Buscar

Lei de Faraday

Esta é uma pré-visualização de arquivo. Entre para ver o arquivo original

Ciências da Natureza e suas 
Tecnologias - Física
Ensino Médio, 3
Lei de Faraday
Algumas curiosidades...
Antes de respondê-las, precisaremos conhecer alguns conceitos fundamentais da Física...
Como funcionam os alto-falantes e os microfones?
Como funcionam as usinas hidrelétricas? A energia elétrica é retirada da água?
Para que servem os transformadores que ficam nos postes?
Imagem: OS2Warp / Domínio Público
Fluxo Magnético
O fluxo magnético é a medida da quantidade de linhas de indução que atravessam uma superfície em função do tempo. É dado pelo produto entre o campo magnético, a área da superfície e o cosseno do ângulo formado entre o campo e o vetor normal à superfície.
Onde:
 
n
B
A
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
3
FÍSICA, 1º ANO
Lei da Inércia e Ação e Reação
Propriedades do Fluxo Magnético
Podemos variar o fluxo magnético de várias maneiras:
Variando a intensidade B do campo de indução magnética.
Variando a área A da superfície.
Girando a superfície, variando o ângulo θ entre o vetor normal à superfície e o vetor campo magnético.
Obs.: A unidade de medida do Fluxo Magnético no S.I. é o weber (Wb) (Onde: 1 Wb = 1 T · 1 m2)
Logo, temos 1T = 1 Wb/m2
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
n
B
θ= 90º
Fluxo Magnético: Caso Particular (θ = 90º)
Neste caso, temos:
Φ = B · A · cos 90° e, como cos 90° = 0, então o fluxo é nulo.
 
Observe na figura abaixo que nenhuma linha de indução magnética atravessa a superfície.
 
Φ = 0  NULO
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
n
B
θ = 0º
Fluxo Magnético: Caso Particular (θ = 0º)
Neste caso, temos:
Φ = B · A · cos 0° e, como cos 0° = 1, então, Φ = B · A , o que implica dizer que o fluxo é MÁXIMO.
 
Observe na figura abaixo que todas as linhas de indução magnética atravessam a superfície.
 
Φ = B.A  MÁXIMO
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
Foi um Químico e Físico inglês conhecido pelas suas experiências pioneiras no campo da Eletricidade e do Magnetismo. 
Michael Faraday (1791 – 1867)
Imagem: Thomas Phillips / Domínio Público
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
Breve Histórico
Faraday, baseando-se nos trabalhos de Oersted e Ampère, o qual analisava que correntes elétricas em circuitos produziam campos magnéticos, começou a investigar o efeito inverso do fenômeno por eles estudado.
Imagem: Steve Jurvetson / Creative Commons Attribution 2.0 Generic
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
Faraday descobriu que um campo magnético variável próximo a uma bobina e ligada a uma galvanômetro, acusa a passagem de corrente elétrica. 
Indução Magnética
Imagem: Hypercube / Creative Commons CC0 1.0 Universal Public Domain Dedication
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
9
FÍSICA, 1º ANO
Lei da Inércia e Ação e Reação
Esse efeito de produção de uma corrente em um circuito, causado pela presença de um campo magnético, é chamado de INDUÇÃO ELETROMAGNÉTICA e a corrente elétrica que aparece é denominada de CORRENTE INDUZIDA.
Indução Magnética
Imagem: Hypercube / Creative Commons CC0 1.0 Universal Public Domain Dedication
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
Existem vários modos de se obterem correntes induzidas em um circuito:
O circuito pode mover-se em relação a um campo magnético, de modo que o fluxo magnético através da área do circuito varie no decorrer do tempo.
Pode-se variar a área do circuito de tal modo que o fluxo do campo magnético através do circuito varie no tempo.
O campo magnético dirigido para a superfície pode ser variável no tempo.
Indução Magnética
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
Lei de Faraday
Ao variarmos o fluxo magnético que atravessa uma espira, é criada uma força eletromotriz induzida (ε) que é dada pela taxa de variação do fluxo magnético em função do tempo.
Obs.: Se verificarmos as unidades de medida dessas grandezas no S.I., percebemos que:
Onde:
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
Aplicação: Gerador de Corrente Alternada
Em qualquer unidade de produção de energia elétrica (usina hidroelétrica, usina termoelétrica, usina nuclear, etc.) existe sempre um circuito que se coloca em rotação numa região onde existe um campo magnético.
Ao girar a espira, varia-se o fluxo magnético que a atravessa, criando, assim, uma fem induzida, de acordo com a Lei de Ampère.
R
0
U
t
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
Aplicação: Transformador
a função do núcleo de ferro é orientar o campo magnético de modo que quase todo o fluxo que passe por um enrolamento passe também pelo outro. Esse núcleo é habitualmente laminado de modo a minimizar as perdas de energia por correntes de Folcault (correntes superficiais provocadas pelo fluxo variável).
um Transformador é um dispositivo para modificar tensões e correntes alternadas sem perda apreciável de potência;
ele é constituído por dois enrolamentos em torno de um núcleo de ferro. O enrolamento que recebe a potência é o primário, o outro o secundário;
Imagem: Mtodorov_69 / GNU Free Documentation License
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
Se não houver fuga de fluxo magnético do núcleo de ferro e se desprezarem outras perdas de potência (efeito Joule), o fluxo através de cada espira é o mesmo nos dois enrolamentos, obtendo-se:
Aplicação: Transformador
	Obs.: Qualquer um dos enrolamentos pode ser usado como primário ou secundário: o transformador funciona nos dois sentidos.
Imagem: Mtodorov_69 / GNU Free Documentation License
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
Vamos Exercitar?
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
Exercício 01
Uma espira constituída por um fio condutor retangular é empurrada perpendicularmente às linhas de indução magnética de um campo magnético uniforme perpendicular à folha, até sair pelo outro lado, como mostra a figura ao lado.
Determine o sentido da corrente induzida na espira em cada uma das representações I, II e III.
x x x x x
x x x x x
II x x x x
x x x x x
x x x x x
x x x x x
x x x x x
III x x x x
B
v
20cm
15cm
I
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
Resolução
O número de linhas de indução que atravessam a espira está aumentando, ou seja, o fluxo está aumentando.
Esse aumento do fluxo é decorrente do aumento da área hachurada que corresponde à área A efetivamente atravessada pelas linhas de indução.
Para manter o fluxo constante, surge uma corrente induzida, ocasionando um fluxo no sentido contrário ao daquele que está aumentado.
Assim, o campo induzido  tem que ter sentido contrário ao de , ou seja, deve estar saindo do plano da folha.
Pela regra da mão direita, verificamos que o sentido da corrente induzida i0 é anti-horário.
Situação I
 I
x x x x x
x x x x x
B
v
v
B0
i0
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
Resolução
Nesta situação, o número de linhas de indução que atravessam a espira permanece constante.
Situação II
Ou seja, o fluxo é constante e, desse modo, não há corrente elétrica induzida na espira ( i0 = 0 ).
x x x x x
x x x x x
II x x x x
x x x x x
x x x x x
B
v
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
 
