Buscar

APOSTILA DE INTRODUCAO A ENGENHARIA AMBIENTAL-2015

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 192 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 192 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 192 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

UNIVERSIDADE ESTADUAL DE MARINGÁ 
DEPARTAMENTO DE ENGENHARIA QUÍMICA
CURSO DE ENGENHARIA DE QUÍMICA
DISCLIPLINA DE INTRODUÇÃO À ENGENHARIA AMBIENTAL
APOSTILA DE INTRODUÇÃO À ENGENHARIA AMBIENTAL
PROFESSORA: ROSÂNGELA BERGAMASCO
Maringá, 2015
Sumário
1-NOÇÕES SOBRE ECOLOGIA	5
1.1 - Histórico	5
1.2 - Subdivisões da Ecologia	6
1.3 - Ecologia uma Ciência Multidisciplinar	6
1.4 - O Conceito de Ecossistema	6
1.5 - O que e quem pode alterar o ecossistema?	6
1.6 - O que é Poluição?	7
1.7 - A Reforma Sanitária e a Poluição	7
1.8 - A Revolução Industrial, o Problema da Poluição Mundial e a Vida Sustentável	7
1.9 - Fatores que tornaram possível a Revolução Industrial	8
1.10 - A Água no Meio	9
1.11- O Ciclo do Carbono	12
1.12 - O Ciclo do Nitrogênio	12
1.13 - O Ciclo do Oxigênio	12
1.14 - O Fluxo de Energia num Ecossistema	13
1.15 - Balanço entre Produção e Consumo	13
1.16 - Que fatos podem-se verificar daí?	13
2 - CONTROLE DE POLUIÇÃO DAS ÁGUAS	15
2.1 - Processos ideais versus processos reais	16
2.2 - Definição do termo poluição zero	17
2.3 - Programa de minimização de despejos	18
3 - NOÇÕES SOBRE A QUALIDADE DA ÁGUA	21
3.1 - A água na natureza	21
3.1.1 - Distribuição da água na terra:	21
3.2 - O ciclo hidrológico	22
3.3 - Os usos da água	22
3.4 - Impurezas encontradas na água	22
3.5 - Parâmetros de qualidade da água	24
3.5.1 - Parâmetros Físicos	24
3.5.2 - Parâmetros Químicos	24
3.5.3 - Parâmetros Biológicos	24
3.6 - Poluição das águas	24
3.7 - Quantificação da carga poluidora	25
3.8 - Características das águas residuárias	26
3.9 - Caracterização da qualidade dos esgotos	29
3.10 - Qual a principal diferença entre os testes de DBO e DQO?	32
3.11 - Características de esgotos industriais	35
4- IMPACTO DO LANÇAMENTO DE EFLUENTES NOS CORPOS RECEPTORES	36
4.1 - Poluição por Matéria Orgânica e Autodepuração	36
4.2 - Autodepuração - Análise Ecológica	36
4.3 - Balanço de oxigênio dissolvido	38
4.4 - A curva de oxigênio dissolvido	39
5 - INTRODUÇÃO AO CONTROLE DE POLUIÇÃO	40
5.1 - Poluição ambiental	40
5.2 - Classificação geral dos resíduos	42
5.3 - Eliminação ou minimização dos problemas ambientais	42
5.4 - Sistema de gestão ambiental	43
5.5 - Normas e procedimentos	43
5.6 - Princípios da iso 14000	44
6-INTRODUÇÃO AO TRATAMENTO DE EFLUENTES	47
6.1-Por que tratar efluentes?	47
6.2 Principais contaminantes e características das águas residuárias	47
6.3- Classificação dos Tipos de Tratamento	50
7- TRATAMENTO BIOLÓGICO DE RESÍDUOS – PRINCÍPIOS DA CINÉTICA DE REAÇÕES E DA HIDRÁULICA DE REATORES.	52
7.1- Introdução	52
7.2 - Cinética de reações	52
7.3 - Balanço de massa	59
7.4 – Hidráulica de reatores	61
7.5- Tempo de retenção hidráulica e tempo de residência celular	62
8-TRATAMENTO SECUNDÁRIO – PROCESSOS AERÓBIOS	64
8.1-Lodos ativados	64
8.3-Problemas operacionais – suas causas e soluções	75
8.4-Lagoas aeradas	80
8.5-Lagoas de estabilização	81
8.6-Discos biológicos rotativos (rbc - rotating biological contactors)	87
9-TRATAMENTO ANAERÓBIO DE EFLUENTES	90
9.1- Introdução	90
9.1.1-Histórico	90
9.2- Aplicaçoes do tratamento anaeróbio	90
9.3-Vantagens e desvantagens	90
9.4- Fundamentos do tratamento anaeróbio	91
9.4.1-Processo de digestão	91
9.4.2- Microbiologia da digestão anaeróbia	91
9.4.3-Sequência metabólica	94
9.5-Bioquímica da digestão anaeróbia	94
9.5.1-Ácidos voláteis intermediários	94
9.5.2-Aspectos termodinâmicos	95
9.5.3-Estimativa da produção de metano	96
9.5.4- Redução de sulfato	96
9.6-Requisitos ambientais para o processo anaeróbio	96
9.6.1-Nutrientes	97
9.6.2-Temperatura	97
9.6.3-Ph, alcalinidade e ácidos voláteis	98
9.7-Sistemas anaeróbios de tratamento	99
9.7.1- Sistemas anaeróbios de tratamento	100
9.7.2-Sistemas convencionais de tratamento anaeróbio	100
9.7.3-Sistemas de alta taxa com crescimento aderido	102
9.7.4-Sistema anaeróbio com crescimento disperso	104
9.7.5-Sistemas combinados de tratamento	107
10- TRATAMENTO TERCIÁRIO	108
10.1- Introdução	108
10.2.-Necessidade de reuso	109
10.3-Formas potenciais de reuso	109
10.3.1 - Usos Urbanos	110
10.3.2 -Usos Industriais	112
10.3.3- Recarga de Aqüíferos	113
10.3.4 -Usos agrícolas	114
10.4. Ações a serem desenvolvidas para o reuso no brasil	121
11-FUNDAMENTOS SOBRE PROCESSOS COM MEMBRANAS	124
11.1-Membranas	124
11.2-Escolha das membranas	133
11.2.1- Parâmetros que influenciam o desempenho das membranas	134
12-RESÍDUOS SÓLIDOS	140
12.1-Introdução	140
12.2-Resíduos sólidos	140
12.3-Considerações gerais	141
12.4-Classificação	141
12.5-Características	143
12.6-Resíduos sólidos urbanos (rsu)	146
12.7-Coleta e disposição final do lixo	147
12.8-Aterros	149
12.9-Reciclagem	153
12.10-Você sabe quanto tempo a natureza leva para absorver os produtos abaixo?	155
12.11-Compostagem	167
12.12-Resíduos industriais	171
12.13-Resíduos hospitalares	173
12.14-Resíduos tóxicos	175
12.15-Rejeitos nucleares	175
12.16-Pilhas e baterias	176
12.17-Incineração	176
12.18-Pirólise	178
13-Tratamento de Efluentes Atmosféricos	180
13.1-A Poluição Atmosférica	180
13.2-Efeitos Globais da Poluição Atmosférica	180
13.3-Chuva Ácida	181
13.4-Diminuição da Camada de Ozônio	181
13.5-Inversão Térmica	182
13.6-Corrosão	182
13.7-Efeitos Sobre a Saúde	182
13.8-Adsorção	185
13.8.1-Regeneração dos Adsorventes	185
13.8.2-Equipamentos de Adsorção	186
13.9-Absorção	186
13.10-Dispersão	187
13.11-Os tipos mais comuns de poluentes gasosos	188
1-NOÇÕES SOBRE ECOLOGIA
	1.1 - Histórico
	A palavra ecologia deriva do grego “oekologie”, que significa literalmente ciência do habitat. Pode-se definir ecologia como a “Ciência que estuda as relações entre os seres vivos e entre estes seres vivos e o ambiente em que vivem.
