Prévia do material em texto
Morfofuncional – Universidade do Estado da Bahia (UNEB) Lara Lessa Araújo – 2º semestre ➢ FUNÇÃO Os rins desempenham a principal função do sistema urinário. As outras partes do sistema são essencialmente vias de passagem e áreas de armazenamento. As funções dos rins incluem: ✓ Regulação da composição iônica do sangue. Os rins ajudam a regular os níveis sanguíneos de vários íons, sendo que os mais importantes são os íons sódio (Na + ), potássio (K + ), cálcio (Ca 2+ ), cloreto (Cl – ) e fosfato (HPO4 2– ) ✓ Regulação do pH do sangue. Os rins excretam uma quantidade variável de íons hidrogênio (H + ) para a urina e preservam os íons bicarbonato (HCO3 – ), que são um importante tampão do H + no sangue. Ambas as atividades ajudam a regular o pH do sangue ✓ Regulação do volume de sangue. Os rins ajustam o volume do sangue por meio da conservação ou eliminação de água na urina. O aumento do volume de sangue eleva a pressão arterial, enquanto a diminuição do volume de sangue reduz a pressão arterial ✓ Regulação da pressão arterial. Os rins também ajudam a regular a pressão arterial por meio da secreção da enzima renina, que ativa o sistema renina- angiotensina-aldosterona. O aumento da renina provoca elevação da pressão arterial ✓ Manutenção da osmolaridade do sangue. Ao regular separadamente a perda de água e a perda de solutos na urina, os rins mantêm uma osmolaridade do sangue relativamente constante de aproximadamente 300 miliosmóis por litro (mOsm/ℓ)* ✓ Produção de hormônios. Os rins produzem dois hormônios. O calcitriol, a forma ativa da vitamina D, ajuda a regular a homeostasia do cálcio, e a eritropoetina estimula a produção de eritrócitos ✓ Regulação do nível sanguíneo de glicose. Tal como o fígado, os rins podem utilizar o aminoácido glutamina na gliconeogênese, a síntese de novas moléculas de glicose. Eles podem então liberar glicose no sangue para ajudar a manter um nível normal de glicemia ✓ Excreção de escórias metabólicas e substâncias estranhas. Por meio da formação de urina, os rins ajudam a excretar escórias metabólicas – substâncias que não têm função útil no corpo. Algumas escórias metabólicas excretadas na urina resultam de reações metabólicas no organismo. Estes incluem amônia e ureia resultantes da desaminação dos aminoácidos; bilirrubina proveniente do catabolismo da hemoglobina; creatinina resultante da clivagem do fosfato de creatina nas fibras musculares e ácido úrico originado do catabolismo de ácidos nucleicos. Outras escórias metabólicas excretadas na urina são as substâncias estranhas da dieta, como fármacos e toxinas ambientais. ➢ ANATOMIA Morfofuncional – Universidade do Estado da Bahia (UNEB) Lara Lessa Araújo – 2º semestre Os rins são um par de órgãos avermelhados em forma de feijão, localizados logo acima da cintura, entre o peritônio e a parede posterior do abdome. Por causa de sua posição posterior ao peritônio da cavidade abdominal, são considerados retroperitoneais. Os rins estão localizados entre os níveis das últimas vértebras torácicas e a terceira vértebra lombar (L III), uma posição em que estão parcialmente protegidos pelas costelas XI e XII. Se estas costelas inferiores forem fraturadas, podem perfurar os rins e causar danos significativos, potencialmente fatais. O rim direito está discretamente mais baixo do que o esquerdo, porque o fígado ocupa um espaço considerável no lado direito superior ao rim. ❖ Anatomia externa dos rins ✓ Um rim adulto normal tem 10 a 12 cm de comprimento, 5 a 7 cm de largura e 3 cm de espessura – aproximadamente do tamanho de um sabonete comum – e tem massa de 135 a 150 g. ✓ A margem medial côncava de cada rim está voltada para a coluna vertebral ✓ Perto do centro da margem côncava está um recorte chamado hilo renal, através do qual o ureter emerge do rim, juntamente com os vasos sanguíneos, vasos linfáticos e nervos. ✓ Três camadas de tecido circundam cada rim: o A camada mais profunda, a cápsula fibrosa, é uma lâmina lisa e transparente de tecido conjuntivo denso não modelado que é contínuo com o revestimento externo do ureter. Ela serve como uma barreira contra traumatismos e ajuda a manter a forma do rim. o A camada intermediária, a cápsula adiposa, é uma massa de