Na Situação III, o número de linhas de indução que atravessam a espira está diminuindo, ou seja, o fluxo está diminuindo. Essa diminuição do fluxo é decorrente da diminuição da área hachurada que corresponde à área A efetivamente atravessada pelas linhas de indução.
Para manter o fluxo constante, surge uma corrente induzida, ocasionando um fluxo no mesmo sentido daquele que está diminuindo.
Resolução
Situação III
x x x x x
x x
x x x
x x x x x
III x x x x
B
v
B0
i0
i0
x
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
Exercício 02
No exercício anterior, sabendo-se que a velocidade da espira é de 30 cm/s, que o campo magnético local tem intensidade 1,5 T e que a resistência elétrica da espira é de 30 Ω, determine:
a)	o fluxo máximo através da espira;
b)	a força eletromotriz induzida na espira quando está saindo do campo magnético;
c)	a intensidade da corrente elétrica induzida.
x x x x x
x x x x x
II x x x x
x x x x x
x x x x x
x x x x x
x x x x x
III x x x x
B
v
20cm
15cm
I
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
A área da espira é A = 0,15 m · 0,20 m = 0,03 m2 e, como o ângulo entre os vetores (perpendicular à espira) e é , tem-se:
Φ = B. A. cos θ 
Φ = 1,5 . 3 . 10-2 . cos 0°
Φ = 4,5 . 10-2 Wb
Resolução
x x x x x
x x x x x
II x x x x
x x x x x
x x x x x
x x x x x
x x x x x
III x x x x
B
v
20cm
15cm
I
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
Sendo a velocidade da espira 30 cm/s, ela demora 0,5 s para estar inteiramente fora do campo magnético, ou seja, para o fluxo passar de máximo para zero.
Pela Lei de Faraday: temos:
Resolução
Pela Lei de Ohm, temos: 
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
Exercício 03
Qual a ddp entre as pontas das asas de um avião metálico, voando horizontalmente com velocidade escalar constante de intensidade 900 km/h, sobre uma região de campo magnético uniforme vertical, de intensidade B = 2 · 10–5 T? Sabe-se que a distância entre as pontas das asas é 20 m.
Resolução
A ddp entre as pontas das asas corresponde à força eletromotriz induzida .
 = B · L · v e como v = 900 km/h, ou seja, v = 250 m/s. Assim, temos:
 = 2 · 10–5 · 20 · 250 
20m
B
V
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
Exercício 04
A potência nominal máxima de um transformador é 1500 W. Sabendo-se que a tensão originada no secundário é de 50 V e que o número de espiras no primário e no secundário é 400 e 100, respectivamente, determine:
a intensidade da corrente elétrica induzida no secundário quando o transformador está funcionando em condições de potência máxima;
a tensão no primário;
a intensidade da corrente elétrica no primário.
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
a) Sendo P2 = U2.i2 tem-se:
1500 = 50.i2 
b) Como , então: 
 
c) As potências no primário e no secundário são iguais, logo, P1 = P2.
Assim: P1 = U1.i1 
Resolução
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
Extras
VÍDEOS DO YOUTUBE
Como funcionam as hidrelétricas
Link: http://www.youtube.com/watch?v=1QDosHWmRcM
 
