Soluções do Capítulo 2
3 pág.

Soluções do Capítulo 2


DisciplinaÁlgebra Linear I21.419 materiais306.345 seguidores
Pré-visualização1 página
Dojxpdv vroxêøhv gr fdsðwxor 51
514
d, Qær ì hvsdêr olqhdu1
e, Qær ì hvsdêr olqhdu1
f, Qær ì hvsdêr olqhdu1
g, Qær ì hvsdêr olqhdu1
h, Qær ì hvsdêr olqhdu1
i, Ì hvsdêr olqhdu1
j, Qær ì hvsdêr olqhdu1
k, Ì hvsdêr olqhdu1
l, Ì hvsdêr olqhdu1
m, Ì hvsdêr olqhdu1
n, Ì hvsdêr olqhdu1
o, Ì hvsdêr olqhdu1
p, Ì hvsdêr olqhdu1
517 d, Vlp e, Qær f, Vlp g, Qær
518 d, Qær e, Vlp f, Vlp g, Qær
519 d, Qær e, Vlp f, Vlp g, Qær
51: d, Vlp e, Vlp f, Qær g, Vlp
51; d, Qær e, Vlp f, Qær g, Vlp h, Vlp
51< Vær frpelqdêøhv olqhduhv rv yhfwruhv gdv doðqhdv d, h g,
5143 Rv frh\ufffdflhqwhv gd frpelqdêær olqhdu vær uhvshfwlydphqwh d, 6>\ufffd7> 4 e,
7> 3>\ufffd5 f, 3> 3> 3 g, \ufffd\ufffd >\ufffd \ufffd\ufffd \ufffd\ufffd =
5144 Rv frh\ufffdflhqwhv vær rv phvprv gr h{hufðflr dqwhulru1
5145 d, Vlp e, Qær f, Qær g, Qær
5146 d, Vlp e, Qær f, Vlp g, Qær
5147 Qær
5149 d, l, Vlp ll, Vlp lll, Vlp ly, Qær
e, l, Vlp ll, Vlp lll, Vlp ly, Vlp
f, Uhvxowdgrv ljxdlv drv gd doðqhd d,1
g, l, Qær ll, Vlp lll, Vlp ly, Qær y, Qær yl, Vlp yll, Qær ylll, Qær1
514: d, Vær olqhduphqwh lqghshqghqwhv
e, Rv wuív yhfwruhv vær frsodqduhv1
f, R grlv sulphlurv gh\ufffdqhp d phvpd uhfwd
g, Rv wuív yhfwruhv hvwær vreuh d phvpd uhfwd1
514; Sdud \ufffd 9@ 4 h \ufffd 9@ \ufffd \ufffd\ufffd rv yhfwruhv irupdp xp frqmxqwr olqhduphqwh
lqghshqghqwh1
5153 d, Glphqvær ì 4/ Edvh ì sru h{hpsor i+4> 3> 4,j =
e, Glphqvær ì 5/ Edvh ì sru h{hpsor i+3>\ufffd4> 3> 4, > +\ufffd4>\ufffd4> 7> 3,j=
f, Glphqvær ì 6/ Edvh ì sru h{hpsor i+\ufffd4> 3> 3> 4, > +\ufffd6> 3> 4> 3, > +7> 4> 3> 3,j
g, Glphqvær ì 31 h, Glphqvær ì 4/ Edvh ì sru h{hpsor i+7>\ufffd8> 4,j =
5154 d, i+\ufffd6> 3> 5, > +4> 4> 3,j1 e, i+3>\ufffd4> 4, > +4> 3> 3,j
f, i+6>\ufffd5> 7,j
5155 Edvh= E @ \ufffd\ufffd4 . w \ufffd . w \ufffd >\ufffd4 . w\ufffd &E @ 5 glphqvær gr vxehvsdêr1
4
515: u @ 4> Edvh gh fro +D, ì i+4> 6,j/ Edvh gh olq +D, ì i+4>\ufffd7,j1e, u @ 5>
Edvh gh fro +D, ì i+4> 5> 3, > +\ufffd4> 6>\ufffd5,j/ Edvh gh olq +D, ì i+4> 5> 3, > +3> 3> 4,j =
f, u @ 6> Edvh gh fro +D, ì irupdgd shodv wuív sulphludv gd pdwul}/ Edvh gh
olq +D, ì \ufffd\ufffd4> 3> 3> 5> \ufffd\ufffd \ufffd > +3> 4> 3> 3> 3, > \ufffd3> 3> 4> 3>\ufffd \ufffd\ufffd \ufffd\ufffd
qrwd0 Qhvwh h{hufðflr fdofxohl dv edvhv gr hvsdêr gdv froxqdv uhdol}dqgr xpd
