender os principais
métodos de regulação gênica em procariotos, pois ele engloba fatores repressores e efetores em
diferentes estratégias e meios nutricionais. Agora, podemos ir adiante e aprender sobre a
regulação gênica nos eucariotos.
OPERONS
/
MECANISMOS DE REGULAÇÃO GÊNICA EM
EUCARIOTOS
Os organismos eucariontes podem ser multicelulares, com cada célula com funções diferentes e
atuando em locais diferentes. Entretanto, todas as células possuem o mesmo DNA.
Vamos considerar a estrutura e a organização dos procariotos, seres unicelulares cujo material
genético quase todo é codificante, têm os operons gerando RNAm policistrônico (não existem
operons em organismos eucariontes), proteínas interligadas de uma mesma via metabólica sendo
expressas, regulações básicas de ativação ou repressão genética e os promotores. As células
procariontes funcionam muito bem ao pensar que são unidades individuais, buscando a
sobrevivência.
De modo diferente, se considerarmos os organismos multicelulares, eles possuem um maior nível
de complexidade e, ao mesmo tempo, o percentual de gene codificante e não codificante é muito
menor. Nos humanos, cerca de 2% do DNA é codificante. É um pouco contraintuitivo pensar que
um organismo mais complexo, onde todas as células, mesmo com funções variadas, possuam o
mesmo DNA, e este ainda por cima tem proporcionalmente uma menor porcentagem de genes
codificantes. Vamos a um exemplo?
Ao pensarmos em especialização celular, uma célula do seu intestino precisa absorver e
transportar nutrientes com muita eficiência. Já uma célula da sua pele tem que se multiplicar mais,
conferir resistência e acumular queratina. No entanto, ambos os tipos celulares têm os mesmos
genes, praticamente todo o DNA é igual! Mas como isso é possível?
/
O segredo desse paradoxo é a regulação gênica e o processamento do RNAm.
Para podermos transcrever uma fita de DNA, primeiro, temos o acoplamento da RNA polimerase
na fita dupla. Esse DNA precisa estar acessível à maquinaria de transcrição, logo em um estado
descompactado.
 ATENÇÃO
Durante todo o texto, utilizaremos o termo “maquinaria de transcrição”, o qual é mais correto, uma
vez em que, nos eucariotos, apenas a RNA polimerase sozinha é incapaz de iniciar a transcrição,
ela necessita do auxílio de fatores gerais de transcrição adicionais.
A compactação e descompactação do DNA em eucariotos são dadas pelas proteínas histonas,
sendo um tipo de regulação gênica. As histonas ditam a compactação da cromatina e são
moduladas por pequenas alterações químicas em sua estrutura, sendo elas: metilação (adição de
grupamentos metila favorecem a compactação do DNA pelas histonas, impossibilitando a atuação
da maquinaria transcricional) e a acetilação (a adição de grupamentos acetil favorecem a
descompactação do DNA, possibilitando a atuação da maquinaria de transcrição. Esse
mecanismo é catalisado pelas proteínas histona acetil transferase (HAT) e é reversível) (Figura
23). Assim, uma das maneiras de regular o que vai ser expresso é dependente do padrão de
acetilação/metilação de histonas.
 
Fonte: Wikipedia
 Figura 23: Acetilação de histonas mediada por histona acetil transferase (HAT).
Voltando ao exemplo dado anteriormente, as células do seu intestino certamente possuem
trechos do DNA menos compactados do que as células da sua pele. Esses trechos irão
/
expressar proteínas responsáveis pela absorção dos nutrientes. Nas células da pele, os mesmos
trechos irão estar com as suas respectivas histonas metiladas, ou seja, mais compactadas.
Determinados fatores transcricionais podem promover a acetilação e a metilação das histonas de
maneira direcionada, gerando especializações celulares. Em resumo, o padrão de histonas do seu
DNA é um dos fatores que faz com que diferentes células tenham funções diferentes.
Outro mecanismo de inibição da expressão gênica é dado pela metilação do próprio DNA, mais
especificamente na posição 5 do anel de citosina, que dificulta a interação com a RNA polimerase,
impedindo a transcrição (Figura 24).
 