	De acordo com as leis da ecologia os seres vivos devem viver num equilíbrio harmonioso, entre si e com o ambiente, no qual estão inseridos, equilíbrio este que deve ter duração indefinida, quando este equilíbrio é rompido por qualquer fator diz-se que ocorreu poluição, situação esta que pode ter conseqüências as mais desastrosas possíveis.
	O pensamento ecológico é bastante antigo, atribui-se à Ernest Haeckel, zoológo Alemão, a introdução do vocábulo ecologia, em 1866, porém, já em 1798 Malthus expunha suas idéias sobre crescimento populacional, em que afirmava que as populações crescem em progressão geométrica, enquanto os meios para sua subsistência aumentam em progressão aritmética, ou seja, a medida que a população cresce, mais escassos tornam-se os meios para a sua subsistência.
	Darwin, que era professor de Haeckel, parecia concordar com as idéias de Malthus, uma vez que em 1858, para explicar a sua teoria sobre origem e evolução das espécies formulou três princípios fundamentais: (1) Há maior produção do número de ovos, esporos e sementes, do que de indivíduos adultos; (2) Os indivíduos são diferentes uns dos outros; (3) Os indivíduos, em número excessivo e diferentes uns dos outros, lutam pelos mesmos meios de subsistência e sobrevivem os mais aptos, os melhores adaptados às condições do ambiente em que vivem.
	Pode-se dizer que a partir dai ficou estabelecido o conceito de competição, e que as três teorias se inter-relacionam e estabelecem o inter-relacionamento entre os seres e o ambiente em que vivem. É por esta razão que se diz que o pensamento ecológico é bem mais antigo que a introdução do vocábulo ecologia.
	Até quase 1930 a ecologia como ciência pouco se desenvolveu. O Brasil contribuiu de maneira significativa para o progresso da ecologia como ciência, uma vez que o primeiro livro publicado sobre ecologia no mundo em 1895, foi feito a partir das observações feitas pelo botânico dinamarquês, Eugênio Warning, quando este viveu no Brasil, em Lagoa Santa – Minas Gerais, durante três anos (1863-1866), estudando a vegetação.
	A primeira tentativa de apresentar a ecologia, com bases científicas, foi feita em 1927 por Elton, no que se referia ao mundoanimal.
	O início do século XX marca a fundação das primeiras sociedades ecológicas e também a publicação dos primeiros trabalhos científicos em periódicos. O primeiro congresso internacional sobre ecologia foi em Haia em 1974.
	
1.2 - Subdivisões da Ecologia
	Auto-ecologia: estuda as relações de uma só espécie com o meio em que vive, ou seja, a auto-ecologia estabelece os limites de tolerância e preferência de cada espécie em relação a cada fator ecológico, muitas vezes é chamada de ecofisiologia.
	Sinecologia: estuda as relações entre as espécies que vivem em certo ambiente, e as relações entre essas espécies e seu ambiente. Em outras palavras é a ecologia dos conjuntos de espécies de seres vivos.
	1.3 - Ecologia uma Ciência Multidisciplinar
	A ecologia é uma ciência muito complexa e envolve o conhecimento de muitas outras ciências, tais como, Zoologia, Botânica, Microbiologia, Geografia, Fisiologia, Genética, Química, Física, Estatística, Sociologia, etc.. A ecologia deve explicar o papel dos diversos fatores do meio físico, sobre as diversas espécies de seres vivos que vivem neste meio, por isso é uma ciência que deve ser desenvolvida por equipes multidisciplinares.
	Para se ter o conhecimento do que se passa entre os seres vivos e o ambiente que habitam, é necessário conhecer os principais fatores que intervém no meio físico e o papel que cada um destes fatores desempenha sobre os seres vivos. Dentre os principais fatores pode-se citar: Ar, Água, Luz e Solo.
	O professor Patrick Blaudin, do Museu Nacional de História Natural da França, diz que no século XX a ecologia tornou-se uma ciência para engenheiros. Engenheiros capazes de intervir sobre um terreno, segundo um caminho racional e cientificamente fundamentado, para obter uma organização e um funcionamento satisfatório dos meios naturais.
	A ecologia é pois, muito mais que um conjunto de preocupações relativas ao ambiente. É uma disciplina científica fundamental, prática, para profissionais de alto nível universitário, longe de ser uma preocupação militante ou politizada simplesmente (guia ilustrado de ecologia).
	1.4 - O Conceito de Ecossistema
	Chama-se de ecossistema a um conjunto de condições físicas e químicas de certo lugar, reunido a um conjunto de seres vivos que habitam esse lugar. O ecossistema tem pois, dois componentes: O ambiente povoado pelos seres vivos; e o conjunto de seres que povoam este ambiente.
	Ao ambiente físico dá-se o nome de Biótopo, e ao conjunto de seres vivos, dá-se o nome de Biocenose.
	1.5 - O que e quem pode alterar o ecossistema?
	Todas as espécies que povoam um ecossistema são capazes de altera-lo, seja retirando dele o seu alimento para a sua subsistência, seja devolvendo à ele o que retirou, através de suas fezes ou urina, geralmente de uma forma diversa.
	O homem em nada difere das outras espécies quanto à capacidade de alterar o seu ecossistema, porém, há uma diferença fundamental, porque ao homem foi dada a faculdade, por sua “inteligência”, de acelerar o processo de alteração do ambiente, por meio dos meios que inventa e descobre.
	1.6 - O que é Poluição?
	Várias são as conceituações ou definições que podem ser dadas de poluição mas, de um modo geral, pode-se definir poluição como “qualquer alteração que é introduzida em um ecossistema, que ocasione desequilíbrio, ou leve à situação de um novo equilíbrio diferente daquele que se encontrava anteriormente”. Os agentes causadores destas alterações são chamados de poluentes.
	Pode-se perceber que existem vários tipos de alterações ou de poluição, tais como, poluição do ar, da água, do solo, sonora, que podem ser causadas por substâncias químicas, ou não, no estado líquido, sólido ou gasoso, ou ainda causada por introdução de seres vivos ao ecossistema.
	Pode-se ainda falar em poluição visual e no sentido figurado, em poluição política e moral, que tão bem conhecemos em nosso país.
1.7 - A Reforma Sanitária e a Poluição
	Até meados do século XIX, antes da reforma sanitária, todos os esgotos gerados, que eram quase que totalmente de origem sanitária, eram lançados em poços ou fossas sépticas, no interior das residências, de onde eram retiradas para reservatórios públicos, lugar em que permaneciam secando, com o objetivo de se obter uma massa estabilizada, que era utilizada na lavoura.
	Em 1847, na Inglaterra, um famoso sanitarista chamado Chadwick estabeleceu uma reforma sanitária, que consistiu basicamente na ligação de todos os esgotos domésticos nas redes coletoras urbanas, mediante a instalação de descargas hídricas. As redes públicas de esgoto que recebiam exclusivamente as águas da chuva passaram a receber além de outros poluentes as descargas fecais. Foi inaugurado assim a lei que os franceses denominaram de “tout à l’égout” (tudo ao esgoto), teve funções benéficas, como a remoção de materiais contaminantes de dentro das casas, mas, teve suas funções maléficas, pois, iniciou o processo de contaminação dos rios.
	Esta reforma sanitária levou a problemas seríssimos como a proliferação de doenças, como febre tifóide, cólera, hepatite, causadas pelas excreções de pessoas doentes que tinham seus dejetos lançados nas redes de esgotos que posteriormente eram lançados nos rios. A Alemanha, a Inglaterra e a França tiveram seus rios transformados em fontes importantes de epidemias, por conta do lançamento de esgotos, que só foram resolvidas com o desenvolvimento de técnicas de tratamento de esgotos, que passaram a ser obrigatórios a partir de 1875 e, pela introdução das práticas de cloração das águas de abastecimento.
 
1.8 - A Revolução Industrial, o Problema da Poluição Mundial e a Vida Sustentável
	A revolução industrial, que teve seu início no século XVIII, na Inglaterra em 1760, e seu grande crescimento no século XX, levou o mundo a um estágio de grande desenvolvimento, porém, hoje já se tem conhecimento que este desenvolvimento, levou também a que toda humanidade ficasse exposta a grandes riscos, que podem ser exemplificados tanto pela ameaça de inexistência de água para beber, neste milênio, como pela ameaça da destruição da camada de ozônio, que protege a terra dos raios ultravioletas.
