ARM
58 pág.

ARM


DisciplinaEstatística Aplicada10.179 materiais86.917 seguidores
Pré-visualização4 páginas
de 5%, que a
inclusa\u2dco da varia´vel nu´mero de vezes que a secadora de roupa foi
usada (X2) contribuiu para o aprimoramento do modelo na qual ja´
havia sido incorporado a varia´vel nu´mero de horas de uso do ar
condicionado (X1).
VGC (FEB-UNESP) MRLM 2012 51 / 58
Ana´lise regressa\u2dco mu´ltipla com R
Diagrama de dispersão
 0 2 4 6 8 10 12 14
 
 
0
 
20
 
40
 
60
 
80
10
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
x1
x 2
Co
nsu
mo
l
ll
l
ll
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
VGC (FEB-UNESP) MRLM 2012 52 / 58
y
2 4 6 8 10 12
l
l
l
l
l
l
l
l
l
l
l
l
l l
l
l
l
l
l
l
l
20
40
60
80
l
l
l
l
l
l
l
l
l
l
l
l
ll
l
l
l
l
l
l
l
2
4
6
8
10
12
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
x1
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
20 40 60 80
l
l l
l
ll
ll l
l
l
l
ll
l l
l
l
l
l
l
l
l l
l
ll
ll l
l
l
l
l l
l l
l
l
l
l
l
0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
x2
 Matriz de diagrama de dispesão
VGC (FEB-UNESP) MRLM 2012 53 / 58
Ana´lise regressa\u2dco mu´ltipla com R
library(scatterplot3d)
attach(dados)
scatterplot3d(x1,x2,y, main=\u201dDiagrama de dispersa\u2dco\u201d,
zlab=\u201dConsumo\u201d,xlab=expression(x[1]),ylab=expression(x[2]),lwd=3)
pairs(\u223c y + x1 + x2,data=dados, main=\u201dMatriz de diagrama de
dispesa\u2dco\u201d, lwd=3)
VGC (FEB-UNESP) MRLM 2012 54 / 58
fit=lm(y \u223c 1 + x1 + x2,data=dados)
summary(fit)
Call:
lm(formula = y \u223c 1 + x1 + x2, data = dados)
Coefficients Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.1054 2.4809 3.267 0.00428 **
x1 5.4659 0.2808 19.469 1.53e-13 ***
x2 13.2166 0.8562 15.436 7.97e-12 ***
--- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 3.935 on 18 degrees of freedom
Multiple R-squared: 0.9709, Adjusted R-squared: 0.9677
F-statistic: 300.2 on 2 and 18 DF, p-value: 1.498e-14
VGC (FEB-UNESP) MRLM 2012 55 / 58
anova(fit) Analysis of Variance Table
Source Df Sum Sq Mean Sq F value Pr(>F)
x1 1 5609.7 5609.7 362.21 2.264e-13 ***
x2 1 3690.1 3690.1 238.27 7.973e-12 ***
Residuals 18 278.8 15.5
--- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
VGC (FEB-UNESP) MRLM 2012 56 / 58
Ana´lise Residual
l
l l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
\u22122 \u22121 0 1 2
\u2212
2
\u2212
1
0
1
Theoretical Quantiles
Sa
mp
le Q
uan
tile
s
l
l l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
2 4 6 8 10 12
\u2212
2
\u2212
1
0
1
x1
Re
sid
ua
l pa
dra
niz
ad
o
l
ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
0.0 0.5 1.0 1.5 2.0 2.5 3.0
\u2212
2
\u2212
1
0
1
x2
Re
sid
ua
l pa
dra
niz
ad
o
l
l l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
20 40 60 80
\u2212
2
\u2212
1
0
1
Valores preditos
Re
sid
ua
l pa
dra
niz
ad
o
VGC (FEB-UNESP) MRLM 2012 57 / 58
Ana´lise Residual
res=residuals(fit) # residuals
resp = rstandard(fit)#standardresiduals
par(mfrow=c(2,2))
par(mai = c(0.85,0.85,0.30,0.05))
# Margins: inf, left, sup and right
qqnorm(resp,main =)
qqline(resp)
plot(x1,resp, ylab = \u201dResidualpadranizado\u201d, xlab = expression(x [1]))
abline(h=0, lty=2)
plot(x2,resp, ylab = \u201dResidualpadranizado\u201d, xlab = expression(x [2]))
abline(h=0,lty=2)
plot(yhat,resp, ylab = \u201dResidualpadranizado\u201d, xlab = \u201dValorespreditos\u201d)
abline(h=0,lty=2)
VGC (FEB-UNESP) MRLM 2012 58 / 58