Gerador de corrente alternada
Link: http://www.youtube.com/watch?v=Qdye4UR5Qto&feature=related
SIMULAÇÕES
Lei de Faraday
Link: http://phet.colorado.edu/sims/faradays-law/faradays-law_en.html
 
Gerador
Link: http://phet.colorado.edu/en/simulation/generator
EXPERIÊNCIAS/ EXPERIMENTOS
Prato falante (O alto falante didático)
Link: http://www.feiradeciencias.com.br/sala15/15_44.asp
 
Tubo de indução (Lei de Faraday)
Link: http://www.feiradeciencias.com.br/sala13/13_41.asp
 
Usina Hidrelétrica (Modelo didático de alternador)
Link: http://www.feiradeciencias.com.br/sala14/14_23.asp
 
CURIOSIDADES
Como funciona o Microfone e o Alto-falante
Link: http://pt.scribd.com/apblogue/d/25936795-Microfone-e-Altifalante
 
Como funcionam as Usinas Hidrelétricas
Link: http://ciencia.hsw.uol.com.br/usinas-hidreletricas.htm
FÍSICA, 3º Ano do Ensino Médio
Lei de Faraday
Obrigado pela Atenção!
Bibliografia
BENIGNO, Barreto Filho; XAVIER, Cláudio da Silva. Física aula por aula. 1. ed. Vol. 03. São Paulo: Editora FTD, 2010.
GASPAR, Alberto. Compreendendo a Física. Vol. 03. São Paulo: Editora Ática, 2011. 
GUALTER; HELOU; NEWTON. Física. Vol. 03. São Paulo: Editora Saraiva, 2011. 
MÁXIMO, Antônio; ALVARENGA, Beatriz. Curso de Física. 1. ed. Vol. 03. São Paulo: Editora Scipione, 2011.
<http://educar.sc.usp.br> Acesso em 19/06/2012.
<http://pt.wikipedia.org> Acesso em 19/06/2012.
<http://www.ciencia-cultura.com/Pagina_Fis> Acesso em 19/06/2012.
<http://www.coladaweb.com/fisica> Acesso em 19/06/2012.
<http://www.fisica.ufs.br> Acesso em 19/06/2012.
<http://www.fisicafacil.pro.br> Acesso em 19/06/2012.
<http://interna.coceducacao.com.br/ebook/pages/9733.htm> Acesso em 19/06/2012.
<http://www.infoescola.com/fisica> Acesso em 19/06/2012.
<http://www.mundoeducacao.com.br> Acesso em 19/06/2012.
<http://www.sofisica.com.br/conteudos> Acesso em 19/06/2012.
Tabela de Imagens
	n° do slide	direito da imagem como está ao lado da foto	link do site onde se consegiu a informação	Data do Acesso
	 	 	 	 
	2	OS2Warp / Domínio Público	http://pt.wikipedia.org/wiki/Ficheiro:Barragem_Edgard_de_Souza.jpg	14/09/2012
	7	Thomas Phillips / Domínio Público	http://commons.wikimedia.org/wiki/File:M_Faraday_Th_Phillips_oil_1842.jpg	14/09/2012
	8	Steve Jurvetson / Creative Commons Attribution 2.0 Generic	http://commons.wikimedia.org/wiki/File:Ferrofluid_in_magnetic_field.jpg	14/09/2012
	9	Hypercube / Creative Commons CC0 1.0 Universal Public Domain Dedication	http://commons.wikimedia.org/wiki/File:Faraday_emf_experiment.svg	14/09/2012
	10	Hypercube / Creative Commons CC0 1.0 Universal Public Domain Dedication	http://commons.wikimedia.org/wiki/File:Faraday_emf_experiment.svg	14/09/2012
	14	Mtodorov_69 / GNU Free Documentation License	http://commons.wikimedia.org/wiki/File:Transformer-hightolow.png	14/09/2012
	15	Mtodorov_69 / GNU Free Documentation License	http://commons.wikimedia.org/wiki/File:Transformer-hightolow.png	14/09/2012
θ
 
cos
.
A
.
B
Φ
=
θ

Teste o Premium para desbloquear

Aproveite todos os benefícios por 3 dias sem pagar! 😉
Já tem cadastro?

Outros materiais