Buscar

Limite, derivadas, vetores

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 12 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 12 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 12 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

Física para Ciências Biológicas Anderson Ferreira Sepulveda 
1. Limite 
Definição: o limite de uma função f(x) quando seu argumento x tende a x0 é o valor L para 
o qual a função se aproxima quando x se aproxima de x0 (note que a função não precisa 
estar definida em x0). 
Se f(x) está definida em x0 e seu gráfico não apresenta descontinuidades nem oscilações 
muito fortes, é natural escrever 
 
lim
𝑥 → 𝑥0
𝑓(𝑥) = 𝐿 ≡ 𝑓(𝑥0) 
 
Ou seja, o limite é igual ao valor da função em x0. 
Exemplos: 
 
1.1) Calcule lim𝑥 → 1 𝑥
2 + 2 
Queremos saber o valor de f(x) = 𝑥2 + 2 quando x tende a 1. Como essa função é 
sempre contínua, então basta substituir a variável x: 
 
lim
𝑥 → 1
𝑥2 + 2 = (1)2 + 2 = 3 
 
1.2) Calcule lim𝑥 → 1+ 4𝑥
3 − 7𝑥2 + 7𝑥 + 1 
 
Como no exemplo 1.1, a função é contínua. A diferença é que se pede o valor do limite 
quando x tente a 1 pela direita. Nesse caso só precisamos substituir a variável x: 
 
lim
𝑥 → 1+
4𝑥3 − 7𝑥2 + 7𝑥 + 1 = 4(1) − 7(1) + 7(1) + 1 = 5 
 
 
1.3) Calcule lim𝑥 → 0
𝑥2−𝑥
𝑥
 
 
Nesse tipo de função, tente simplificar! 
 
 
lim
𝑥 → 0
𝑥2 − 𝑥
𝑥
= lim
𝑥 → 0
𝑥(𝑥 − 1)
𝑥
= lim
𝑥 → 0
𝑥 − 1 = 0 − 1 = −1 
 
Em alguns casos, no entanto, a função não é bem definida e pode haver problemas 
sérios. Se você fizer uma tabela com os valores da função acima, apesar da função não 
estar definida para x = 0, dá para desconfiar que à medida que nos aproximamos de x = 
0. 
 
Física para Ciências Biológicas Anderson Ferreira Sepulveda 
Para lidar com situações como essa criou-se uma definição de limite onde o que 
acontece exatamente no ponto em que se deseja calcular o limite não é importante. 
Importa apenas o que ocorre nas vizinhanças desse ponto. Isso permite o 
cancelamento dos fatores comuns no numerador e no denominador como acabamos 
de fazer. 
1.4) Calcule lim𝑡 → 0
1
𝑡
 
 
A função é descontínua em t = 0. Mas olhe nas vizinhanças desse ponto. Quando t 
tende a 0 à esquerda, acontece que 
 
lim
𝑡 → 0−
1
𝑡
= −∞ 
 
E quando t tende a 0 à direita 
 
lim
𝑡 → 0+
1
𝑡
= +∞ 
 
Por que? Faça um gráfico de f(t) e verá que isso é verdade! 
 
1.5) Seja função 
 
𝑓(𝑥) = {
+1 𝑝𝑎𝑟𝑎 𝑥 > 1
−1 𝑝𝑎𝑟𝑎 𝑥 < 1
 
 
Que pode ser representada no gráfico abaixo: 
 
 
 
 
 
 
 
 
 
 
 
Quando x tende a 1 o limite é claramente indefinido. Mas se aproximarmos a x = 1 
tendendo à esquerda temos que f(x) tende a f(1) = -1; e se x = 1 tendendo à direita 
temos que f(1) = +1. 
 