	A origem da revolução industrial está no desenvolvimento da indústria têxtil. Em um determinado momento, a demanda de tecido não podia ser satisfeita pela antiga roda de fiar, operada manualmente por um tecelão.
	No entanto, a indústria têxtil exigiu a criação de uma indústria química moderna, capaz de abastecê-la com os produtos necessários para a lavagem do algodão e a tintura dos tecidos. Para produzir sabão, era preciso soda. Em 1825, instalou-se, em Glasgow, a maior fábrica de produtos químicos da Europa. Empregava 3 mil trabalhadores e ocupava 40 hectares. Fabricava soda conforme um método inventado por Nicolas Leblanc, em 1783, que utilizava ácido sulfúrico. Na fabricação deste ácido, produzia-se gás clorídrico, produto altamente contaminante, que a fábrica emitia continuamente por sua chaminé de 139 metros de altura. Logo se conseguiu diluir esse gás em água e utilizá-lo no processo de fabricação de tinturas para colorir o algodão, este processo porém, também pode levar a um grau de poluição importante, pela geração de compostos organoclorados.
	Além das indústrias químicas, desenvolveram-se outras, como as de explosivos e as de fosfatos, usados como fertilizantes na agricultura. O desenvolvimento da Química é uma das características da revolução industrial, assim como o da Matemática e o da Física foram da revolução científica, iniciada quase três séculos antes.
	Nos três últimos séculos a população mundial cresceu oito vezes, enquanto que a produção industrial cresceu cerca de 100 vezes, só nos últimos cem anos. Este crescimento industrial, no entanto, beneficiou uma parcela muito pequena da população mundial cerca de 20%, que consomem 80% dos recursos naturais.
	A década de 60, porém, foi marcada por grandes transformações e, foi nesta década que o homem se deu conta de que é preciso mudarsua maneira de pensar o progresso, percebendo que mais importante que progredir, é progredir com consciência da preservação da vida humana e do ambiente em seu entorno. Este pensamento levou ao desenvolvimento de um mercado consumidor mais consciente, que exige além de qualidade na produção, qualidade de produção. No entanto, este pensamento de consciência ecológica e de preservação ambiental, esbarra, sobretudo nos países de terceiro mundo, no estado de pobreza que vive a população, que significa uma grande parcela de habitantes da terra vivendo na miséria absoluta.
	Neste sentido, deve-se entender vida sustentável como progresso para todos, com preservação da natureza, o que significa dizer profundas mudanças, tanto do ponto de vista técnico, como do ponto de vista social e sociológico, na maneira do homem encarar o progresso, ou seja, formas mais justas de desenvolvimento, que não ameacem o equilíbrio natural e que levem a menores desníveis sociais.
	
1.9 - Fatores que tornaram possível a Revolução Industrial 
Apesar de, no início do século XVIII, a Inglaterra apresentar um certo atraso técnico em relação a outros países europeus, a sociedade inglesa tinha uma série de condições que permitiram a sua rápida industrialização. As revoluções do século XVII acabaram com os privilégios da nobreza e com a servidão dos camponeses, que passaram a procurar emprego livremente nas fábricas. A Revolução Francesa aconteceu somente em 1789. Além disso, a população reduzida favorecia o uso de máquinas para suprir a falta de mão-de-obra. Ao mesmo tempo, a escassez de madeira, na Inglaterra, estimulou a mineração de carvão, importante para a siderurgia. Outro fator decisivo foi sua localização geográfica, que convertera a Inglaterra num centro de comércio mundial, através de seus numerosos portos. 
Mais ainda, a expansão colonial abriu novos mercados para a exportação dos produtos industriais. Um dado muito significativo é que, durante a Revolução Industrial, as guerras que devastaram o continente europeu se desenvolveram fora de seu território, o que permitiu à indústria inglesa trabalhar em paz e gerar riqueza. 
	Mais de 30 anos após a conferência de Estocolmo, nota-se ainda uma imensa incapacidade dos Países de gerar planos, ou estabelecer políticas que façam frente às questões globais relacionadas ao ambiente, sobretudo devido à insatisfação dos Países subdesenvolvidos, ou em desenvolvimento, que acusavam os Países, ditos de primeiro mundo, de cercear seus programas de desenvolvimento, acusando-os de geradores de poluição.
	Neste sentido é que neste inicio do século XXI, tem-se que pensar em redescobrimento, quando pensa-se em solução para os problemas ambientais. Redescobrir que os seres vivos devem prover a terra, para mantê-la viva, pensando em um novo modo de desenvolvimento que garanta a preservação, e isto só se consegue com educação. A educação no sentido da busca de subsídios, para a ampliação dos conhecimentos que leve ao exercício da cidadania e da qualidade da vida humana.
 
1.10 - A Água no Meio
	A água é um dos fatores mais importantes para os seres vivos, por isso é muito importante saber de que maneira ela se encontra no meio, e qual é a sua melhor forma de assimilação.
	A água pode ser encontrada em diversos estados no meio: líquido, nos grandes depósitos de água salgada, como os mares e oceanos, nos depósitos de água doce, como os rios, lagos e lagoas e também entre as partículas sólidas do solo. gasoso, na atmosfera. sólido, nas grandes massas de gelo, nas regiões polares e nos cumes das montanhas e serras, que apresentam uma certa altitude.
	Estas formas são intercambiáveis. É muito importante compreender estas transformações para saber o que ocorre com a água na natureza.
	Alguns dos ecossistemas mais complexos estão contidos nos oceanos, que ocupam mais de 70% da superfície terrestre. A zona costeira representa apenas 10% da zona oceânica total, porém, nela se origina mais da metade da produtividade biológica dos oceanos, estas zonas abrigam 60% da população mundial e contêm muitas classes de ecossistemas vitais para a vida marinha, (Dias, 1992). De um modo geral, os oceanos se constituem em grandes lixeiras, sendo utilizados para descargas de resíduos urbanos e industriais, sedimentos provenientes de erosões e via de regra, são os depósitos de quase todo o resíduo radioativo gerado no mundo.
	Estes lançamentos indiscriminados de resíduos nos oceanos acarretam grandes problemas para a fauna e a flora presentes nestes ecossistemas, chegando mesmo a comprometer seriamente a sua utilização.
	Em qualquer ecossistema que se considere pode-se verificar a existência de um ciclo de água que pode ser esquematizado como a seguir.
	A energia assimilada pelos seres vivos é utilizada pelas células por meio de reações químicas, que têm lugar em meio aquoso dentro das células. esta água porém, tem que estar disponível de maneira a ser utilizada diretamente pelos seres vivos, ou seja no estado líquido.
	Água no corpo humano e em muitos outros animais e vegetais desempenha não só o papel de estruturação das células, como também de veículo importante para o transporte de substâncias dissolvidas para dentro e fora do organismo e de todos os órgãos. Devido a sua capacidade solvente, bem como a sua mobilidade, executa funções como elemento preponderante no sangue e na seiva dos vegetais.
	A água então, é necessária não só para manter a temperatura do corpo humano, mas, também para conduzir produtos de excreção, uma vez que possui muita facilidade em atravessar as membranas das células, quando no estado líquido.
	A água no estado líquido é muito importante para os seres humanos, porque todas as reações bioquímicas que se processam nestes seres e em muitos outros, ocorrem em meio aquoso. Neste sentido, a água é necessária não só em quantidade, como em qualidade. Ela não pode conter substâncias que sejam nocivas ao bom funcionamento dos órgãos e células do organismo, além de não poder transportar microrganismos patogênicos.
	A água, inevitavelmente, retorna à natureza (rios, lagos, oceanos), depois de usada, portanto, todo cuidado deve ser tomado antes do seu lançamento nos corpos receptores, uma vez que estes corpos necessitam de uma qualidade mínima para os seus usos potenciais.