Fonte: Wikimedia
 Figura 24: Citosina metilada na posição 5 do anel pirimidina. A metilação é a adição de um
grupo metil (CH3) de forma covalente. Enzima responsável DNA metiltransferase (DNMT).
As citosinas metiladas formam as chamadas ilhas CpG ou ilhas CG (ilhas citosina- guanina); essa
metilação não é reparada pela maquinaria de reparo celular, não sendo transcrita e traduzida,
constituindo assim partes não codificantes. No entanto, essa metilação pode ser passada para as
células filhas no processo de replicação durante a multiplicação celular, garantido a sua
hereditariedade. Elas se localizam, principalmente, próximas do sítio de início da transcrição de
genes constitutivos.
Nos eucariotos, ainda levando em consideração a regulação da transcrição, existem ainda as
sequências reguladoras, bastante semelhante aos operadores dos procariotos. No entanto, nos
eucariotos, essas sequências podem estar localizadas a milhares de pares de base de distância
do promotor.
javascript:void(0)
/
Até agora vimos alguns fatores de regulação associados à transcrição do DNA, mas a expressão
gênica dos eucariotos pode ser regulada em diversos outros pontos, como: no processamento
pós-transcricional, na degradação do RNAm, na tradução, no processamento pós-traducional e na
degradação e transporte da proteína gerada.
Como sabemos, os eucariotos são organismos bastante complexos, existem milhares de
diferentes interações. A cada dia, os cientistas descobrem novos conceitos e novas formas de
regulação gênica. Por isso, vamos focar em algumas das regulações mais relevantes, como o
splicing alternativo e a maturação do RNAm, a nível de processamento pós-transcricional, e nos
recém-descobertos miRNA (microRNA) e siRNA (small interference RNA), para degradação do
RNAm.
Agora, já sabemos por que todas as células, mesmo possuindo o mesmo DNA, têm
especializações diferentes. Entretanto, falta ainda entender a proporção de DNA codificantee não
codificante. Temos apenas 2% de DNA codificante, será que é suficiente para dar conta de toda
complexidade de um organismo multicelular? A resposta é sim. Afinal, estamos vivos, não é?
A chave para entender esse dilema está no splicing alternativo. Cada célula possui um padrão
de splicing (conjunto de informação de como vai realizar esse processo) de acordo com suas
funções, originando assim proteínas diferentes a partir do mesmo gene. Após a transcrição do
gene, é formado um pré-RNAm, o qual é processado por um complexo de RNA e proteínas
chamado de spliciossomo, onde, dependendo do padrão de splicing celular no momento da
transcrição, alguns trechos do pré-RNAm são considerados éxons e outros são considerados
íntrons. Os trechos íntrons são removidos do pré-RNAm e os trechos éxons são ligados pelo
spliciossomo, gerando um pré-RNAm formado apenas com éxons, de acordo com o padrão de
splicing (Figura 25).
MAQUINARIA DE REPARO
A maquinaria de reparo é fundamental para a manutenção do DNA. É capaz de consertar
pares de base que foram colocados em lugares errados, reparar danos causados à fita,
reajustar ligações erradas etc. Ela serve para minimizar as mutações, impedindo erros na
replicação.
javascript:void(0)
javascript:void(0)
javascript:void(0)
/
ÉXONS
Trechos do pré-RNAm que serão aproveitados para o RNAm maduro.
ÍNTRONS
Trechos do pré-RNAm que serão removidos do RNAm maduro.
SPLICING ALTERNATIVO.
O termo inglês splicing significa emendar, e “alternativo” se refere ao fato de serem íntrons e
éxons, logo, são emendados de forma alternada.
/
 
Fonte: Nature.
 Figura 25: Diferentes isoformas do RNAm.
Um mesmo gene pode dar origem a uma enorme quantidade de diferentes RNAm e, por
consequência, proteínas diferentes. Desse modo, os eucariotos conseguem com uma quantidade
relativamente baixa de genes codificantes gerar um número muito elevado de diferentes proteínas.
Junto ao splicing alternativo, o pré-RNAm também precisa passar por um processamento, que o
torna capaz de sair do núcleo para chegar ao ribossomo onde será traduzido. O pré-RNAm passa
por duas etapas, uma adição do cap 5’, dada pela ligação de um nucleotídeo alterado, e o GMP
metilado (Guanosina monofosfato metilada), na ponta 5’ do RNAm, por uma ligação trifosfato. O
cap 5’ é fundamental para o reconhecimento do RNAm maduro, a exportação do RNAm para fora
do núcleo e o endereçamento do RNAm em direção ao ribossomo. Ele promove a ligação na
organela, além de também ter ação protetora.
 VOCÊ SABIA
A palavra cap significa boné e, nesse caso, pode ser traduzida para capacete 5’. Por isso, o nome
cap 5’ ou capacete 5’, uma vez que esse nucleotídeo alterado, protege a perda de informação
contida no RNAm oriunda da degradação pela ação de ribonucleases e fosfatases.
/
A segunda etapa do processamento do RNAm é uma adição de uma cauda chamada de “poliA”
na extremidade 3’ do RNA. A cauda tem esse nome por ser formada de 80 a 250 resíduos de
adenina. A cauda também serve para proteger o RNAm de degradação enzimática durante todo o
processo de locomoção em direção ao ribossomo, a cauda poliA é clivada por endonucleases
quando o RNAm encontra o ribossomo.
Uma vez com a adição do cap 5’ e da cauda poliA, o RNAm se torna maduro e pode ser
traduzido pelo ribossoma no citoplasma. A regulação desse processo se dá pela remoção de uma
dessas adições. Caso a célula não precise mais de determinada proteína, sinalizações
regulatórias são enviadas para o núcleo, onde são removidas e o RNAm agora “não maduro” é
degradado (Figura 26).
 