 
 
 
 
 
Física para Ciências Biológicas Anderson Ferreira Sepulveda 
2. Derivadas 
 
Tecnicamente, a derivada de uma função não passa de um caso especial de limite. A 
velocidade instantânea (que é a derivada da posição em relação ao tempo) corresponde ao 
limite da velocidade média para um intervalo de tempo muito pequeno (que tende a se 
anular). 
Para calcular a derivada de uma função f(x) num certo ponto x0, nós inicialmente damos um 
acréscimo ∆x em x0 e calculamos a diferença 
∆𝑓 = 𝑓(𝑥0 + ∆𝑥) − 𝑓(𝑥0) 
E a razão 
Δ𝑓
Δ𝑥
= 
𝑓(𝑥0 + ∆𝑥) − 𝑓(𝑥0)
∆𝑥
 
 
A derivada no ponto x0 é dada pelo limite 
 
𝑑𝑓
𝑑𝑥
= 𝑓′ = lim
∆𝑥 →0
∆𝑓
∆𝑥
= lim
∆𝑥 →0
𝑓(𝑥0 + ∆𝑥) − 𝑓(𝑥0)
∆𝑥
 
 
Fazendo o limite acima, temos a relação das derivadas mais comuns: 
 
Tabela 2.1: Algumas derivadas fundamentais 
𝒇(𝒙) 𝒅𝒇 𝒅𝒙⁄ 
constante zero 
𝑥𝑛 𝑛𝑥𝑛−1 
sen x cos x 
cos x -sen x 
𝑒𝑥 𝑒𝑥 
ln x 1/x 
 
Relacionando algumas propriedades, que simplificam o cálculo das derivadas: 
a) Dada a função 𝑓(𝑥) = 𝑐𝑔(𝑥), onde c é uma constante e 𝑔(𝑥) é outra função, temos 
𝑑𝑓
𝑑𝑥
= 𝑐
𝑑𝑔
𝑑𝑥
 
 
Física para Ciências Biológicas Anderson Ferreira Sepulveda 
b) Dada a função 𝑓(𝑥) = 𝑎𝑓1(𝑥) + 𝑏𝑓2(𝑥), onde 𝑓1(𝑥) e 𝑓2(𝑥) são funções e 𝑎 e 𝑏 são 
constantes, temos 
𝑑𝑓
𝑑𝑥
= 𝑎
𝑑𝑓1
𝑑𝑥
+ 𝑏 
𝑑𝑓2
𝑑𝑥
 
c) Dado o produto de funções, 𝑓(𝑥) = 𝑓1(𝑥) 𝑓2(𝑥), temos 
𝑑𝑓
𝑑𝑥
=
𝑑𝑓1
𝑑𝑥
𝑓2 + 𝑓1 
𝑑𝑓2
𝑑𝑥
 
d) Dado o quociente de duas funções, 𝑓(𝑥) = 𝑓1(𝑥)/𝑓2(𝑥), temos 
𝑑𝑓
𝑑𝑥
= 
1
𝑓2
2 [
𝑑𝑓1
𝑑𝑥
𝑓2 − 𝑓1
𝑑𝑓2
𝑑𝑥
] 
e) Muitas vezes temos que calcular a derivada de uma “função de função”. Vamos considerar a 
função f = f(g), onde g = g(x). A derivada é dada pela “regra da cadeira”, 
𝑑𝑓
𝑑𝑥
= 
𝑑𝑓
𝑑𝑔
𝑑𝑔
𝑑𝑥
 
Exemplos: 
 
2.1) Calcule a derivada de 𝑓(𝑥) = 𝐴𝑥5 + 𝐵𝑥2 + 𝐶, sendo A, B e C números reais. 
 Lembrando a Tabela 1 e as propriedades (a) e (b): 
𝑑𝑓
𝑑𝑥
= 5𝐴𝑥4 + 2𝐵𝑥 
 
2.2) Agora calcule a derivada de 𝑔(𝑥) = (𝐴𝑥5 + 𝐵𝑥2 + 𝐶)2 
 Se você observar, 𝑔(𝑥) = [𝑓(𝑥)]2. Logo, podemos usar a regra da cadeia: 
𝑑𝑔
𝑑𝑥
= 
𝑑𝑔
𝑑𝑓
𝑑𝑓
𝑑𝑥
 
 Recomendo fazer por partes aqui, para não se perder! 
𝑑𝑔
𝑑𝑓
= 2𝑓(𝑥) = 2(𝐴𝑥5 + 𝐵𝑥2 + 𝐶) 
𝑑𝑓
𝑑𝑥
= 5𝐴𝑥4 + 2𝐵𝑥 
 Então, 
𝑑𝑔
𝑑𝑥
= 2(𝐴𝑥5 + 𝐵𝑥2 + 𝐶)(5𝐴𝑥4 + 2𝐵𝑥) 
 
