A maior rede de estudos do Brasil

Grátis
165 pág.
Ciclo do Nitrogênio

Pré-visualização | Página 42 de 45

3, p. 341-351, 2007. 
REMANS, R.; RAMAEKERS, L.; SCHELKENS, S.; HERNANDEZ, G.; GARCIA, A.; REYES, J. 
L.; MENDEZ, N.; TOSCANO, V.; GALVEZ, M. M. L.; VANDERLEYDEN, J. Effect of Rhizobium–
Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. 
genotypes cultivated across different environments in Cuba. Plant and Soil, v. 312, n. 1-2, p. 25-37, 2008.
RENIERA, A.; JOPURANDA, P.; RAPIOR, S.; POINSOT, V.; SY, A.; DREYFUS, B.; MOULIN, L. Symbiotic 
properties of Methylobacterium nodulans ORS 2060T: A classic process for an atypical symbiont. Soil 
Biology and Biochemistry, v. 40, n. 6, p. 1404-1412, 2008.
RHIJNET, P.; DESAIR, J.; VLASSAK, K.; VANDERLEYDEN, J. Functional analysis of nodD genes of 
Rhizobium tropici CIAT 899. Molecular Plant–Microbe Interactions, v. 7, n. 5, p. 666-677, 1994.
RICH, J. J.; DALE, O. R.; SONG, B.; WARD, B. B. Anaerobic ammonium oxidation (anammox) in 
chesapeake bay sediments. Microbial Ecology, v. 55, n. 2, p. 311–320, 2008.
RICHES, A. D.; MATTNER, S. W.; DAVIES R.; PORTER, I. J. Mitigation of nitrous oxide emissions with 
nitrification inhibitors in temperate vegetable cropping in southern Australia. Soil Research, v. 54, n. 5, p. 
533-543, 2016.
RINCÓN-ROSALES, R.; LLORET, L.; PONCE, E.; MARTÍNEZ-ROMERO, E. Rhizobia with different 
symbiotic efficiencies nodulate Acaciella angustissima in Mexico, including Sinorhizobium chiapanecum 
sp. nov. which has common symbiotic genes with Sinorhizobium mexicanum. FEMS Microbiology 
Ecology, v. 67, n. 1, p. 103-117, 2008.
155
Ciclo do Nitrogênio em Sistemas Agrícolas
RIYA, S.; ZHOU, S.; WATANABE, Y.; SAGEHASHI, M.; TERADA, A.; HOSOMI, M. CH4 and N2O 
emissions from different varieties of forage rice (Oryza sativa L.) treating liquid cattle waste. Science of 
the Total Environment, v. 419, n. 1, p. 178-186, 2012. 
RIZHIYA, E. Y.; BOITSOV, L. V.; BUCHKINA, N. P.; PANOVA, G. G. The Influence of crop residues with 
different C: N ratios on the N2O emission from a loamy sand soddy podzolic soil. Eurasian Soil Science, 
v. 44, n. 10, p. 1144-1151, 2011.
ROCHETTE, P.; ANGERS, D. A.; BÉLANGER, G.; CHANTIGNY, M. H.; PRÉVOST, D.; LÉVESQUE, G. 
Emissions of N2O from alfalfa and soybean crops in eastern Canada. Soil Science Society of American 
Journal, v. 68, n. 2, p. 493-506, 2004.
ROCHETTE, P. No-till only increases N2O emissions in poorly-aerated soils. Soil and Tillage Research, 
v. 101, n. 1-2, p. 97-100, 2008.
ROCHETTE, P.; ANGERS, D. A.; CHANTIGNY, M. H.; BERTRAND, N. Nitrous oxide emissions respond 
differently to no-till in a loam and a heavy clay soil. Soil Science Society of American Journal, v. 72, n. 
5, p. 1363-1369, 2008.
ROCHETTE, P.; ANGERS, D. A.; CHANTIGNY, M. H.; MACDONALD, J. D. Ammonia volatilization 
following surface application of urea to tilled and no-till soils: a laboratory comparison. Soil and Tillage 
Research, v. 103, n. 2, p. 310-315, 2009.
RODRIGUES, M. B.; KIEHL, J. C. Volatilização de amônia após emprego de uréia em diferentes doses e 
modos de aplicação. Revista Brasileira de Ciência do Solo, v. 10, n. 1, p. 37-43, 1986.
ROJAS, C. A. L.; BAYER, C.; FONTOURA, S. M. V.; WEBER, M. A.; VIEIRO, F. Volatilização de amônia 
da uréia alterada por sistemas de preparo de solo e plantas de cobertura invernais no centro-sul do 
Paraná. Revista Brasileira de Ciência do Solo, v. 36, n. 1, p. 261-270, 2012.
RONDON, M.; RAMIREZ, J. A.; LEHMANN, J. Charcoal additions reduce net emissions of greenhouse 
gases to the atmosphere. In: USDA SYMPOSIUM ON GREENHOUSE GASES AND CARBON 
SEQUESTRATION, 3., 2005, Baltimore. Proceedings… Baltimore: USDA, 2005. p. 208.
RUDISILL, M. A.; TURCO, R. F.; HOAGLAND, L. A. Fertility practices and rhizosphere effects alter 
ammonia oxidizer community structure and potential nitrification activity in pepper production soils. 
Applied Soil Ecology, v. 99, p. 70-77, 2016.