Fonte: Fonte: Wikimedia
 Figura 26: Processamento do RNAm.
A última regulação genética que iremos estudar é a mediada por pequenos RNAs: os miRNAs e
os siRNA.
Os miRNAs apresentam cerca de 19 a 28 pb (pares de base), são endógenos e formados a partir
do pareamento imperfeito de uma fita dupla de RNA (double stranded RNA, conhecido como
dsRNA). Esse pareamento gera uma estrutura em forma de grampo de cabelo, conhecida como
hairpin, que é clivada por uma endonuclease dicer (endonucleases são proteínas que cortam a fita
de RNA ou DNA de forma precisa) formando os miRNAs.
/
Os siRNAs, com cerca de 22 a 23 pb, são exógenos (oriundos do RNA viral) ou endógenos
(oriundos de retrotransposons) e formados a partir de um pareamento perfeito de uma dsRNA.
Também são clivados pela endonuclease dicer, gerando esses fragmentos de siRNA. A regulação
é dada pela ligação entre o miRNA ou siRNA no RNAm induzindo a degradação deste ou
impedindo sua tradução (Figura 27).
RETROTRANSPOSONS
Componentes genéticos com capacidade de autorreplicação, convertendo RNA em DNA.
Estão presentes em eucariotos, porém, sua possível origem é viral. Os retrotransposons ao
longo da evolução se estabeleceram no genoma eucarionte.
 
Fonte: Wikimedia
 Figura 27: Mecanismo de ação do miRNA e siRNA.
Os siRNA e miRNA foram recentemente descobertos e possuem um papel muito importante no
controle da expressão gênica em eucariotos. No entanto, ainda estamos tentando entender melhor
como funcionam, embora suas aplicações médicas pareçam ser muito promissoras. Imagine, por
exemplo, uma pessoa que tenha o metabolismo alterado para produzir grandes quantidades de
colesterol endógeno. Ela pode ter diversos problemas de saúde oriundos do alto colesterol. No
futuro, talvez seja possível construir siRNAs específicos para silenciar a expressão de HMG-CoA
redutase, principal enzima da síntese de colesterol endógeno, abrindo possibilidades para uma
nova terapia genética.
javascript:void(0)
/
EPIGENÉTICA
A genética é o estudo dos genes, das características hereditárias de determinados organismos,
guardadas nas moléculas de DNA. A epigenética é o estudo das características que vão acima
dos genes, pois “epi” deriva do radical grego que indica a posição superior. Essa ciência estuda as
variações nos traços fenotípicos pela ação de fatores externos ou ambientais que afetam a
expressão gênica de modo reversível. A compreensão da epigenética pode nos ajudar a
estabelecer relações entre a forma com que vivemos e o surgimento de determinadas doenças.
Relembrando o que estudamos anteriormente, como um neurônio sabe que tem que ser um
neurônio e não um osteoblasto durante o desenvolvimento embrionário?
A resposta está nos fatores de transcrição específicos de cada linhagem celular que leva a
especialização destas células para a sua forma final e nas marcas epigenéticas no DNA. As
marcas epigenéticas são características do material genético que possibilitam ou não sua
expressão, seja por metilação do DNA, modificação de histonas (metilação ou acetilação) ou
presença de mi e siRNA, que degradam o RNAm.
A epigenética é tudo que está acima dos genes e estuda alterações na expressão gênica que não
alteram a estrutura primária da sequência de nucleotídeos. Na verdade, explora modificações no
DNA decorrentes da interação do indivíduo com o ambiente.
 EXEMPLO
Um indivíduo fumante consome grandes quantidades de nicotina, cuja molécula modifica o padrão
metilação em diversos genes. Então, os genes que, em condições normais, não estariam sendo
expressos passam a ser. E quais são as consequências dessa alteração na expressão gênica?
É difícil precisar todas as alterações causadas por determinada substância no nosso organismo,
temos milhares de diferentes células expressando diferentes proteínas. Entretanto, a comunidade
científica estuda incansavelmente as diversas modificações genéticas causadas por alimentos,
comportamentos, drogas etc.
/
Agora, ainda utilizando o caso da nicotina como exemplo, é sabido que o cigarro faz mal à saúde
e, segundo estudos, podem reduzir em cerca de 14 anos a expectativa de vida de adultos
fumantes. Apenas nos Estados Unidos, o cigarro tem algum tipo de relação com a morte de 400
mil pessoas por ano. As consequências de fumar incluem câncer, doenças cardiovasculares e
respiratórias. Muitas grávidas continuam fumando durante a gestação, sendoa causa de morte
infantil evitável mais importante. O cigarro consumido pelas mães atrasa o desenvolvimento neural
e cardiopulmonar do embrião. Essas crianças também tendem a ter uma maior frequência de
doenças respiratórias como asma (Figura 28). No entanto, estudos recentes mostram que mães
fumantes podem não só ter os filhos com asma, como também os netos, mesmo que as filhas não
fumem. Além disso, foram encontrados alguns mecanismos epigenéticos nos filhos e netos de
fumantes.
 