Física para Ciências Biológicas Anderson Ferreira Sepulveda 
2.3) Calcule a derivada de ℎ(𝑡) = (𝑡 + 1)2(𝑡2 + 2𝑡)−3 
Basta fazer ℎ(𝑡) = ℎ1(𝑡)ℎ2(𝑡), com ℎ1(𝑡) = (𝑡 + 1)
2 e ℎ2(𝑡) = (𝑡
2 + 2𝑡)−3. 
Lembrando a propriedade (c) e a regra da cadeia 
𝑑ℎ
𝑑𝑥
=
𝑑ℎ1
𝑑𝑥
ℎ2 + ℎ1 
𝑑ℎ2
𝑑𝑥
 
Então, 
𝑑ℎ1
𝑑𝑥
= 2(𝑡 + 1) 
𝑑ℎ2
𝑑𝑥
= −3(𝑡2 + 2𝑡)−4(2𝑡 + 2) 
De onde obtemos 
𝑑ℎ
𝑑𝑥
= 2(𝑡 + 1)(𝑡2 + 2𝑡)−3 + (𝑡 + 1)2[−3(𝑡2 + 2𝑡)−4(2𝑡 + 2)] 
 
 2.4) Derive 𝑝(𝜃) = 3𝑠𝑒𝑛(2𝜃) 
Se fizermos 𝑘(𝜃) = 2𝜃, ou seja, 𝑝(𝑘) = 3𝑠𝑒𝑛(𝑘), então podemos usar a regra da 
cadeia: 
𝑑𝑝
𝑑𝜃
= 
𝑑𝑝
𝑑𝑘
𝑑𝑘
𝑑𝜃
 
 Fazendo por partes: 
𝑑𝑝
𝑑𝑘
= 3cos(𝑘) = 3cos (2𝜃) 
𝑑𝑘
𝑑𝜃
= 2 
 Logo, 
𝑑𝑝
𝑑𝜃
= 6cos (2𝜃) 
 
Definição: Seja f definida em um intervalo e sejam x1 e x2 pontos do intervalo 
 - f é crescente no intervalo se f(x1) < f(x2) para x1 < x2 
 - f é decrescente no intervalo se f(x1) > f(x2) para x1 < x2 
 - f é constante no intervalo se f(x1) = f(x2) para todos pontos x1 e x2 
 
Física para Ciências Biológicas Anderson Ferreira Sepulveda 
Pensando em derivadas, sendo f função contínua em um intervalo fechado [a, b] e 
diferenciável no intervalo aberto (a, b): 
 - Se f’(x) > 0 para todo valor de x em (a, b), então f é crescente em [a, b] 
 - Se f’(x) < 0 para todo valor de x em (a, b), então f é decrescente em [a, b] 
 - Se f’(x) = 0 para todo valor de x em (a, b), então f é constante em [a, b] 
 
Exemplo: 
 
2.5) Ache os intervalos nos quais a função 𝑓(𝑥) = 𝑥2 − 4𝑥 + 3 são crescentes ou 
decrescentes. 
 Se derivarmos a função: 
𝑑𝑓
𝑑𝑥
= 𝑓′ = 2𝑥 − 4 = 2(𝑥 − 2) 
 Tem- se que 
 𝑓′(𝑥) < 0 se −∞ < 𝑥 < 2 
 𝑓′(𝑥) > 0 se 2 < 𝑥 < +∞ 
Como f é contínua em x = 2, então f é decrescente em (-∞, 2] e f é crescente em [2, 
+∞). 
 
Definição: Se f for diferenciável em um intervalo aberto I, então f é classificada como sendo 
côncava para cima se f’ for crescente em I, e côncava para baixo se f’ for decrescente em I. 
Seja f duas vezes diferenciável em um intervalo aberto I: 
 - Se f’’(x) > 0 em I, então f tem a concavidade para cima em I. 
 - Se f’’(x) < 0 em I, então f tem a concavidade para baixo em I. 
Exemplo: 
 
2.6) Ache os intervalos abertos nos quais a função 𝑓(𝑥) = 𝑥3 − 3𝑥2 + 1 tem a concavidade 
para cima e para baixo: 
 Calcule as duas primeiras derivadas:𝑓′ = 
𝑑𝑓
𝑑𝑥
= 3𝑥2 − 6𝑥 
 
Física para Ciências Biológicas Anderson Ferreira Sepulveda 
𝑓′′ = 
𝑑2𝑓
𝑑𝑥2
= 6𝑥 − 6 = 6(𝑥 − 1) 
 Como 𝑓′′(𝑥) > 0 se x > 1 e 𝑓′′(𝑥) < 0 se x < 1, concluímos que 
 - f é côncava para cima em (1, +∞) 
 - f é côncava para baixo em (-∞, 1) 
 Experimente fazer o gráfico! 
 