tecido adiposo que circunda a cápsula fibrosa. Ela também protege o rim de traumas e ancora-o firmemente na sua posição na cavidade abdominal. o A camada superficial, a fáscia renal, é outra camada fina de tecido conjuntivo denso não modelado que ancora o rim às estruturas vizinhas e à parede abdominal. Na face anterior dos rins, a fáscia renal localiza-se profundamente ao peritônio. ❖ Anatomia interna dos rins ✓ Um corte frontal através do rim revela duas regiões distintas: uma região vermelha clara superficial chamada córtex renal e uma região interna mais escura castanha- avermelhada chamada medula renal o A medula renal consiste em várias pirâmides renais em forma de cone. A base (extremidade mais larga) de cada pirâmide está voltada para o córtex renal, e seu ápice (extremidade mais estreita), chamado papila renal, está voltado para o hilo renal. o O córtex renal é a área de textura fina que se estende da cápsula fibrosa às bases das pirâmides renais e nos espaços entre elas. Ela é dividida em uma zona cortical externa e uma zona justamedular interna. As partes do córtex renal que se estendem entre as pirâmides renais são chamadas colunas renais. o Juntos, o córtex renal e as pirâmides renais da medula renal constituem o parênquima, ou porção funcional do rim. No interior do parênquima estão as unidades funcionais dos rins – aproximadamente 1 milhão de estruturas microscópicas chamadas néfrons. Morfofuncional – Universidade do Estado da Bahia (UNEB) Lara Lessa Araújo – 2º semestre ✓ O hilo se expande em uma cavidade no interior do rim chamada seio renal, que contém parte da pelve renal, os cálices e ramos dos vasos sanguíneos e nervos renais. O tecido adiposo ajuda a estabilizar a posição destas estruturas no seio renal. ❖ Néfron ✓ Os néfrons são as unidades funcionais dos rins. Cada néfron consiste em duas partes: um corpúsculo renal, onde o plasma sanguíneo é filtrado, e um túbulo renal, pelo qual passa o líquido filtrado (filtrado glomerular) o Os dois componentes de um corpúsculo renal são o glomérulo e a cápsula glomerular (cápsula de Bowman), uma estrutura epitelial de parede dupla que circunda os capilares glomerulares. o O plasma sanguíneo é filtrado na cápsula glomerular, e então o líquido filtrado passa para o túbulo renal, que tem três partes principais. Em ordem de recebimento do líquido que passa por eles, o túbulo renal consiste em um (1) túbulo contorcido proximal (TCP), (2) alça de Henle e (3) túbulo contorcido distal (TCD). Proximal denota a parte do túbulo ligado à cápsula glomerular, e distal indica a parte que está mais longe. Contorcido significa que o túbulo é espiralado em vez de reto. O corpúsculo renal e os túbulos contorcidos proximais e distais se localizam no córtex renal; a alça de Henle se estende até a medula renal, faz uma curva fechada, e então retorna ao córtex renal. ➢ Histologia do néfron e do ducto coletor Uma camada única de células epiteliais forma toda a parede da cápsula glomerular, túbulos e ductos renais. No entanto, cada parte tem características histológicas distintas que refletem suas funções específicas. ❖ CÁPSULA GLOMERULAR ✓ A cápsula glomerular consiste em camadas visceral e parietal ✓ A camada visceral é formada por células epiteliais pavimentosas simples modificadas chamadas podócitos. As muitas projeções em forma de pé destas células (pedicelos) envolvem a camada única de células endoteliais dos capilares glomerulares e formam a parede interna da cápsula. ✓ A camada parietal da cápsula glomerular consiste em epitélio pavimentoso simples e forma a parede externa dacápsula. ✓ O líquido filtrado pelos capilares glomerulares entra no espaço capsular, o espaço entre as duas camadas da cápsula glomerular, que é o lúmen do tubo urinário. ❖ TÚBULO RENAL E DUCTO COLETOR ✓ No túbulo contorcido proximal, as células são células epiteliais cúbicas simples com uma borda em escova proeminente de microvilosidades em sua superfície apical (superfície voltada para o lúmen). Estas microvilosidades, como as do intestino delgado, aumentam a área de superfície para a reabsorção e secreção. A parte descendente da alça de Henle e a primeira porção da parte ascendente da alça de Henle (a parte delgada ascendente) são compostas por