Fonte: Lightspring/Shutterstock
 Figura 28: Cigarro.
Os conceitos sobre hereditariedade genética evoluíram com o passar dos anos, não apenas os
genes são responsáveis por transmitir as informações dos pais para os filhos, mas também os
padrões epigenéticos são fundamentais, os quais podem ser passados através de gerações.
Marcações no DNA e nas histonas (acetilações e metilações) modificam o padrão de expressão
genética, principalmente, no período de desenvolvimento embrionário, causando uma
reprogramação gênica.
/
As modificações epigenéticas ocorrem não apenas pela exposição recorrente a determinadas
substâncias químicas, mas também devido a fatores ambientais e comportamentais. O holocausto
durante a Segunda Guerra Mundial deixou marcas visíveis e invisíveis tanto nos que sofreram o
horror nazista quanto em seus filhos e netos. As marcas invisíveis foram reveladas nos
cromossomos, que representam um tipo de memória biológica do nosso organismo. Os
sobreviventes do holocausto tinham pesadelos frequentes, ansiedade, depressão, dificuldade de
ressocialização, entre outros distúrbios psicológicos. De alguma maneira, esses traumas se
internalizaram e foram passados adiante, pois os descendentes da guerra tendem a ser mais
vulneráveis ao stress e propensos a desordens mentais, evento conhecido como transmissão
transgeracional de trauma (TTT). A TTT também já foi descrita na literatura a partir de indivíduos
que sofreram abusos, refugiados, vítimas de tortura etc. (Figura 29).
 
Fonte: J Walters/Shutterstock
 Figura 29: Soldado com stress pós-traumático.
A compreensão da TTT trouxe avanços na vida de diversas crianças e adultos que passaram por
eventos traumáticos, permitindo o diagnóstico e tratamento precoce das consequências do
trauma, uma espécie de medicina epigenética. É importante lembrarmos que os mecanismos
epigenéticos são maleáveis e podem ser alterados durante a nossa vida, dependendo de fatores
químicos e socioambientais, que nos leva a boas perspectivas de tratamento.
/
Diversas outras associações epigenéticas têm sido testadas. Compreender os ajustes finos
desses mecanismos pode gerar uma revolução na maneira com que enxergamos a medicina e a
genética.
Podemos citar alguns exemplos, como: pessoas que sofreram fome durante os anos iniciais de
suas vidas possuem um menor risco de câncer colorretal; crianças que passaram por trauma
tendem a desenvolver depressão quando adultos devido a uma hipermetilação do gene NR3C1
(responsável pela expressão de receptores ligados ao stress); associação de metilação do DNA,
formando ilhas CpG em determinadas regiões, é correlacionada com maior prevalência de
diabetes tipo 2 e obesidade em populações árabes, dentre outros estudos.
A terapia genética, com o uso de miRNA, siRNA e edição genética parece muito promissora, mas
ainda são estudos preliminares e temos muitos mistérios a desvendar (Figura 30).
 
Fonte: LuckyStep/Shutterstock
 Figura 30: Terapia genética.
VERIFICANDO O APRENDIZADO
/
1. ESTUDAMOS AS REGULAÇÕES GÊNICAS NOS PROCARIOTOS E VIMOS
QUE EXISTEM OPERONS, QUE SÃO TRECHOS RESPONSÁVEIS POR
ALGUMA FUNÇÃO BIOLÓGICA. LEIA AS AFIRMATIVAS ABAIXO E
RESPONDA. 
 
I. CONSIDERANDO O OPERON LAC, A EXPRESSÃO DO GENE I É
CONSTITUTIVA, UMA VEZ QUE NÃO TEMOS LACTOSE SEMPRE NO MEIO
INTRACELULAR. 
II. EM PROCARIOTOS, OS GENES COM FUNÇÕES DE UMA MESMA VIA
METABÓLICA ESTÃO LOCALIZADOS PRÓXIMOS UNS AOS OUTROS EM UM
OPERON E TRANSCREVEM PARA UM RNAM MONOCISTRÔNICO.
III. O RNAM MONOCISTRÔNICO É CAPAZ DE SER TRADUZIDO EM
DIFERENTES PROTEÍNAS DE UMA MESMA VIA METABÓLICA. 
IV. O OPERON LAC TEM SEU FUNCIONAMENTO REPRIMIDO NA PRESENÇA
DE GLICOSE, MESMO QUE COM ALTAS CONCENTRAÇÕES DE LACTOSE. 
 
ESTÃO CORRETAS AS AFIRMATIVAS:
A) I, II e III
B) II e III
C) II, III e IV
D) I e IV
2. A EPIGENÉTICA ESTUDA COMO COMPONENTES EXTERNOS E
AMBIENTAIS MODIFICAM NOSSO GENOMA ATRAVÉS DE DETERMINADAS
MARCAÇÕES. SÃO EXEMPLOS DE MARCADORES EPIGENÉTICOS QUE
PODEM MODIFICAR A EXPRESSÃO DE GENES: 
 
I. METILAÇÃO DO DNA, METILAÇÃO DE HISTONAS E PRESENÇA DE
MIRNAS. 
II. ACETILAÇÃO DO DNA, SPLICING ALTERNATIVO E PRESENÇA DE
MIRNAS. 
III. UBIQUITINAÇÃO DE PROTEÍNAS, METILAÇÃO DE HISTONAS E
/
NICOTINA. 
IV. METILAÇÃO DO DNA, STRESS E PRESENÇA DE MIRNAS. 
 
ESTÃO CORRETAS AS SENTENÇAS:
A) I e II
B) I
C) III e IV
D) II
GABARITO
1. Estudamos as regulações gênicas nos procariotos e vimos que existem operons, que são
trechos responsáveis por alguma função biológica. Leia as afirmativas abaixo e responda. 
 