	Todo cidadão tem o direito a ter água tratada e o Estado tem o dever de oferecer este serviço, este é um dever que o cidadão outorga ao Estado, através do pagamento de impostos. Esta responsabilidade que é outorgada ao estado tem o objetivo único de manter a uniformidade e a segurança com relação aos processos de tratamento, garantindo assim serviços eficazes e conseqüentemente uma água de melhor qualidade.
	Essa outorga estabelece uma via de mão dupla entre o Estado e o cidadão. Todo cidadão tem obrigações que se não cumpridas, estará infringindo esse contrato social que tem para com o Estado. Por exemplo se lançar nas redes pluviais os esgotos de sua residência, uma vez que essas águas pluviais são lançadas no rio mais próximo, sem passar por qualquer tratamento, por outro lado, o Estado estará lesando a população se lançar em rios, ou outros corpos receptores, os esgotos da rede sanitária, sem tratamento, prejudicando o seu uso potencial. Isto pode se aplicar ao ensino público, todo cidadão outorga ao Estado, através do pagamento de impostos a função de prover o ensino público, e o Estado estará traindo a confiança do cidadão, se este ensino não for de qualidade.
	Contudo, a tarefa do Estado de levar água tratada até a residência de cada cidadão, nem sempre é tão fácil, muitas vezes a população prefere ser abastecida pelo poço que cava em seu quintal do que fazer a ligação domiciliar, quando intimado, muitas vezes reagindo com violência e depedrando as instalações do sistema de abastecimento, como aconteceu em Salvador quando o Engenheiro Teodoro Sampaio projetou e construiu o primeiro sistema de distribuição de água na cidade. A população saiu às ruas indignada, dizendo que não beberiaágua de cano.
	Reações desta natureza, freqüentemente, são decorrentes da revolta contra a tarifa a ser paga. Estas tarifas parece ser altas quando se pensa que a água é oferecida pela natureza e o único trabalho é fazer chega-la ao cano, porém, esta tarefa não é tão fácil assim, principalmente se considerarmos que os nossos mananciais, via de regra, estão cheios de impurezas, - muitas vezes pelo descaso que se tem, tanto com os recursos hídricos quanto com os recursos naturais de modo geral - o que torna difícil a transformação desta água em potável. 
	A melhor maneira de se utilizar as reservas hídricas, de forma a manter o equilíbrio ambiental e sem causar conflitos é lançar mão do Planejamento. Planejar, para aproveitar os recursos hídricos de forma total, sem conflitos nem incompatibilidade.
	É certo que usar do artifício do represamento é uma das maneiras eficazes encontradas para disciplinar os rios, transformando-os em lagos que enchem na época das chuvas, armazenando a água que será usada no período das secas. Dessa forma ter-se-ia vazões regularizadas durante todo o ano, e evitaria inundações, garantiria o abastecimento e a irrigação e ainda o funcionamento das turbinas de hidrelétricas, durante todo o período de seca.
	Porém, nem sempre estas medidas são tomadas com o cuidado de um planejamento criterioso, que garantiria o uso racional optando por grandes quedas ou grandes volumes d’água, para gerar grandes quantidades de energia. 
Como o armazenamento de grandes volumes d’água exige grandes áreas de terra, muitas vezes áreas imensas de solo são inundadas - afogando e destruindo massas consideráveis de material vegetal, aniquilando animais e espécies nativas, chegando mesmo a influir no clima da região - para produzir quantidades irrisórias de energia, numa demonstração clara da falta de planejamento, que leve em conta a situação geográfica e ecológica, assim como os diversos usos possíveis da água, para que o seu aproveitamento seja máximo. 
A barragem de Balbina, construída no Estado do Amazonas, é um caso típico da falta de planejamento. Para sua construção foram inundadas 2.400 Km2 de florestas, formando um lago de apenas 7 metros de profundidade, que hoje transformou-se num pântano, em que proliferam mosquitos.
1.11- O Ciclo do Carbono
	O ciclo do carbono é tão importante quanto o ciclo da água, para os seres vivos, uma vez que o carbono é utilizado pelos vegetais fotossintetizantes na produção de compostos orgânicos.
	O carbono ocorre na natureza em diversas formas, na atmosfera ocorre na forma de dióxido de carbono.
	Na fotossíntese o carbono do CO2 é reduzido pelo H2 da água, surgindo desta redução primeiro os carboidratos, depois os lipídeos e protídeos, de estrutura mais complexas que os primeiros.
	Os animais herbívoros recebem das plantas estes compostos orgânicos e sintetizam, a partir deles, outros, o mesmo acontece com os carnívoros que se alimentam destes herbívoros, e com os carnívoros maiores.
	Plantas e animais, ao morrerem, são decompostos e o carbono retorna ao meio. Os mecanismos que permitem este retorno são os processos oxidativos (respiração aeróbia e anaeróbia).
1.12 - O Ciclo do Nitrogênio
	O nitrogênio pode ser encontrado de diversas formas, na atmosfera pode ser encontrado em forma livre, nos organismos de plantas e animais, em forma de compostos orgânicos e no solo ou na água em forma de nitrogênio inorgânico, resultantes geralmente de decomposição de rochas.
	O nitrogênio atmosférico é oxidado a nitritos e nitratos durante as tempestades, estes compostos são solúveis em água, e os nitratos podem ser absorvidos pelas plantas. As plantas podem ainda absorver os nitratos oriundos da decomposição de rochas.
	Existem bactérias que são encontradas em raízes e nodosidades das plantas, que também são capazes de fixar o nitrogênio da atmosfera, cedendo às plantas parte dele. os animais que se alimentam destas plantas incorporam o nitrogênio em seu organismo, na forma de proteínas específicas.
	A decomposição de plantas ou de animais ou a decomposição de produtos de excreção nitrogenados dos seres vivos, como a uréia e o ácido úrico, produz amônia, que é convertido a nitritos e estes a nitratos por grupos específicos de bactérias, os nitratos voltam assim ao ponto de partida.
	Estes nitratos no entanto, também através de bactérias específicas, podem ser convertidos a nitrogênio gasoso que retorna à atmosfera, fechando o ciclo.
1.13 - O Ciclo do Oxigênio
	O oxigênio está presente em praticamente todos os ciclos que mencionou-se até aqui. A atmosfera terrestre é constituída aproximadamente de 20% de oxigênio. As águas salgadas e doces contêm proporções variáveis de oxigênio que são função de diversos fatores como, pressão e temperatura.
	O oxigênio é retirado e devolvido continuamente ao meio, mostrando a importância deste elemento para o mundo vivo. 
1.14 - O Fluxo de Energia num Ecossistema
	Os seres vivos produtores de um ecossistema captam energia da luz solar, que é consumida na redução do CO2, molécula simples que contém pouca energia, à carboidrato, molécula complexa com muita energia. 
	Os produtos são consumidos pelos herbívoros que incorporam parte da matéria ingerida em seu organismo, eliminando outra parte para o ambiente.
	Os herbívoros são consumidos por pequenos carnívoros e por onívoros e ambos são consumidos pelos carnívoros maiores.
	Há sempre perda de matéria cada vez que um ser vivo consome outro, porque não incorpora tudo, mas devolve uma parte do que ingeriu geralmente transformada.
	Como a matéria orgânica foi construída com consumo de energia, estas perdas de matéria representam perdas correspondentes de energia.
	À medida que se sobe numa pirâmide alimentar, vai havendo perda de massa dos seres vivos, a qual chamamos de biomassa. ao mesmo tempo vai havendo uma perda de energia para o meio em que tal pirâmide se encontra.
	Fluxo de energia é pois, esse trânsito de energia entre os diferentes elos de uma cadeia alimentar, ou entre os diferentes níveis tróficos de uma pirâmide alimentar.
	Este fluxo de energia nos diferentes ecossistemas é uma via de duas mãos. entra energia pela fotossíntese e ao mesmo tempo sai energia pela respiração.
1.15 - Balanço entre Produção e Consumo
	O processo principal, responsável pela produção de matéria orgânica na terra, a partir de compostos inorgânicos é a fotossíntese.