Definição: Uma função f se diz ter um máximo relativo em x0 se houver um intervalo aberto 
contendo x0, no qual f(x0) é o maior valor, isto é, f(x0) ≥ f(x) para todo x no intervalo. 
Analogamente, se diz que f tem um mínimo relativo em x0 se houver um intervalo aberto 
contendo x0, no qual f(x0) é o menos valor, isto é, f(x0) ≤ f(x) para todo x no intervalo. Quando f 
tiver um máximo ou um mínimo relativo em x0, se diz que f tem um extremo relativo em x0. 
Se uma função f tiver extremos relativos, então eles ocorrem ou em pontos onde f’(x) = 0 ou 
em pontos onde não se pode derivar (como em picos ou onde a função não é contínua). O 
ponto onde f’(x) = 0 é chamado de ponto crítico ou ponto estacionário. 
Há um teste para extremos relativos chamado Teste da Derivada Segunda. Baseia-se na 
observação geométrica de que, num máximo relativo, a função f é côncava para baixo num 
intervalo aberto, contendo o ponto critico de f, enquanto que, num mínimo relativo, ela é 
côncava para cima. 
Supondo que f seja duas vezes diferenciável em um ponto de x0. 
 - Se f’(x0) = 0 e f’’(x0) > 0, então f tem um x0 um mínimo relativo. 
 - Se f’(x0) = 0 e f’’(x0) < 0, então f tem um x0 um máximo relativo. 
- Se f’(x0) = 0 e f’’(x0) = 0, então o teste é inconclusivo, isto é, f pode ter um máximo ou 
mínimo relativo ou nenhum dos dois em x0. 
Exemplos: 
 
2.7) Localize os extremos relativos de 𝑓(𝑥) = 𝑥4 − 2𝑥2. 
 Fazendo as duas primeiras derivadas: 
𝑓′ = 
𝑑𝑓
𝑑𝑥
= 4𝑥3 − 4𝑥 = 4𝑥(𝑥 − 1)(𝑥 + 1) 
𝑓′′ = 
𝑑2𝑓
𝑑𝑥2
= 12𝑥2 − 4 
 
Física para Ciências Biológicas Anderson Ferreira Sepulveda 
Resolvendo 𝑓′(𝑥) = 0 resulta que os pontos críticos são x = 0, x = 1 e x = -1. 
Calculando nestes 𝑓′′, temos 
 𝑓′′(0) = −4 < 0 
 𝑓′′(1) = 8 > 0 
 𝑓′′(−1) = 8 > 0 
 Logo, há um máximo relativo em x = 0 e mínimos relativos em x = 1 e x = -1. 
 Faça o gráfico de f para provar! 
 
2.8) Ache as dimensões de um retângulo com perímetro de 100 m, cuja área é a maior 
possível. 
 Sejam 
 x = comprimento do retângulo (m) 
 y = largura do retângulo (m) 
 A = área do retângulo (m2) 
 Então A = xy. 
Como o perímetro do retângulo é 100 m, as variáveis x e y estão relacionadas pela 
equação 
2x + 2y = 100 ou y = 50 – x 
 Combinando as duas equações acima, temos 
A = x(50 – x) = 50x – x2 
Como x representa um comprimento, este não pode ser negativo e como os dois lados 
de comprimento x não podem ter um comprimento combinado que ultrapasse o 
perímetro de 100 m, então a variável x está restrita ao intervalo 0 ≤ x ≤ 50. 
Assim sendo, o problema ficou reduzido a encontrar o valor (ou valores) de x em [0, 
50] para os quais A é máxima. Como A é um polinômio em x, é continua em [0, 50] e o 
máximo ocorre nos extremos deste intervalo ou em um ponto critico. 
Derivando 
𝑑𝐴
𝑑𝑥
= 50 − 2𝑥 
 Se fizermos dA/dx = 0 obtemos 
 50 – 2x = 0 ⇒ x = 25 
 