epitélio pavimentoso simples. (Lembrese de que os néfrons corticais ou de alça curta não têm a parte ascendente delgada.) A parte espessa ascendente da alça de Henle é composta por epitélio colunar cúbico simples a epitélio colunar baixo. ➢ Fisiologia renal Para produzir urina, os néfrons e os ductos coletores realizam três processos básicos – filtração glomerular, reabsorção tubular e secreção tubular Morfofuncional – Universidade do Estado da Bahia (UNEB) Lara Lessa Araújo – 2º semestre ✓ Filtração glomerular. Na primeira etapa da produção de urina, a água e a maior parte dos solutos do plasma sanguíneo atravessam a parede dos capilares glomerulares, onde são filtrados e passam para o interior da cápsula glomerular e, em seguida, para o túbulo renal. ✓ Reabsorção tubular. Conforme o líquido filtrado flui pelos túbulos renais e ductos coletores, as células tubulares reabsorvem aproximadamente 99% da água filtrada e muitos solutos úteis. A água e os solutos retornam ao sangue que flui pelos capilares peritubulares e arteríolas retas. Observe que o termo reabsorção se refere ao retorno de substâncias para a corrente sanguínea. Por outro lado, o termo absorção indica a entrada de novas substâncias no corpo, como ocorre no sistema digestório. ✓ Secreção tubular. Conforme o líquido filtrado flui pelos túbulos renais e ductos coletores, as células dos túbulos renais e dos ductos secretam outros materiais – como escórias metabólicas, fármacos e excesso de íons – para o líquido. Observe que a secreção tubular remove uma substância do sangue. ❖ Filtração glomerular ✓ O líquido que entra no espaço capsular é chamado filtrado glomerular. A fração de plasma sanguíneo nas arteríolas glomerulares aferentes dos rins que se torna filtrado glomerular é a fração de filtração. Embora uma fração de filtração de 0,16 a 0,20 (16 a 20%) seja usual, o valor varia consideravelmente na saúde e na doença. Em média, o volume diário de filtrado glomerular em adultos é de 150 ℓ nas mulheres e 180 ℓ em homens. Mais de 99% do filtrado glomerular regressa à corrente sanguínea por meio da reabsorção tubular, de modo que apenas 1 a 2 ℓ são excretados como urina. o Membrana de filtração ✓ Juntos, os capilares glomerulares e os podócitos, que circundam completamente os capilares, formam uma barreira permeável conhecida como membrana de filtração. Esta configuração em sanduíche possibilita a filtração de água e pequenos solutos, mas impede a filtração da maior parte das proteínas plasmáticas, células sanguíneas e plaquetas. As substâncias filtradas do sangue atravessam três barreiras de filtração – a célula endotelial glomerular, a lâmina basal e uma fenda de filtração formada por um podócito ✓ As células endoteliais glomerulares são bastante permeáveis, porque têm grandes fenestrações (poros) com 0,07 a 0,1 μm de diâmetro. Este tamanho possibilita que todos os solutos do plasma sanguíneo saiam dos capilares glomerulares, mas impede a filtração de células sanguíneas e plaquetas. Localizadas entre os capilares glomerulares e na fenda entre as arteríolas glomerulares aferentes e eferentes estão as células mesangiais. Estas células contráteis ajudam a regular a filtração glomerular. ✓ A lâmina basal, uma camada de material acelular entre o endotélio e os podócitos, consiste em fibras colágenas minúsculas e proteoglicanos em uma matriz glicoproteica; as cargas negativas na matriz impedem a filtração de proteínas plasmáticas maiores carregadas negativamente. ✓ Estendendose de cada podócito estão milhares de processos em forma de pé denominados pedicelos, que envolvem os capilares glomerulares. Os espaços entre os pedicelos são as fendas de filtração. Uma fina membrana, a membrana da fenda, se estende através de cada fenda de filtração; isso possibilita a passagem de moléculas que têm um diâmetro menor do que 0,006 a 0,007 μm, incluindo a água, a glicose, as vitaminas, os aminoácidos, as proteínas plasmáticas muito pequenas, a amônia, a ureia e os íons. Menos de 1% da albumina, a proteína mais abundante no plasma, Morfofuncional – Universidade do Estado da Bahia (UNEB) Lara Lessa Araújo – 2º semestre passa pela membrana da fenda, porque, com um diâmetro de 0,007 μm, a albumina é um pouco grande demais