	A decomposição se faz pelos diversos tipos de respiração, aeróbia ou anaeróbia, entre os quais se incluem muitos processos de fermentação.
	Estes dois principais processos de construção e de destruição da matéria, orgânica podem ser apresentados em uma única representação química.
6CO2 + 6H20 C6H12O6 + 6O2
	1.16 - Que fatos podem-se verificar daí?
A fotossíntese, realizada pelas plantas e por diversos organismos clorofilados é o maior provedor de oxigênio da natureza, que compensa de um modo geral, numa reação inversa, o consumo de oxigênio e a produção de gás carbônico pela respiração de animais e plantas. A fotossíntese também compensa o consumo de oxigênio e a produção de gás carbônico pela queima de álcool ou lenha, se houver nova plantação de cana e o reflorestamento, porém, a emissão de CO2, para a natureza, pela combustão do petróleo e de carvão mineral é um processo irreversível sem reação inversa de compensação.
2 - CONTROLE DE POLUIÇÃO DAS ÁGUAS
As diretrizes estabelecidas pelo congresso americano em julho de 1972 não foram alcançadas com a velocidade que se esperava, devido sobretudo à crise econômico-financeira de 1973, nos grandes países do mundo, imposta pelos países membros da OPEP (choque do petróleo).
O que pode-se inferir disto é que, os problemas de poluição não são resolvidos pela simples aprovação de leis, que via de regra são feitas em gabinetes, por pessoas que normalmente têm pouco conhecimento dos processos industriais, e ainda corroborada pela falta de interesse dos responsáveis por estes processos em arcar com os altos custos do tratamento.Analisando as diretrizes desta lei americana verifica-se que nela está embutida a indicação de “poluição zero”, de difícil alcance do ponto de vista de sua exeqüibilidade, uma vez que, só seria alcançada se fosse implementada com custos de tratamento muito elevados (Figura 1), ou seja, só seria justificável sua implantação na eliminação de poluentes prioritários.
	Esta lei no entanto, abriu novas perspectivas dentro da área de tratamento de despejos para o controle ambiental, mudando o enfoque conhecido como “tratamento-fim-de-tubulação (“end-of-pipe”), para o “projeto integrado de tratamento” (‘in plant”), que passa pela possível reformulação de todo o processo, com vistas à sua otimização e a conseqüente MINIMIZAÇÃO DOS DESPEJOS HÍDRICOS gerados na planta industrial.
Figura 1 - CUSTOS X NÍVEL DE POLUIÇÃO
FONTE: Prof. Carlos Russo
CURVA A: Custos Associados à Degradação Ambiental
CURVA B: Custos Associados ao Controle de Poluição
CURVA C: Custos Totais
	O novo conceito de tratamento de despejos ligado à MINIMIZAÇÃO DOS DESPEJOS, foi fruto da crescente conscientização da população sobre a qualidade do ambiente, que vai refletir na adoção de leis que de forma gradual vêm induzindo as industrias à adoção de procedimentos que minimizem os seus despejos.
	Segundo o prof. Carlos Russo (COPPE) via de regra, o termo ‘minimização de despejos” é confundido, equivocadamente, com o termo “tecnologia limpa” segundo o professor “tecnologia limpa” corresponde ao avanço tecnológico no desenvolvimento de processo, através do qual a partir de uma dada matéria-prima, apenas produtos comercialmente utilizáveis podem ser produzidos.
	No entanto, tanto o termo “minimização de despejos” como o termo “tecnologia limpa” estão calcados na pré - suposição de “poluição zero”.
	GODBLAT et al. (1993), conceituam em seu artigo “Zero Discharge: What, Why and How?” os termos “poluição zero” e “minimização de despejos”, associados aos conceitos de “processos ideais” e “processos reais”, que resumidamente podem ser explicados através da Figura 1.
	O mínimo da curva de custos totais corresponde a um nível “ótimo” de poluição no qual os custos de controle e degradação se igualam. essa circunstância se contrapõe ao nível de poluição zero.
2.1 - Processos ideais versus processos reais
	O processo ideal pode ser definido como aquele em que todas as matérias primas nele utilizadas são integralmente convertidas em produtos utilizáveis, como produtos finais ou como produtos intermediários. Além disso todos os insumos básicos, chamados auxiliares de processamento, tais como: catalisadores, solventes, água de refrigeração e de processo, etc., são integralmente recuperados e levados às suas respectivas qualidades originais, podendo ser reintegrados ao processo.
Auxiliares de processamento rwegfegprocessamentoprocessamento
Processo Ideal
Produtos
Reagentes
(Despejos))
		 onclui-se 
Conclui-se então que no processo ideal (“poluição zero”) há implicação de que: 
TODOS OS REAGENTES SEJAM INTEGRALMENTE CONVERTIDOS EM PRODUTOS UTILIZÁVEIS
TODOS OS AUXILIARES DE PROCESSAMENTO SEJAM INTEGRALMENTE REUTILIZADOS
NÃO HAJA GERAÇÃO DE DESPEJOS
	Do exposto pode-se notar que o processo ideal ou não existe, ou é economicamente inviável.
	No processo real a matéria prima é processada através da utilização de auxiliares de processamento para gerar produtos. Uma pequena fração da matéria prima é perdida na forma de despejos em estado fluido (vapor, gás ou líquido), ou ainda através da degradação dos auxiliares de processamento, os quais integrarão a corrente de despejo final da unidade.
Auxiliares de processamento
Reagentes
Processo Real
Produtos
Despejos
2.2 - Definição do termo poluição zero
	
No contexto do processo ideal nenhum despejo é gerado ou seja, “poluição zero” implica em que todas as substâncias reagentes e insumos são transformados em produtos utilizáveis.
	No contexto de um processo real existem diversas definições:
É A ELIMINAÇÃO PRIORITÁRIA DE CERTOS TIPOS DE POLUENTES OU DE COMPOSTOS TÓXICOS DA CORRENTE DE DESPEJO HÍDRICO DE UMA CERTA UNIDADE DE PROCESSAMENTO.
	Esses poluentes, denominados prioritários, são incluídos na categoria dos compostos banidos ou com limites de concentração regulados por legislação ambiental.
	A eliminação é mandatária, uma vez que estes poluentes tendem a se concentrar ao longo da cadeia alimentar.
SIGNIFICA QUE NENHUMA CORRENTE DE DESPEJO SERÁ DESCARTADA NO CORPO RECEPTOR. TODOS OS POLUENTES CONTIDOS NAS ÁGUAS RESIDUÁRIAS APÓS SOFREREM ADEQUADO TRATAMENTO SEQÜÊNCIAL EM NÍVEL PRIMÁRIO SECUNDÁRIO OU TERCIÁRIO PODEM SER CONVERTIDOS EM DESPEJOS SÓLIDOS POR PROCESSOS DE EVAPORAÇÃO. O GRANDE PROBLEMA É A GERAÇÃO DE POLUENTES GASOSOS.
UMA DEFINIÇÃO MAIS GENÉRICA INCORPORA PARTE DAS DEFINIÇÕES ANTERIORES. SIGNIFICA QUE EMBORA AS VAZÕES DO DESPEJO DESCARTADO SEJAM ELEVADAS, OS POLUENTES NELE CONTIDOS SÃO RELATIVAMENTE SEGUROS.
	O que se tem que pensar em se tratando de um processo real, e que é função e um desafio para o Engenheiro de Processos, é no desenvolvimento de processos que busquem a minimização dos despejos, uma vez que a eliminação pura e simples das correntes de despejo é um paradigma.
	Na implantação de um programa de minimização de despejos, o Engenheiro deve iniciar selecionando as matérias primas e os reagentes que possibilitem a redução do volume e a geração de produtos indesejáveis, melhorando a eficiência de todas as etapas do processo.
	2.3 - Programa de minimização de despejos
	O conceito de minimização de despejos é bastante antigo, talvez sua aplicação primeira date de 1973, porém, só mais recentemente adiqüiriu uma importância no controle de poluição, sobretudo depois de um encontro realizado em 1993, pela Aiche (American Institute of Chemical Engineers) sobre engenharia e desenvolvimento sustentável.