RUSER, R.; SCHULZ, R. The effect of nitrification inhibitors on the nitrous oxide release from agricultural 
soils: a review. Journal of Plant Nutrition and Soil Science, v. 178, n. 2, p. 171-188, 2015.
RUSSENES, A. L.; KORSAETH, A.; BAKKEN, L. R.; DÖRSCH, P. Spatial variation in soil pH controls off-
season N2O emission in an agricultural soil. Soil Biology and Biochemistry, v. 99, p. 36-46, 2016.
RÜTTING, T.; BOECKX. P.; MÜLLER, C.; KLEMEDTSSON, L. Assessment of the importance of dissimi-
latory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences, v. 8, n. 7, p. 1779-
1791, 2011.
RÜTTING, T.; HUYGENS, D.; MULLER, C.; CLEEMPUT, O.; GODOY, R.; BOECKX, P. Functional role of 
DNRA and nitrite reduction in a pristine south Chilean Nothofagus forest. Biogeochemistry, v. 90, n. 3, p. 
243–258, 2008.
RYSGAARD, S.; GLUD, R. N.; SEJR, M. K.; BLICHER, M. E.; STAHL, H. J. Denitrification activity and 
oxygen dynamics in Arctic sea ice. Polar Biology, v. 31, n. 5, p. 527-537, 2008.
SAGGAR, S.; JHA, N.; DESLIPPE, J.; BOLAN, N. S.; LUO, J.; GILTRAP, D. L.; KIM, D. G.; ZAMAN, 
M.; TILLMAN, R. W. Denitrification and N2O: N2 production in temperate grasslands: processes, 
156
Ciclo do Nitrogênio em Sistemas Agrícolas
measurements, modelling and mitigating negative impacts. Science and Total Environment, v. 465, n. 1, 
p. 173-195, 2013.
SAMESHIMA-SAITO, R.; CHIBA, K.; HIRAYAMA, J.; ITAKURA, M.; MITSUI, H.; EDA, S.; MINAMISAWA, 
K. Symbiotic Bradyrhizobium japonicum reduces N2O surrounding the soybean root system via nitrous 
oxide reductase. Applied Environmental Microbiology, v. 72, n. 4, p. 2526-2532, 2006.
SÁNCHEZ-MARTÍN, L.; DICK, J.; BOCARY, K.; VALLEJO, A.; SKIBA, U. M. Residual effect of organic 
carbon as a tool for mitigating nitrogen oxides emissions in semi-arid climate. Plant and Soil, v. 44, n. 1-2, 
p. 999-1002, 2010.
SANTI, C.; BOGUSZ, D.; FRANHE, C. Biological nitrogen fixation in non-legume plants. Annals of 
Botany, v. 111, n. 5, p. 743-767, 2013.
SANZ-COBENA, A.; SÁNCHEZ-MARTÍN, L.; GARCÍA-TORRES, L.; VALLEJO, A. Gaseous emissions of 
N2O and NO and NO3
 − leaching from urea applied with urease and nitrification inhibitors to a maize (Zea 
mays) crop. Agriculture, Ecosystem and Environment, v. 149, n. 1, p. 64-73, 2012.
SANZ-COBENA, A.; MISSELBROOK, T. H.; ARCE, A.; MINGOT, J. I.; DIEZ, J. A.; VALLEJO, A. An 
inhibitor of urease activity effectively reduces ammonia emissions from soil treated with urea under 
mediterranean conditions. Agriculture, Ecosystems and Environment, v. 126, n. 3-4, p. 243-249, 2008.
SAUSSURE, T. de. Recherches chimiques sur la végétation. Paris: chez la Veuve Nyon, 1804.
SCHAUSS, K.; FOCKS, A.; LEININGER, S.; KOTZERKE, A.; HEUER, H.; THIELE-BRUHN, S.; SHARMA, 
S.; WILKE, B. M.; MATTHIES, M.; SMALLA, K.; MUNCH, J. C.; AMELUNG, W.; KAUPENJOHANN, M.; 
SCHLOTER, M.; SCHLEPER, C. Dynamics and functional relevance of ammonia-oxidizing archaea in two 
agricultural soils. Environmental Microbiology, v. 11, n. 2, p. 446-456, 2009.
SCHIRMANN, J.; AITA, C.; GIACOMINI, S. J.; BARBOSA, S.; GIACOMINI, D. A.; GONZATTO, R.; 
OLIVO, J. Inibidor de nitrificação e aplicação parcelada de dejetos de suínos nas culturas do milho e trigo. 
Revista Brasileira de Ciência do Solo, v. 37, n. 1, p. 271-280, 2013.
SELBIE, D. R.; LANIGAN, G. J.; LAUGHLIN, R. J.; DI, H. J.; MOIR, J. L.; CAMERON, K. C.; CLOUGH, 
T. J.; WATSON, C. J.; GRANT, J.; SOMERS, C.; RICHARDS, K. G. Confirmation of co-denitrification in 
grazed grassland. Scientific Reports, v. 5, p. 17361, 2015.
SHAMSELDIN, A.; ABDELKHALEK, A.; SADOWSKY, M. J. Recent changes to the classification of 
symbiotic, nitrogen-fixing, legume-associating bacteria: a review. Symbiosis, v. 71, n. 2, p. 91-109, 2017.
SHANKARIAH, C.; HUNSIGI, G. Field responses of sugarcane to associative N2 fixers and P solubilisers. 
In: INTERNATIONAL SOCIETY OF SUGARCANE TECHNOLOGISTS CONGRESS, 24., 2001, Brisbane. 
Proceedings... Brisbane: The