I. Considerando o operon Lac, a expressão do gene I é constitutiva, uma vez que não temos
lactose sempre no meio intracelular. 
II. Em procariotos, os genes com funções de uma mesma via metabólica estão localizados
próximos uns aos outros em um operon e transcrevem para um RNAm monocistrônico. 
III. O RNAm monocistrônico é capaz de ser traduzido em diferentes proteínas de uma
mesma via metabólica.
IV. O operon Lac tem seu funcionamento reprimido na presença de glicose, mesmo que
com altas concentrações de lactose. 
 
Estão corretas as afirmativas:
A alternativa "D " está correta.
 
O operon Lac é responsável por expressar as proteínas da via metabólica de degradação da
lactose, quando esta não está presente o gene I é expresso para não ter gasto fútil de energia. O
RNAm dos eucariotos, transcrito a partir de diferentes genes de uma mesma via, é chamado de
RNAm policistrônico e é capaz de ser traduzido em diferentes proteínas de uma mesma via
/
metabólica. A presença de glicose impossibilita a formação indutor CRP-cAMP, logo, não ocorre a
transcrição do operon Lac, mesmo quando temos a lactose.
2. A epigenética estuda como componentes externos e ambientais modificam nosso
genoma através de determinadas marcações. São exemplos de marcadores epigenéticos
que podem modificar a expressão de genes: 
 
I. Metilação do DNA, metilação de histonas e presença de miRNAs. 
II. Acetilação do DNA, splicing alternativo e presença de miRNAs. 
III. Ubiquitinação de proteínas, metilação de histonas e nicotina. 
IV. Metilação do DNA, stress e presença de miRNAS. 
 
Estão corretas as sentenças:
A alternativa "B " está correta.
 