	Neste encontro, no qual foram apresentados mais de 100 trabalhos sobre minimização de despejos, ficou claro que o desenvolvimento sustentável está intimamente ligado à minimização de despejos.
	As novas leis ambientais agora também se preocupam em evitar ou minimizar a poluição em sua fonte, ao invés de se limitar, como é de praxe, a atenuar seus efeitos no ambiente.
	Com a minimização dos despejos as indústrias usariam de maneira mais eficiente a matéria prima, alcançariam níveis de produção compatíveis com a proteção ambiental, ao mesmo tempo que reduziriam os gastos com o tratamento de despejos.
	Hoje em dia a geração de despejos não controlada é vista não mais só como um problema ambiental, e sim também como um processo ineficiente.
	Minimização de despejos então, significa aumentar a produtividade, reduzir custos operacionais e com isso aumentar a margem de lucro.
	Segundo DELCAMBRE (1988) os objetivos básicos de um programa de minimização de despejos são:
REDUZIR A QUANTIDADE DE DESPEJOS LANÇADOS AO AMBIENTE;
RECUPERAR, DAS DIFERENTES CORRENTES QUE COMPÕEM OS DESPEJOS DE UMA PLANTA DE PROCESSAMENTO INDUSTRIAL, PRODUTOS COMERCIALMENTE ATRAENTES;
DESENVOLVER PROJETOS E PROCESSOS COM VISTAS À REDUÇÃO DE DESPEJOS,
TER RETORNO RÁPIDO DOS INVESTIMENTOS RELACIONADOS À IMPLANTAÇÃO DO PROGRAMA.
	A redução de despejos na fonte se constitui na melhor e mais racional estratégia de minimização de despejos, simplesmente porque não pode haver impacto ambiental de um despejo que não foi gerado.
	Pode ser a seguinte a hierarquia de procedimentos para o gerenciamento de resíduos.
REDUÇÃO DOS DESPEJOS NA FONTE
RECICLO/RECUPERAÇÃO/UTILIZAÇÃO E REUTILIZAÇÃO DOS DESPEJOS
TRATAMENTO E DISPOSIÇÃO FINAL DO DESPEJO
REDUÇÃO DOS DESPEJOS NA FONTE
		Conseguida através de procedimentos criteriosos. Uma ou mais das medidas abaixo podem ser aplicadas:
ALTERAÇÃO DO PRODUTO: ATRAVÉS DA SUBSTITUIÇÃO OU ALTERAÇÃO DA SUA COMPOSIÇÃO;
CONTROLE NAS FONTES: ALTERAÇÃO DAS MATÉRIAS PRIMAS OU DO PROCESSO;
CONSERVAÇÃO DA ÁGUA CONTAMINADA: OPERAÇÃO DA PLANTA EM CIRCUITO FECHADO;
SEGREGAÇÃO DAS CORRENTES DE DESPEJO,
ALTERAÇÕESNO PROCESSO: MÉTODO MAIS EFETIVO PORÉM, MAIS DIFÍCIL.
RECICLO: RECUPERAÇÃO/REUTILIZAÇÃO
	Visam a reutilização do despejo, devendo ser adotados após esgotadas as oportunidades de redução.
	No que se refere ao reciclo deve-se saber se algum despejo contém algum produto passível de ser recuperado ou reciclado.
	De acordo com FROMM et al. (1987) e DRABKIN et al. (1988) o programa de minimização de despejos é básicamente constituido de 5 etapas 
(a) INICIAÇÃO: FORMAR O GRUPO DE AUDITORIA
DEFINIR OBJETIVOS
ORGANIZAR O GRUPO SEGUNDO OS OBJETIVOS
(b) PRÉ - AUDITORIA: PREPARAR O GRUPO PARA A AUDITORIA
ESCOLHER AS CORRENTES DO PROCESSO
QUE IRÃO COMPOR O PROGRAMA
AUDITORIA: INSPECIONAR A PLANTA
ESTABELECER AS OPÇÕES PARA A REDUÇÃO DOS DESPEJOS
AVALIAR AS OPÇÕES ESTABELECIDAS
SELECIONAR AS OPÇÕES EXEQÜIVEIS
PÓS - AUDITORIA: ANALISAR AS OPÇÕES EXEQÜÍVEIS
DO PONTO DE VISTA TÉCNICO
EXECUÇÃO: PROJETAR
“START - UP”
MONITORAR O DESEMPENHO DO PROGRAMA
	Um programa destes só terá chances de êxito se contar com a participação de todas as pessoas envolvidas no processo, e não só daquelas envolvidas com as questões ambientais.
3 - NOÇÕES SOBRE A QUALIDADE DA ÁGUA
	
Segundo VON SPERLING (1996) a qualidade da água é resultante de fenômenos naturais e da atuação do homem, em outras palavras a qualidade da água é função do uso e da ocupação do solo na bacia hidrográfica, devido aos seguintes fatores:
CONDIÇÕES NATURAIS: A qualidade das águas é afetada pelo escoamento superficial e pela infiltração do solo, devido a precipitação atmosférica.
INTERFERÊNCIA DO HOMEM: A forma como o homem ocupa o solo tem uma implicação direta na qualidade da água, quer seja na geração de resíduos domésticos ou industriais, quer seja na aplicação de defensivos agrícolas no solo, contribuindo para a introdução de compostos na água.
	Além da qualidade da água existente, pode-se falar também na qualidade desejável para uma água que é função do uso previsto para a mesma.
	É portanto, de fundamental importância o estudo da qualidade da água para se caracterizar as conseqüências de uma determinada atividade poluidora, ou ainda para se estabelecer os meios para que se satisfaça determinado uso da água.
3.1 - A água na natureza
	
3.1.1 - Distribuição da água na terra:
	É sabido que água é fundamental para a manutenção da vida do planeta, neste sentido é também de fundamental importância saber como está distribuída e como circula no mesmo.
	Estão disponíveis na terra 1,36x1018 m3 de água, assim distribuídos:
	ÁGUA DO MAR:--------------97,0%
	GELEIRAS:---------------------2,2%
	ÁGUA DOCE:---------------- 0,8%
 ÁGUA SUBTERRÂNEA: ----97%
 ÁGUA SUPERFICIAL:--------3%
TOTAL--------------------------100%
	Estes números mostram a importância de se preservar os recursos hídricos existentes no nosso planeta, uma vez que, somente uma pequena fração destes recursos está disponível para ser utilizada mais facilmente, devendo-se portanto evitar sua contaminação.
3.2 - O ciclo hidrológico
	De uma maneira simplificada pode-se dizer que são os seguintes os mecanismos de transferência da água na natureza:
PRECIPITAÇÃO
ESCOAMENTO SUPERFICIAL
INFILTRAÇÃO
EVAPORAÇÃO
TRANSPIRAÇÃO
3.3 - Os usos da água
	Os principais usos da água são os seguintes:
ABASTECIMENTO DOMÉSTICO
ABASTECIMENTO INDUSTRIAL
IRRIGAÇÃO
DESSEDENTAÇÃO DE ANIMAIS
AQUICULTURA
PRESERVAÇÃO DA FLORA E DA FAUNA
RECREAÇÃO E LAZER
HARMONIA PAISAGÍSTICA
GERAÇÃO DE ENERGIA ELÉTRICA
NAVEGAÇÃO
DILUIÇÃO DE DESPEJOS
	Os quatro primeiros usos implicam na retirada da água das coleções hídricas, e os dois primeiros estão associados a um tratamento prévio da água. o primeiro é considerado o uso mais nobre da água. o último é considerado o uso menos nobre.
3.4 - Impurezas encontradas na água
	As principais impurezas encontradas na água lhe impõem características FÍSICAS QUÍMICAS E BIOLÓGICAS. Características estas que podem estar traduzidas na forma de PARÂMETROS DE QUALIDADE DA ÁGUA.
	As principais características da água são
CARACTERÍSTICAS FÍSICAS: associadas sobretudo aos sólidos presentes, que podem ser EM SUSPENSÃO, COLOIDAIS OU DISSOLVIDOS.