vlpsol\ufffdfdêær pä{lpd +pìwrgr gh Jdxvv0Mrugdq,/ hvwdv olqkdv gær0qrv lphgl0
dwdphqwh dv htxdêøhv gr vlvwhpd mä suhsdudgr sdud h{solflwdu dv yduläyhlv gh0
shqghqwhv hp ixqêær gdv yduläyhlv olyuhv1
515; d, h e, D edvh ì r frqmxqwr lqglfdgr/ d glphqvær ì 61 f, D edvh ì r
frqmxqwr lqglfdgr/ d glphqvær ì 71
515< d, \ufffd4\ufffd w. 8w \ufffd . w \ufffd >\ufffd5 . 6w. w \ufffd > 7w. 5w \ufffd \ufffd 6w \ufffd \ufffd glphqvær ì 61
e, i+4> 3> 4> 4, > +\ufffd6> 6> :> 4,j
f,
\ufffd\ufffd 4 4
4 4
\ufffd \ufffd 4 4
4 3
\ufffd\ufffd 5 \ufffd6
4 4
\ufffd\ufffd
5163 d, Srvvðyho h ghwhuplqdgr1
e, Lpsrvvðyho1
f, Srvvðyho h lqghwhuplqdgr/ judx gh lqghwhuplqdêær 51
g, Srvvðyho h lqghwhuplqdgr/ judx gh lqghwhuplqdêær :1
h, Lpsrvvðyho1
i, Srvvðyho h lqghwhuplqdgr/ judx gh lqghwhuplqdêær 71
j, Srvvðyho h ghwhuplqdgr1
5166
d, V @
\ufffd 4 4
3 4
\ufffd
z $ +9> 7,
e, V @
\ufffd 5 6
\ufffd5 7
\ufffd
z$ \ufffd \ufffd\ufffd > \ufffd \ufffd \ufffd
f, V @
\ufffd 4 4
4 \ufffd4
\ufffd
z $ \ufffd\ufffd \ufffd\ufffd > \ufffd\ufffd \ufffd
5167 d, +5> 4>\ufffd4, e, +\ufffd4> 5> 4, hp fhuwdv frohfêøhv gh h{hufðflrv vxujhp/ sru
judokd grlv h{hufðflrv 5167
5167 s +w, @ \ufffd\ufffd \ufffd4 . 5w\ufffd 6w \ufffd . 9w \ufffd \ufffd
5168 Dv frpsrqhqwhv gh z qd qryd edvh vær \ufffd \ufffd\ufffd >\ufffd4> 3> 4\ufffd =
5169 V @
5997 \ufffd4 44 4 4
4
6::8 dv frpsrqhqwhv qd qryd edvh vær +\ufffd4> 4>\ufffd4> 6,1
516: V @
57 3 \ufffd\ufffd \ufffd \ufffd\ufffd\ufffd
\ufffd \ufffd \ufffd\ufffd \ufffd \ufffd\ufffd
\ufffd \ufffd\ufffd \ufffd \ufffd\ufffd \ufffd \ufffd\ufffd \ufffd
68 Dv frpsrqhqwhv gh z qd edvh E \ufffd vær
\ufffd \ufffd \ufffd
\ufffd >\ufffd \ufffd \ufffd\ufffd \ufffd > \ufffd\ufffd \ufffd > d pdwul} xvdgd qrv fäofxorv ì V \ufffd \ufffd @ 57 4 \ufffd\ufffd \ufffd\ufffd\ufffd \ufffd\ufffd \ufffd \ufffd \ufffd\ufffd \ufffd \ufffd \ufffd \ufffd\ufffd \ufffd
\ufffd
\ufffd
\ufffd
\ufffd
\ufffd
\ufffd
68 =
516; V @
57 \ufffd \ufffd\ufffd\ufffd\ufffd \ufffd \ufffd\ufffd \ufffd \ufffd \ufffd\ufffd\ufffd \ufffd
\ufffd \ufffd \ufffd \ufffd\ufffd \ufffd\ufffd
: \ufffd: 8
68 Dv frpsrqhqwhv gh z qd edvh E \ufffd vær
5
\ufffd\ufffd \ufffd \ufffd\ufffd \ufffd >\ufffd \ufffd \ufffd \ufffd\ufffd \ufffd >\ufffd \ufffd \ufffd \ufffd\ufffd \ufffd > d pdwul} xvdgd qrv fäofxorv ì V \ufffd \ufffd @ 57 \ufffd\ufffd \ufffd\ufffd \ufffd\ufffd \ufffd\ufffd\ufffd \ufffd \ufffd \ufffd \ufffd \ufffd\ufffd \ufffd
3 \ufffd \ufffd\ufffd \ufffd \ufffd\ufffd
68 =
6