Metilação da citocina, presente no DNA, na posição 5’ pode silenciar trechos do DNA. A metilação
das histonas torna a região condensada, impedindo a transcrição, e a presença de miRNAs induz
degradação do RNAm, impedindo a tradução. São três diferentes vias de controle epigenético. A
acetilação do DNA não é uma estratégia de controle de expressão genética. A nicotina não pode
ser considerada um marcador epigenético. O stress também pode alterar controle de expressão
gênica através de mudanças epigenéticas, porém ele próprio não é um marcador epigenético.
CONCLUSÃO
CONSIDERAÇÕES FINAIS
Conhecemos como a Biologia Molecular foi estabelecida como ciência a partir da descoberta do
DNA e do RNA, explorando principalmente a sua estrutura e a sua função. Além disso, vimos a
teoria mais aceita, atualmente, para explicar como a vida surgiu no nosso planeta. Aprendemos
/
como o material genético nos eucariotos e procariotos e como esses grupos se organizam e os
diferentes mecanismos de regulação da expressão gênica. Por fim, todos os conceitos aprendidos
sobre os eucariotos foram concatenados para termos uma noção sobre o que é a epigenética. A
epigenética é uma ciência recente que estuda o comportamento de todos os componentes que
estão presentes influenciando o genoma e, por consequência, influenciandona expressão gênica.
REFERÊNCIAS
AL MUFTAH, W. A. et al. Epigenetic associations of type 2 diabetes and BMI in an Arab
population. In: Clinical epigenetics, v. 8, n. 1, p. 13, 2016.
ALBERTS, B. Molecular biology of the cell. 2018.
AMBROS, V. The functions of animal microRNAs. Nature, v. 431, n. 7006, p. 350-355, 2004.
BETZ, F. Managing Science: Innovation, Technology, and Knowledge Management. 2011.
BORGES-OSÓRIO, M. R.; ROBINSON, W. M. Genética Humana. 3 ed. Artmed Editora, 2013.
COSTA, E. de B. O.; PACHECO, C. Epigenética: regulação da expressão gênica em nível
transcricional e suas implicações. In: Semina: Ciências Biológicas e da Saúde, v. 34, n. 2, p. 125-
136, 2013.
DAHM, R. Friedrich Miescher and the discovery of DNA. In: Developmental biology, v. 278, n. 2,
p. 274-288, 2005.
DUBEY, R. C. D. K. ATB of microbiology. 1st edition, p.227-229. New Delhi: S. Chand &
Company, 2015.
/
GRINDLEY, N. D. F.; REED, R. R. Transpositional recombination in prokaryotes. In: Annual
review of biochemistry, v. 54, n. 1, p. 863-896, 1985.
HARTL, D.; RUVOLO, M. Genetics. Jones & Bartlett Publishers, 2012.
HICKMAN, A. B.; DYDA, F. Mechanisms of DNA transposition. In: Mobile DNA III, p. 529-553,
2015.
HUGHES, L. et al. Early life exposure to famine and colorectal cancer risk: a role for
epigenetic mechanisms. In: PloS one, v. 4, n. 11, p. e7951, 2009.
JACOB, F.; MONOD, J. Genetic regulatory mechanisms in the synthesis of proteins. In:
Journal of molecular biology, v. 3, n. 3, p. 318-356, 1961.
JOAQUIM, L. M.; EL-HANI, C. N. A genética em transformação: crise e revisão do conceito de
gene. In: Scientiae studia, v. 8, n. 1, p. 93-128, 2010.
KELLERMANN, N. PF. Epigenetic transmission of holocaust trauma: can nightmares be
inherited. In: Isr J Psychiatry Relate Sci, v. 50, n. 1, p. 33-39, 2013.
LANE, N. The vital question: energy, evolution, and the origins of complex life. WW Norton &
Company, 2015.
LEHMAN, N. Cold-hearted RNA heats up life. In: Nature chemistry, v. 5, n. 12, p. 987-989, 2013.
LESLIE, F. M. Multigenerational epigenetic effects of nicotine on lung function. In: BMC
medicine, v. 11, n. 1, p. 1-4, 2013.
MARSHALL, M. First life: The dawn of evolution. In: New Scientist, v. 211, n. 2825, p. 32-35, 2011.
MELAS, P. A. et al. Genetic and epigenetic associations of MAOA and NR3C1 with
depression and childhood adversities. In: International Journal of Neuropsychopharmacology, v.
16, n. 7, p. 1513-1528, 2013.
MILLER, S. L. et al. A production of amino acids under possible primitive earth conditions.
In: Science, v. 117, n. 3046, p. 528-529, 1953.
NELSON, D. L.; LEHNINGER, A. L.; COX, M. M. Lehninger principles of biochemistry.
Macmillan, 2008.
PARFREY, L. W.; LAHR, D. J. G; KATZ, L. A. The dynamic nature of eukaryotic genomes. In:
Molecular biology and evolution, v. 25, n. 4, p. 787-794, 2008.
/
SUMNER, A. T. Chromosomes organization and function. In: Blackwell Science Ltd. a Blackwell
Publishing company. United Kingdom, v. 1, p. 143-153, 2003.
VÁZQUEZ-SALAZAR, A.; LAZCANO, A. Early life: Embracing the RNA world. Current Biology, v.
28, n. 5, p. R220-R222, 2018.
WATSON, J. D.; CRICK, F. H. C. Molecular structure of nucleic acids: a structure for
deoxyribose nucleic acid. Nature, v. 171, n. 4356, p. 737-738, 1953.
EXPLORE+
Para explorar mais os seus conhecimentos a respeito do assunto deste tema, recomendamos as
seguintes leituras:
Cientistas encontram possível sinal de vida em Vênus, matéria de divulgação científica da
revista Exame, escrita pela jornalista Tamires Vitorino. Nessa matéria, é abordada a
descoberta do gás fosfina metabólito bacteriano em Vênus, indicando possível sinal de vida.
Michael Russell demonstrou que existem fontes de águas termais no fundo dos oceanos,
aquecidas pelo manto da Terra, que jorram água alcalina. Essas fontes são ricas em
minérios de ferro, níquel e enxofre dissolvidos. Para conhecer mais, leia o livro Questão vital:
Por que a vida é como é?, de Nick Lane e Talita Rodrigues.
Para conhecer um pouco mais sobre os avanços da epigenética na área biomédica, leia o
livro Epigenética aplicada à saúde e a doença de Elsner e Siqueira.
Para conhecer um pouco mais sobre a história da Biologia Molecular, visite a matéria do
Rogerio Meneghini Os genes e o gene, publicada na revista FAPESP.
Qual foi papel de Roselind Franklin no modelo da dupla hélice do DNA de Watson e Crick?
Para saber mais, visite o artigo As controvérsias a respeito da participação de Rosalind
Franklin na construção do modelo da dupla hélice, de Marcos Rodrigues da Silva.
/
CONTEUDISTA
Eldio Gonçalves dos Santos
 CURRÍCULO LATTES
javascript:void(0);
/
DESCRIÇÃO
Isolamento dos ácidos nucleicos: coleta, transporte e armazenamento de amostras; extração e
quantificação de DNA e RNA; síntese de cDNA; desenho experimental.
PROPÓSITO
Compreender as etapas para o isolamento dos ácidos nucléicos, a partir do desenho experimental até a
sua extração e quantificação é o primeiro passo para obtenção de amostras de qualidade para a
realização dos métodos moleculares, garantindo, assim, resultados fidedignos.
OBJETIVOS
/
MÓDULO 1
Descrever o desenho experimental e as fases pré-analíticas do isolamento dos ácidos nucleicos
MÓDULO 2
Descrever os procedimentos de extração e quantificação do DNA e RNA e síntese do cDNA
INTRODUÇÃO
A Biologia Molecular é responsável por estudar as moléculas que realizam a manutenção da vida. São
elas: DNA, RNA e proteínas, que têm como função principal, considerando o dogma central da Biologia,
armazenar informações e enviar essas informações para a síntese das proteínas que realizaram as
funções celulares, respectivamente.
Atualmente, os inúmeros avanços obtidos na área médica, na ciência animal e vegetal, são resultado da
elaboração de técnicas moleculares que nos proporcionaram novas formas de estudar o DNA e o RNA.
Técnicas essas que estão em constante evolução.
No entanto, antes de analisar o material genético propriamente dito, é necessário extrair esse material
das células. Para isso, é essencial que a coleta, o armazenamento, o transporte e o processo extrativo
sejam realizados de maneira satisfatória e que tenhamos uma quantidade de material genético
suficiente, de qualidade, livre de contaminantes e íntegro para realizar a análise.
Você imagina como é feito o processo extrativo? Será que a extração de DNA ou RNA empregam a
mesma metodologia? E o que é cDNA e qual sua importância?
Vamos juntos, ao longo desta jornada, explorar todos esses questionamentos, visitando a coleta,
transporte e armazenamento do material para análise molecular (fase pré-analítica). Após essa fase,
vamos aprender sobre as técnicas de extração de DNA e RNA, quantificação, análise da pureza e, por
fim, a síntese do cDNA. Além disso, estudaremos o desenho experimental e entenderemos a sua
aplicabilidade, etapas e importância no desenvolvimento e conhecimento científico!
/
MÓDULO 1
 Descrever o desenho experimental e as fases pré-analíticas do isolamento dos ácidos
nucleicos
 