para passar. o O princípio da filtração – o uso da pressão para forçar os líquidos e solutos através de uma membrana – é o mesmo tanto nos capilares glomerulares quanto nos capilares sanguíneos de outras partes do corpo (ver a lei de Starling dos capilares, Seção 21.2). No entanto, o volume de líquido filtrado pelo corpúsculo renal é muito maior do que em outros capilares sanguíneos do corpo, por três razões: ✓ Os glomérulos capilares apresentam uma grande área de superfície para a filtração, porque são longos e extensos. As células mesangiais regulam a quantidade de área de superfície disponível. Quando as células mesangiais estão relaxadas, a área de superfície é máxima, e a filtração glomerular é muito alta. A contração das células mesangiais reduz a área de superfície disponível, e a filtração glomerular diminui. ✓ A membrana de filtração é fina e porosa. Apesar de ter várias camadas, a espessura da membrana de filtração é de apenas 0,1 mm. Os capilares glomerulares também são aproximadamente 50 vezes mais permeáveis do que os capilares sanguíneos da maior parte dos outros tecidos, principalmente por causa de suas grandes fenestrações. ✓ A pressão sanguínea capilar glomerular é alta. Como a arteríola glomerular eferente tem um diâmetro menor do que o da arteríola glomerular aferente, a resistência à saída do sangue do glomérulo é alta. Como resultado, a pressão sanguínea nos capilares glomerulares é consideravelmente mais elevada do que nos capilares sanguíneos em qualquer outro local no corpo. o Pressão efetiva de filtração ▪ A filtração glomerular depende de três pressões principais. Uma pressão promove filtração e duas pressões se opõem à filtração ✓ A pressão hidrostática glomerular do sangue (PHGS) é a pressão do sangue nos capilares glomerulares. Em geral, a PHGS é de aproximadamente 55 mmHg. Ela promove a filtração, forçando a água e os solutos do plasma sanguíneo através da membrana de filtração. ✓ A pressão hidrostática capsular (PHC) é a pressão hidrostática exercida contra a membrana de filtração pelo líquido que já está no espaço capsular e no túbulo renal. A PHC se opõe à filtração e representa uma “pressão de retorno” de aproximadamente 15 mmHg. ✓ A pressão coloidosmótica do sangue (PCOS), que é decorrente da presença de proteínas – como a albumina, as globulinas, o fibrinogênio no plasma e no sangue – também se opõe à filtração. A PCOS média nos capilares glomerulares é de 30 mmHg. ✓ A pressão de filtração efetiva (PFE), a pressão total que promove a filtração, é determinada como segue: PFE = PHSG – PHC – PCOS o Taxa de filtração glomerular ✓ A quantidade de filtrado formado em todos os corpúsculos renais de ambos os rins a cada minuto determina a taxa de filtração glomerular (TFG). No adulto, a TFG média é de 125 mℓ /min em homens e 105 mℓ /min em mulheres. A homeostasia dos líquidos corporais exige que os rins mantenham uma taxa de filtração glomerularrelativamente constante. Se a TFG for demasiadamente elevada, as substâncias necessárias podem passar tão rapidamente pelos túbulos renais que algumas não são reabsorvidas e são perdidas na urina. Se a TFG for muito baixa, quase todo o filtrado Morfofuncional – Universidade do Estado da Bahia (UNEB) Lara Lessa Araújo – 2º semestre pode ser reabsorvido e determinadas escórias metabólicas podem não ser adequadamente excretadas. ✓ Os mecanismos que regulam a TFG operam por dois modos principais: (1) ajustando o fluxo sanguíneo para dentro e para fora do glomérulo e (2) alterando a área de superfície disponível para filtração capilar glomerular. A TFG aumenta quando o fluxo sanguíneo nos capilares glomerulares aumenta. O controle coordenado do diâmetro das arteríolas glomerulares aferentes e eferentes regula o fluxo sanguíneo glomerular. A constrição da arteríola glomerular aferente diminui o fluxo sanguíneo no glomérulo, enquanto a dilatação da arteríola glomerular aferente o aumenta. Três mecanismos controlam a TFG: a autorregulação renal, a regulação neural e a regulação hormonal. ▪ Autorregulação renal da TFG Os rins por si sós ajudam a manter o fluxo sanguíneo renal e a TFG constantes, apesar das mudanças cotidianas normais na pressão arterial, como as que ocorrem durante o exercício. Esse recurso