Cálculo Vetorial (2)
242 pág.

Cálculo Vetorial (2)


DisciplinaCálculo Vetorial e Geometria Analítica3.247 materiais76.466 seguidores
Pré-visualização50 páginas
Enfatizam-se demonstrações, teoremas e
abstrações aqui e quase nada lá. Cobra-se autodidatismo e raciocínio na
faculdade de quem cursou (salvo exceções) um Ensino Médio
preponderantemente à base de memorizações e expedientes similares.
Tal procedimento - argumenta Valmir Chagas - \u201cdesenvolve uma estranha
metodologia de perguntas e respostas tipificadas e gera maus hábitos de
estudo". É uma ledice enganosa transferir a metodologia de ensino dos
cursinhos ao Ensino Médio.
Cabe à comunidade universitária a consciência das mazelas do
sistema educacional brasileiro. Não é só: faz-se mister uma postura crítica
e participativa diante das decisões administrativas e pedagógicas. Se tal
situação não é apanágio do momento atual e sim tão antiga quanto o
próprio Brasil, a ressalva cabe ao conformismo apático e ao fatalismo de
aceitar as coisas como estão e como sempre foram.
É papel precípuo da Universidade, e lhe cabe a iniciativa,
promover física e socialmente a comunidade. Esta geralmente não tem
consciência de seus próprios problemas e muito menos de como resolvê-
los.
O Autor
conditio sine qua non
"Tinha 12 anos quando assisti à demons-
tração de um teorema de geometria e senti
uma espécie de vertigem. Parecia que
estava descobrindo um mundo de infinita
harmonia. Não sabia, então, que acabava
de descobrir o universo platônico, com sua
ordem perfeita, com seus objetos eternos e
incorruptíveis, de uma beleza perfeita e
alheia a todos os vícios que eu acreditava
sofrer. Assim, apesar deminhavocação ser
a de escrever ou pintar, fui atraído durante
muitos anos por aquela realidade fantás-
tica."
Neste excerto de entrevista, de 1987, o renomado escritor
argentino Ernesto Sábato sintetiza um dos mais conspícuos encômios à
Geometria e, por extensão, à Matemática "um mundo de infinita
harmonia". Este é o sentimento que nós, professores, devemos transmitir
aos alunos de boa vontade.
A didática, de um lado, cobra do professor a sensibilidade para
perceber o nível da classe e, a partir daí, iniciar o seu trabalho; que o
professor dispa a postura hermética e estanque do ensino à base de
"quadro-negro, giz e salivação"; que induza o seu discípulo a apreciar a
Matemática como disciplina autônoma, abstrata e, concomitantemente,
utilitária em diversos setores. De outro lado, faz-se mister que o aluno
perceba o seu papel no processo, assumindo uma postura dinâmica e
participativa. Não basta ao aluno sentar-se em sala de aula e ouvir a
explicação do professor. É impossível aprender a jogar tênis apenas
assistindo de camarote. Assim também com a Matemática: é necessário
treino, exercícios e efetiva participação pessoal.
A Matemática é uma disciplina que propicia o encetamento e a
formação do raciocínio. E para a maioria das atividades profissionais (que
exigem o nível secundário ou universitário) é o raciocínio a principal
ferramenta de trabalho. Mesmo profissionais que não a utilizam,
reconhecem que a Matemática enseja o apanágio da lógica, da têmpera
racional da mente e da coerência do pensamento.
Acreditamos que o estímulo ou o desestímulo pela Matemática
ocorre a nível do Ensino Fundamental. A esse nível, tal como uma estrutura
geológica, os conhecimentos matemáticos se sedimentam e se
estratificam. Disso resulta, como maior legado, o entendimento e a
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA Jacir. J. Venturi
Prezado Universitário: motivação pela disciplina no Ensino Médio. Este embasamento representa
a para um bom rendimento na Faculdade. Isto posto,
a carência de tal embasamento leva a obstáculos que podem ser
transpostos na interação aluno-professor. A nós, professores, importa a
sensibilidade à percepção de tais dificuldades bem como a disposição de
retornar aos níveis anteriores sempre que necessário. É frustrante
observar que em certos cursos - em especial noturnos - o índice de
desistência atinge 50% até ou logo após a primeira avaliação. Se
consciente da sofrível formação anterior, cabe ao universitário novel a
busca junto aos livros, professores e colegas. Atirar pedras no passado,
pela malsã qualidade de ensino ou pela má qualificação de alguns
professores do Ensino Fundamental ou Médio, não leva a nada. "O
importante - afirma Jean Paul Sartre - não é o que fizeram de nós, mas o
que fazemos do que fizeram de nós".