Fonte: Shutterstock.com
1 – DESENHO EXPERIMENTAL
O desenho experimental é um planejamento de um estudo realizado em algumas etapas e é uma
ramificação do método científico, que é a ferramenta mais poderosa de todas para o avanço
tecnológico da humanidade e muda até mesmo a forma que pensamos nas coisas do dia a dia.
Veja a aplicação desse método em uma atividade do nosso cotidiano:
Leonardo tem o hábito de assistir ao telejornal todos os dias. Enquanto assistia ao programa, viu que o
prefeito da sua cidade participou de uma pequena entrevista e fez algumas afirmações sobre o
/
funcionamento da prefeitura naquele trimestre.
Primeiro, Leonardo deve parar, pensar sobre tal afirmação e aplicar o método científico, observando o
que foi falado e questionando “Será que é verdade o que o prefeito falou?”
Em seguida, ele estabelecerá hipóteses: “É verdade que tal coisa aconteceu” ou “É mentira que tal
coisa aconteceu”.
A próximaetapa é realizar um experimento, que nesse caso é a busca de fontes confiáveis de notícia,
com credibilidade, para identificar se o que o político falou é verdade ou não, analisar o discurso e,
finalmente, Leonardo poderá tomar a sua conclusão baseado no método científico.
/
Pronto! Agora ele pode validar a hipótese “É verdade” ou “É mentira” ao invés de simplesmente aceitar a
afirmação dita.
O método científico foi utilizado para produzir quase tudo que existe, indo do aparelho em que você está
lendo este texto até a cadeira em que está sentado(a). Nós utilizamos esse método muitas vezes de
forma inconsciente, mas temos que ter em mente que ele existe e que devemos pensar sempre de
forma criteriosa.
Resumindo, as etapas do método científico são: observação, questionamento, hipótese, experimento,
análise dos resultados e conclusão.
 Método científico. Fonte: EnsineMe.
OBSERVAÇÃO
javascript:void(0)
javascript:void(0)
javascript:void(0)
/
A partir da observação de algum evento – por exemplo, a existência do DNA –, podemos nos
perguntar (questionar): “Eu gostaria de purificar o DNA para estudar melhor como ele é construído,
tem alguma forma de fazer isso?”.
HIPÓTESE
A partir dessa pergunta, estabelecemos uma hipótese: “Se eu aplicar um reagente específico e
fizer um determinado procedimento, será que consigo o DNA purificado?”.
EXPERIMENTO
Depois vamos para a bancada, onde o experimento é feito, e a partir da análise dos resultados, as
conclusões são obtidas.
Agora que já entendemos o método científico, podemos falar sobre desenho experimental. Ele é um
conjunto de etapas que devem ser realizadas para conduzir uma hipótese utilizando o método científico,
com objetivo de estabelecer um resultado confiável e reprodutível.
A reprodutibilidade é um dos pontos mais importantes da ciência.
 EXEMPLO
Vamos entender melhor com um exemplo:
Sua equipe do laboratório desenvolveu uma nova técnica de quantificação de DNA. Você deverá escrever
sua metodologia passo a passo, com detalhes dos tipos de solventes necessários, as concentrações,
/
pressão, temperatura de incubação etc. Os dados devem ser claros para que quando outra pessoa ler essa
metodologia (por exemplo, alguém do outro lado do mundo, cinco anos depois) ela consiga chegar no mesmo
resultado, considerando que todas as condições e manipulação foram realizadas conforme o descrito.
As etapas do desenho experimental, são:
1. DEFINIR A RELAÇÃO CAUSA-EFEITO
Estabelecer o problema existente, os objetivos do trabalho e metas a serem cumpridas.
2. PLANEJAMENTO
Com o projeto estabelecido, preparar a instrumentação e avaliar possíveis problemáticas do
experimento.
3. EXECUÇÃO
Realizar as medições e técnicas planejadas.
4. ANÁLISE E INTERPRETAÇÃO
Após a execução, analisar os dados coletados de forma criteriosa e científica.
5. FORMULAR AS CONCLUSÕES
A partir da análise e interpretação dos resultados, devemos concluir se a relação causa-efeito se
mostrou existente e responder aos objetivos do trabalho definidos na etapa 1, fechando dessa forma o
ciclo do desenho experimental.
/
A partir do desenho experimental, pretendemos dizer de que modo ou por que causas o fenômeno é
produzido. Assim, a partir da ideia de relação de causa-efeito em que se acredita que existe uma relação
entre a construção da causa e o efeito observado, formulamos as hipóteses a serem testadas, temos os
vários tratamentos (variáveis independentes) e executamos o experimento e observamos os resultados
(variáveis dependentes). Se o experimento for bem elaborado e planejado, podemos formular
conclusões a respeito da relação de causa-efeito para a hipótese estabelecida.
HIPÓTESES
Hipóteses são afirmações provisórias, enunciadas de forma curta e objetiva, que serão verificadas
para ser ou não demonstradas. Seguem teorias já existentes.
1.1 – VARIÁVEIS DEPENDENTES E
INDEPENDENTES
Mas o que são variáveis dependentes e independentes? Para responder a essa pergunta,
aprenderemos alguns conceitos essenciais para o desenho experimental!
Sempre que fazemos um experimento, queremos verificar os seus resultados. Todos os resultados
(outputs) são originados a partir das entradas do experimento (inputs).
ENTRADAS DO EXPERIMENTO
A palavra entrada corresponde a todos os valores inseridos em determinado modelo, ou seja, em
um modelo experimental em que valores são dados, as entradas são todos estes valores.
javascript:void(0)
javascript:void(0)
/
 