é chamado autorregulação renal, e é composto por dois mecanismos – o mecanismo miogênico e o feedback tubuloglomerular. Atuando em conjunto, eles são capazes de manter a TFG quase constante ao longo de uma vasta gama de pressão arterial sistêmica. O mecanismo miogênico ocorre quando a distensão dispara a contração das células musculares lisas das paredes das arteríolas glomerulares aferentes. Conforme a pressão arterial sobe, a TFG também aumenta, porque o fluxo sanguíneo renal aumenta. No entanto, a pressão sanguínea elevada distende as paredes das arteríolas glomerulares aferentes. Em resposta, as fibras de músculo liso da parede da arteríola glomerular aferente se contraem, o que reduz o lúmen da arteríola. Como resultado, o fluxo sanguíneo renal diminui, reduzindo assim a TFG para o nível prévio. Inversamente, quando a pressão arterial diminui, as células de músculo liso são menos distendidas e assim relaxam. As arteríolas glomerulares aferentes se dilatam, o fluxo sanguíneo renal se eleva e a TFG aumenta. O mecanismo miogênico normaliza o fluxo sanguíneo renal e a TFG segundos depois de uma alteração na pressão sanguínea. O segundo contribuinte para a autorregulação renal, o feedback tubuloglomerular, é assim chamado porque parte dos túbulos renais – a mácula densa – fornece feedback ao glomérulo. Quando a TFG está acima do normal em decorrência da pressão arterial sistêmica elevada, o líquido filtrado flui mais rapidamente ao longo dos túbulos renais. Como resultado, o túbulo contorcido proximal e a alça de Henle têm menos tempo para reabsorver Na + , Cl – e água. Acreditase que as células da mácula densa detectem o aumento do aporte de Na + , Cl – e água e inibam a liberação de óxido nítrico (NO) das células do aparelho justaglomerular (AJG). Como o NO provoca vasodilatação, as arteríolas glomerulares aferentes se contraem quando o nível de NO diminui. Como resultado, menos sangue flui para os capilares glomerulares, e a TFG diminui. Quando a pressão do sangue cai, fazendo com que a TFG seja menor do que o normal, ocorre a sequência de eventos oposta, embora em menor grau. O feedback tubuloglomerular é mais lento do que o mecanismo miogênico. ▪ Regulação neural da TFG Como a maior parte dos vasos sanguíneos do corpo, os dos rins são inervados por fibras simpáticas do SNA que liberam norepinefrina. A norepinefrina causa vasoconstrição pela ativação de receptores α1 , que são particularmente abundantes nas fibras musculares lisas das arteríolas glomerulares aferentes. Em repouso, a estimulação simpática é moderadamente baixa, as arteríolas glomerulares aferentes e eferentes estão dilatadas, e a autorregulação Morfofuncional – Universidade do Estado da Bahia (UNEB) Lara Lessa Araújo – 2º semestre renal da TFG prevalece. Com a estimulação simpática moderada, tanto as arteríolas glomerulares aferentes quanto eferentes se contraem com a mesma intensidade. O fluxo sanguíneo para dentro e para fora do glomérulo é restrito na mesma medida, o que diminui apenas ligeiramente a taxa de filtração glomerular. Com maior estimulação simpática, no entanto, como ocorre durante o exercício ou hemorragia, a constrição das arteríolas glomerulares aferentes predomina. Como resultado, o fluxo sanguíneo para os vasos capilares glomerulares é muito reduzido, e a TFG diminui. Esta redução no fluxo sanguíneo renal tem duas consequências: (1) Reduz o débito urinário, o que ajuda a conservar o volume de sangue. (2) Possibilita um maior fluxo sanguíneo para os outros tecidos do corpo. ▪ Regulação hormonal da TFG Dois hormônios contribuem para a regulação da TFG. A angiotensina II reduz a TFG; o peptídio natriurético atrial (PNA) aumenta a TFG. A angiotensina II é um vasoconstritor muito potente que estreita as arteríolas glomerulares aferentes e eferentes e reduz o fluxo sanguíneo renal, diminuindo assim a TFG. As células nos átrios do coração secretam peptídio natriurético atrial (PNA). A distensão dos átrios, como ocorre quando o volume sanguíneo aumenta, estimula a secreção de PNA. Ao causar o relaxamento das células mesangiais glomerulares, o PNA aumenta a área de superfície disponível para a filtração capilar. A TFG aumenta à medida que a área de superfície aumenta.
Compartilhar