Física para Ciências Biológicas Anderson Ferreira Sepulveda 
Quando x = 25 m e y = 25 m, temos o comprimento e a largura que resultam na área 
máxima A = 625 m2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Física para Ciências Biológicas Anderson Ferreira Sepulveda 
3. Vetores 
Muitas grandezas físicas, como velocidade, força, deslocamento e impulso, para serem 
completamente identificadas, precisam, além da magnitude, da direção e do sentido. Estas 
grandezas são chamadas grandezas vetoriais ou simplesmente vetores. 
Geometricamente, vetores são representados por segmentos (de retas) orientados 
(segmentos de retas com um sentido de percurso) no plano ou no espaço. A ponta da seta do 
segmento orientado é chamada ponto final ou extremidade e o outro ponto extremo é 
chamado de ponto inicial ou origem do segmento orientado. 
Nessa apostila, os vetores estão negrito. Quando for escrever, nunca se esqueça de colocar 
flechinha em cima da letra! 
A soma de dois vetores A e B é determinada da seguinte forma: 
- tome um segmento orientado que representa A; 
- tome um segmento orientado que representa, com origem na extremidade de A; 
- o vetor A + B é representado pelo segmento orientado que vai da origem de A até a 
extremidade de B. 
 
 
 
 
 
Da figura acima, deduz-se que a soma de vetores é comutativa, ou seja, A + B = B +A. 
Definimos a diferença B menos A, por B – A = B + (-A). 
Assim, a diferença A – B é um vetor que somado a B dá A, portanto ele vai da extremidade de 
B até a extremidade de A, desde que A e B estejam representados por segmentos orientados 
com a mesma origem. 
 
 
 
 
A soma de dois vetores A = (a1, a2) e B = (b1, b2) é dada por 
A + B = (a1 + b1, a2 + b2) 
A 
A 
B 
B 
A
B-B
A -B 
 
Física para Ciências Biológicas Anderson Ferreira Sepulveda 
A multiplicação de um vetor V por um escalar α, αV, é determinada pelo vetor que possui as 
seguintes características: 
(a) é o vetor nulo, se α = 0 ou V = 0̅ , 
(b) caso contrário, 
- tem comprimento |α| vezes o comprimento de V, 
- a direção é a mesma de V (neste caso, dizemos que eles são paralelos), 
- tem o mesmo sentido de V, se α > 0 e tem o sentido contrário ao de V, se α < 0. 
A multiplicação de um vetor V = (v1, v2) por um escalar α é dada por 
αV = (αv1, αv2) 
Exemplo: 
 
3.1) Se A = (1, -2, 3), B = (2, 4, -1), calcule A + B e C = 3A 
 A + B = (1 + 2, -2 + 4, 3 + (-1) = (3, 2, 2) 
 Como α = 3, temos 
C = 3A = (3(1), 3(-2), 3(3)) = (3, -6, 9) 
 
O comprimento de um vetor V é definido como sendo o comprimento de qualquer um dos 
segmentos orientados que o representam. O comprimento do vetor V também é chamado de 
norma de V e é denotado(a) por ‖𝑉‖. Pelo Teorema de Pitágoras que a norma de um vetor 
pode ser calculada usando as suas componentes, por 
‖𝑉‖ = √𝑣1 
2 + 𝑣2
2 
No caso em que V = (v1, v2) é um vetor no plano (duas dimensões), e por 
‖𝑉‖ = √𝑣1 
2 + 𝑣2
2 + 𝑣3
2 
No caso em que V = (v1, v2, v3) é um vetor no espaço (três dimensões). 
Um vetor de norma igual a 1 é chamado de vetor unitário. 
Dado um vetor V não nulo, o vetor 
𝑼 = (
1
‖𝑉‖
) 𝑽 
é um vetor unitário na direção V, pois 
‖𝑈‖ = |
1
‖𝑉‖
| ‖𝑉‖ = 1 
 
Física para Ciências Biológicas Anderson Ferreira Sepulveda 
Exemplo: 
3.2) Um vetor unitário na direção do vetor V = (1, -2, 3) é o vetor 
𝑼 = (
1
‖𝑉‖
) 𝑽 = (
1
√14
) (1, −2, 3) = (
1
√14
,
−2
√14
,
3
√14
)

Outros materiais