Fonte: DesignPrax/Shutterstock.com
Considerando que eu quero extrair o DNA com sucesso, meu input vai ser o material coletado, por
exemplo, o raspado da face interna da bochecha, e o output vai ser o DNA extraído desse material.
Os inputs são suscetíveis às diversas variáveis. Elas são agrupadas em dois grupos: variáveis
dependentes e variáveis independentes.
VARIÁVEIS INDEPENDENTES
São aquelas que podemos controlar e modificar e possuem um certo efeito sobre a variável dependente.
VARIÁVEIS DEPENDENTES
Medem o efeito do que está sendo avaliado, dependem da variável independente.
 EXEMPLO
O experimento será medir a concentração plasmática do meu colesterol. As variáveis independentes, ou seja,
as que eu posso controlar, seriam: Fiz jejum? Me alimentei bem? Usei algum medicamento nos últimos dias?
javascript:void(0)
javascript:void(0)
/
Essas perguntas irão influenciar diretamente no resultado do colesterol encontrado, ou seja, na minha
variável dependente, que nesse caso é a concentração de colesterol dosada no soro.
1.2 – HIPÓTESE NULA E HIPÓTESE
ALTERNATIVA
Após os resultados do nosso experimento, baseado nos dados coletados e processos realizados, como
garantir que o dado obtido em uma amostra pode ser generalizado para toda a população e verificar se
a hipótese inicial estava correta?
AMOSTRA
Subconjunto de pessoas, itens ou eventos de uma população selecionados para analisar e fazer
inferências.
POPULAÇÃO
Uma população é um conjunto de pessoas, itens ou eventos sobre os quais você quer fazer
inferências.
 RESPOSTA
javascript:void(0)
javascript:void(0)
/
Para tentar responder a essas perguntas, os cientistas utilizam modelos estatísticos e testes de hipóteses
para analisar os dados e testar a validade desses resultados. Por meio da inferência estatística, os testes de
hipótese são utilizados para tomar a decisão de aceitar ou rejeitar uma hipótese estabelecida no início do
desenho experimental.
Existem dois tipos de hipóteses: a hipótese nula (H0) e a hipótese alternativa (H1).
HIPÓTESE NULA
Indica que não há uma relação causa-efeito.
/
HIPÓTESE ALTERNATIVA
Afirma que existe uma relação causa-efeito, ou seja, rejeita a hipótese nula.
Vamos entender melhor a partir de um exemplo:
Para provar que existe um padrão, ou seja, uma relação causa-efeito, vamos estudar se, ao falar com
um papagaio, ele repete exatamente o que eu falo. Nesse caso, minha hipótese inicial, aquela que eu
quero provar, é que o papagaio repete o que eu falo.
Para isso, o experimento será falar várias vezes para o papagaio a palavra Vasco e observar o que ele
diz. Como resultado, podemos esperar que ele repita a mesma palavra (Vasco) ou não (Flamengo, ou
qualquer outra palavra diferente de Vasco). Assim, teremos duas hipóteses: a hipótese nula (aquela em
que não há relação causa-efeito), que ele não repete o que falamos, ou seja, ao ouvir Vasco, ele diz
Flamengo. Quando isso acontece, dizemos que a H0 é verdadeira; E a hipótese alternativa (aquela que
confirma a relação causa-efeito), em que ele repete o que estamos falando, ao ouvir Vasco, ele repete
Vasco. Nesse caso, rejeitamos a H0 e a H1 é verdadeira.
/
 Hipóteses nula e alternativa. Fonte: EnsineMe.
1.3 – TIPOS DE ERROS
Todos os experimentos e análises de resultados são passíveis de erros de interpretação e/ou do
processo realizado. Os erros são causados quando temos uma interpretação errônea dos dados, o que
nos leva a rejeitar uma hipótese verdadeira (falso positivo) ou não rejeitar uma hipótese

Continue navegando