Ao ingressar na Universidade, o calouro sente-se perplexo e
desamparado. Há, no sistema educacional brasileiro, uma dicotomia entre
o Ensino Médio e a Faculdade. Enfatizam-se demonstrações, teoremas e
abstrações aqui e quase nada lá. Cobra-se autodidatismo e raciocínio na
faculdade de quem cursou (salvo exceções) um Ensino Médio
preponderantemente à base de memorizações e expedientes similares.
Tal procedimento - argumenta Valmir Chagas - \u201cdesenvolve uma estranha
metodologia de perguntas e respostas tipificadas e gera maus hábitos de
estudo". É uma ledice enganosa transferir a metodologia de ensino dos
cursinhos ao Ensino Médio.
Cabe à comunidade universitária a consciência das mazelas do
sistema educacional brasileiro. Não é só: faz-se mister uma postura crítica
e participativa diante das decisões administrativas e pedagógicas. Se tal
situação não é apanágio do momento atual e sim tão antiga quanto o
próprio Brasil, a ressalva cabe ao conformismo apático e ao fatalismo de
aceitar as coisas como estão e como sempre foram.
É papel precípuo da Universidade, e lhe cabe a iniciativa,
promover física e socialmente a comunidade. Esta geralmente não tem
consciência de seus próprios problemas e muito menos de como resolvê-
los.
O Autor
conditio sine qua non
"Tinha 12 anos quando assisti à demons-
tração de um teorema de geometria e senti
uma espécie de vertigem. Parecia que
estava descobrindo um mundo de infinita
harmonia. Não sabia, então, que acabava
de descobrir o universo platônico, com sua
ordem perfeita, com seus objetos eternos e
incorruptíveis, de uma beleza perfeita e
alheia a todos os vícios que eu acreditava
sofrer. Assim, apesar deminhavocação ser
a de escrever ou pintar, fui atraído durante
muitos anos por aquela realidade fantás-
tica."
Neste excerto de entrevista, de 1987, o renomado escritor
argentino Ernesto Sábato sintetiza um dos mais conspícuos encômios à
Geometria e, por extensão, à Matemática "um mundo de infinita
harmonia". Este é o sentimento que nós, professores, devemos transmitir
aos alunos de boa vontade.
A didática, de um lado, cobra do professor a sensibilidade para
perceber o nível da classe e, a partir daí, iniciar o seu trabalho; que o
professor dispa a postura hermética e estanque do ensino à base de
"quadro-negro, giz e salivação"; que induza o seu discípulo a apreciar a
Matemática como disciplina autônoma, abstrata e, concomitantemente,
utilitária em diversos setores. De outro lado, faz-se mister que o aluno
perceba o seu papel no processo, assumindo uma postura dinâmica e
participativa. Não basta ao aluno sentar-se em sala de aula e ouvir a
explicação do professor. É impossível aprender a jogar tênis apenas
assistindo de camarote. Assim também com a Matemática: é necessário
treino, exercícios e efetiva participação pessoal.
A Matemática é uma disciplina que propicia o encetamento e a
formação do raciocínio. E para a maioria das atividades profissionais (que
exigem o nível secundário ou universitário) é o raciocínio a principal
ferramenta de trabalho. Mesmo profissionais que não a utilizam,
reconhecem que a Matemática enseja o apanágio da lógica, da têmpera
racional da mente e da coerência do pensamento.
Acreditamos que o estímulo ou o desestímulo pela Matemática
ocorre a nível do Ensino Fundamental. A esse nível, tal como uma estrutura
geológica, os conhecimentos matemáticos se sedimentam e se
estratificam. Disso resulta, como maior legado, o entendimento e a
2
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA Jacir. J. Venturi
S I N O P S E H I S T Ó R I C A constitui o mais notável compêndio