CARACTERÍSTICAS QUÍMICAS: associadas às presenças de MATÉRIA ORGÂNICA OU INORGÂNICA
CARACTERÍSTICAS BIOLÓGICAS: associadas às presenças de SERES DE SERES VIVOS OU MORTOS. dentre os seres vivos têm-se os pertencentes aos reinos ANIMAL, VEGETAL e os PROTISTAS.
Impurezas
Características
Físicas
Características
Químicas
Características
Biológicas
Impurezas
Características
Químicas
Características
Físicas
Sólidos Gases Inorgânicos Orgânicos
 suspensos Ser Vivo
 colóidais Matéria em Animais
 Dissolvidos Decomposição Vegetais
 Protistas
Os sólidos presentes na água podem ser classificados pelo TAMANHO e por suas CARACTERÍSTICAS QUÍMICAS.
Classificação por Tamanho
	Esta divisão é sobretudo uma divisão prática. as partículas de menor dimensão, capazes de passar por papel de filtro de tamanho especificado, correspondem aos sólidos dissolvidos. as partículas de maior dimensão retidas pelo papel de filtro são chamadas de sólidos em suspensão. na verdade deveria se falar de sólidos filtráveis e não filtráveis. Existem ainda os sólidos que estão em uma faixa intermediária de tamanho que são os chamados sólidos colóidais. como estes sólidos são muito difíceis de serem identificados a maior parte deles entra na classificação como sólidos dissolvidos.
Classificação pelas Características Químicas
	Ao se submeter os sólidos a uma temperatura de 550oC a fração que é volatilizada é chamada de fração orgânica, enquanto que a fração que permanece após a combustão é chamada de fração inorgânica. deste modo, pode-se dizer que os sólidos voláteis representam uma estimativa da matéria orgânica e os sólidos não voláteis, também chamados de fixos, representam a matéria inorgânica.
3.5 - Parâmetros de qualidade da água
		3.5.1 - Parâmetros Físicos
COR
TURBIDEZ
SABOR E ODOR
TEMPERATURA
		3.5.2 - Parâmetros Químicos
pH
ALCALINIDADE
ACIDEZ
DUREZA
FERRO E MANGANÊS
CLORETOS
NITROGÊNIO
FÓSFORO
OXIGÊNIO DISSOLVIDO
MATÉRIA ORGÂNICA
MICROPOLUENTES ORGÂNICOS
MICROPOLUENTES INORGÂNICOS 
		3.5.3 - Parâmetros Biológicos
TODOS LIGADOS À PRESENÇA DE MICRORGANISMOS.
3.6 - Poluição das águas
	Conceitos Básicos
	De acordo com VON SPERLING (1996) poluição de águas “é a adição de substâncias ou de forma de energia que, direta ou indiretamente, alterem a natureza do corpo d’água, de uma maneira tal que prejudique os legítimos usos que dele são feitos”.
	Ainda segundo VON SPERLING (1996) existem duas formas em que a fonte de poluentes pode atingir um determinado corpo receptor.
POLUIÇÃO PONTUAL
POLUIÇÃO DIFUSA
	Na poluição pontual os poluentes atingem o corpo receptor de forma concentrada no espaço, como é o caso da descarga de um emissário submarino.
	Na poluição difusa, os poluentes entram no corpo receptor distribuídos ao longo de parte da sua extensão, como no caso da poluição pela drenagem pluvial natural.
	Vamos nos centralizar no controle da poluição pontual através do tratamento das águas residuárias urbanas e industriais.
3.7 - Quantificação da carga poluidora
	A eficácia das medidas de controle e a avaliação do impacto da poluição são feitas através da quantificação das cargas poluidoras afluentes ao corpo receptor. para isso são necessários levantamentos de campo na área de estudo tais como, amostragem dos poluentes, análises de laboratório. medição de vazões e outros. é de grandeimportância estes levantamentos, porém, se não for possível faze-lo deve-se ir em busca de dados na literatura.
	Segundo MOTA (1988) são as seguintes as informações típicas que devem ser obtidas em um levantamento sanitário de uma bacia hidrográfica:
dados físicos da bacia: aspectos geológicos; precipitação pluviométrica e escoamento temperatura; evaporação etc.
informações sobre o comportamento hidráulico dos corpos receptores: vazões máxima, média e mínima; volumes de reservatórios; velocidades de escoamento; profundidade, etc.
uso e ocupação do solo: tipos; densidades; perspectivas de crescimento; distritos industriais.
caracterização sócio-econômica: demografia; desenvolvimento econômico, etc.
usos múltiplos das águas.
requisitos de qualidade para o corpo receptor.
localização quantificação e tendência das principais fontes poluidoras.
diagnóstico da situação atual da qualidade da água: características físicas, químicas e biológicas.
		São três as principais fontes poluentes:
			ESGOTOS DOMÉSTICOS
			DESPEJOS INDUSTRIAIS
			ESCOAMENTO SUPERFICIAL
	Os poluentes devem ser quantificados em termos de sua carga poluidora, que é expressa em termos da massa por unidade de tempo. o calculo da carga poluidora deve ser calculada por um dos seguintes métodos, dependendo do tipo de problema em análise. da origem do poluente e dos dados disponíveis. é recomendado que se trabalhe em unidades consistentes, como por exemplo kg/d.
Carga = concentração x vazão (esgotos domésticos1 e industriais2)
Carga = contribuição per capta x população (1)
Carga = contribuição por unidade produzida x produção (2)
Carga = contribuição por unidade de área x área (drenagem superficial).
3.8 - Características das águas residuárias
	Esgotos Domésticos
CARACTERIZAÇÃO DA QUANTIDADE DE ESGOTO
VAZÃO DOMÉSTICA
	Por vazão doméstica entende-se a vazão oriunda dos domicílios, assim como aquelas das atividades comerciais e institucionais que compõem uma determinada localidade. pode existir ainda valores de fontes pontuais, que devem ser computados separadamente e acrescentados aos valores globais.
	De um modo geral a vazão doméstica do esgoto é calculada com base na vazão de água da respectiva localidade, que é calculada em função da população de projeto e de um valor atribuído para o consumo médio diário de água de uma pessoa, denominado quota per capta (QPC).
	Para o projeto de uma estação de tratamento não basta considerar apenas a vazão média, é necessário também a quantificação dos valores mínimos e máximos de vazão, por razões hidráulicas e de processo.
	Consumo Médio de Água
	Este consumo influencia diretamente a vazão doméstica. a tabela a seguir apresenta valores da quota per capta para populações com ligações domiciliares.
	Porte da Comunidade
	Faixa da População (hab)
	Consumo Per Capta (L/hab.d)
	Povoado Rural
	<5.000
	90-140
	Vila
	5.000-10.000
	100-160
	Pequena Localidade
	10.000-50.000
	110-180
	Cidade Média
	50.000-250.000
	120-220
	Cidade Grande
	>250.000
	151-300
Fonte: Von Sperling (1996)
	Os dados apresentados na tabela acima são valores médios, que estão sujeitos a variações ligadas à mais diversos fatores, tais como, clima, condições econômicas da comunidade, grau de industrialização, custo da água, etc.
	Vazão Média de Esgoto
	Geralmente a produção de esgoto corresponde aproximadamente ao consumo de água. porém, a fração de esgotos afluente à rede de coleta pode variar, uma vez que, parte da água consumida pode ser incorporada à rede pluvial. Outros fatores que podem influenciar são: ligações clandestinas dos esgotos à rede pluvial, ligações indevidas dos esgotos à rede pluvial e infiltração.
	É chamado de coeficiente de retorno a fração de água fornecida afluente à rede de coleta na forma de esgoto (r = vazão de esgoto/vazão de água). os valores de r variam de 60% a 100%. um valor usualmente adotado é 80% (r = 0,8).
		O cálculo da vazão doméstica média de esgoto é dado por:
Qdmed = Pop . QPC . R (m3/d)
1000
Qdmed = Pop . QPC . R (l/s)
86400
em que, Qdmed = vazão doméstica média de esgotos (m3/d)
 QPC = quota per capta de água (ver quadro 1.1)
 R = coeficiente de retorno de esgoto/água
	Variações de Vazão, Vazões Máximas e Mínimas
	O consumo de água e a geração de esgoto de uma determinada localidade varia ao longo do dia (variações horárias), ao longo da semana (variações diárias) e ao longo do ano (variações sazonais).
	A CETESB e a maioria dos órgãos adota os seguintes coeficientes de variação da vazão média de água.
K1 = 1,2 (coeficiente do dia de maior consumo)
K2 = 1,5 (coeficiente da hora de maior consumo)
K3 = 0,5 (coeficiente da hora de menor consumo)
	As vazões máxima e mínima de água podem ser dadas pelas seguintes relações (Von Sperling,1996):
	Qdmax = Qdmed . K1 . K2
	Qdmin = Qdmed . K3
	Esgotos Industriais
CARACTERIZAÇÃO DA QUANTIDADE
VAZÕES INDUSTRIAIS
	As vazões industriais de esgotos dependem sobretudo, do tipo e porte da indústria, processo, grau de reciclagem, existência de pré - tratamento, etc. as vazões dos esgotos industriais são portanto, bem diferentes mesmo de duas indústrias que fabriquem o mesmo produto.
	Se na localidade de implantação da ETE houver indústrias que contribuam com uma carga razoável à rede pública, é necessário o conhecimento das vazões, uma vez que estes despejos podem exercer uma grande influência no projeto e operação da ETE.
	Com relação ao consumo de água e geração de despejos as seguintes informações são importantes:
CONSUMO DE ÁGUA
Volume Consumido Total (Por Dia ou Mês)
Volume Consumido Nas Diversas Etapas Do Processo
recirculações internas
Origem Da Água (Abastecimento Público, Poços etc.)
Eventuais Sistemas De Tratamento De Água Internos
PRODUÇÃO DE DESPEJOS
Vazão Total
Número De Pontos De Lançamento (Com a Etapa do Processo Associado a Cada Ponto)
Regime De Lançamento (Contínuo ou Intermitente; Duração e Freqüência) de Cada Ponto de Lançamento
Pontos de Lançamento (Rede Coletora, Curso D’água)
Eventual Mistura dos Despejos com Esgotos Domésticos e Águas Pluviais 
	Caso não se disponha de Informações específicas o quadro que será distribuído pode servir como orientação inicial.
3.9 - Caracterização da qualidade dos esgotos
	Parâmetros de Qualidade
	De um modo geral os esgotos domésticos contêm aproximadamente 99,9% de água. a fração restante inclui os sólidos orgânicos e inorgânicos, suspensos e dissolvidos, além dos microrganismos. é devido a essa fração de 0,1% que os esgotos devem ser tratados.
	É muito difícil caracterizar composto a composto um determinado esgoto, por esta razão para o projeto de uma estação de tratamento lança-se mão da utilização de parâmetros indiretos que indicam o potencial poluidor do resíduo em questão. estes parâmetros definem a qualidade do esgoto e são subdivididos em três categorias a saber: FÍSICOS, QUÍMICOS E BIOLÓGICOS.
	
Principais Parâmetros
	Para esgotos predominantemente domésticos os parâmetros principais que merecem destaque devido a sua importância são:
SÓLIDOS
INDICADORES DE MATÉRIA ORGÂNICA
NITROGÊNIO
FÓSFORO
INDICADORES DE CONTAMINAÇÃO FECAL
	Sólidos
	Com exceção dos gases dissolvidos todos os contaminantes da água contribuem para a carga de sólidos. estes sólidos podem ser classificados da seguinte maneira: (a) de acordo com seu tamanho e estado; (b) de acordo com suas características químicas e (c) de acordo com sua decantabilidade.
	Classificação por Tamanho e Estado
SÓLIDOS EM SUSPENSÃO
SÓLIDOS DISSOLVIDOS
	Classificação pelas Características Químicas
SÓLIDOS VOLÁTEIS
SÓLIDOS FIXOS
	Classificação pela Decantabilidade
SÓLIDOS EM SUSPENSÃO SEDIMENTÁVEIS
SÓLIDOS EM SUSPENSÃO NÃO SEDIMENTÁVEIS
	Matéria Orgânica Carbonácea
	A matéria orgânica presente nos esgotos é responsável pelo principal problema de poluição das águas, que é o consumo de oxigênio dissolvido consumido pelos microrganismos nos seus processosmetabólicos de utilização e estabilização da matéria orgânica. É a seguinte a constituição da matéria orgânica carbonácea:
COMPOSTOS DE PROTEÍNAS (~ 40%)
CARBOIDRATOS (~ 25 a 50%)
GORDURA E ÓLEOS (~10%)
URÉIA, SURFACTANTES, FENÓIS, PESTICIDAS E OUTROS
	A matéria orgânica carbonácea (baseada no carbono orgânico) presente nos esgotos divide-se nas seguintes frações: (a) classificação quanto à forma e tamanho: em suspensão ou particulada e dissolvida ou solúvel; (b) classificação quanto a biodegradabilidade: inerte e biodegradável.
	Não é possível determinar em laboratório todos os componentes da matéria orgânica carbonácea, sobretudo devido à diversidade de forma e compostos em que a mesma pode se apresentar. Em geral são utilizados métodos diretos ou indiretos para a determinação da matéria orgânica:
	Métodos Indiretos: Medição do Consumo de Oxigênio
DEMANDA BIOQUÍMICA DE OXIGÊNIO (DBO) OU 5
DEMANDA ÚLTIMA DE OXIGÊNIO (DBOU) OU 20
DEMANDA QUÍMICA DE OXIGÊNIO (DQO)
	Métodos Diretos: Medição do Carbono Orgânico
CARBONO ORGÂNICO TOTAL (COT)
DEMANDA BIOQUÍMICA DE OXIGÊNIO
	Quando um determinado resíduo é lançado no corpo receptor um dos primeiros efeitos que se observa, é a diminuição da concentração de oxigênio dissolvido. Se este resíduo é tratado através de tratamentos biológicos aeróbios é necessário o adequado fornecimento de oxigênio para que as bactérias processem a degradação da matéria orgânica.
	Destes fatos surgiu a idéia de se medir a força poluente dos despejos pela sua real necessidade de oxigênio, o que significa dizer uma quantificação indireta da potencialidade da geração do impacto e não a medida direta do impacto.
	Esta medida poderia ser feita através da estequiometria da reação de oxidação da matéria orgânica desde que conhecida a composição desta. No caso de esgotos domésticos e/ou industriais isto se torna um problema, devido à heterogeneidade de suas composições.
	Como uma maneira de solucionar tais problemas foi então proposto medir, em laboratório, o consumo de oxigênio que um determinado volume padronizado de resíduo demanda em um período de tempo pré-fixado. Desta maneira foi introduzido o conceito de Demanda Bioquímica de Oxigênio (DBO), que nada mais é que a quantidade de oxigênio requerida para estabilizar, através de processos bioquímicos, a matéria orgânica carbonácea. sendo portanto, uma indicação indireta do carbono orgânico biodegradável.
	A estabilização completa da matéria orgânica carbonácea dura cerca de vinte (20) dias, para se padronizar os resultados e para se ter um número maior de dados para comparação as seguintes padronizações devem ser adotadas:
proceder a análise no 5o dia (para esgotos domésticos típicos este consumo do 5o dia pode ser relacionado com o consumo total final).
o teste deve ser efetuado à temperatura de 20oc , uma vez que temperaturas diferentes interferem no metabolismo bacteriano, alterando a DBO de 5 dias e a DBO última.
	A DBO padrão é então a DBO5 realizada à 20oc. em geral na literatura, quando se fala em DBO está se falando em DBO5 à 20oc. 
	Em resumo o teste da DBO pode ser explicado simplificadamente da seguinte maneira: coleta-se uma amostra, faz-se a medida da concentração de oxigênio dissolvido (OD). cinco dias após, com a amostra mantida em um frasco fechado e incubado a 20oc , determina-se a nova concentração, já reduzida devido ao consumo de oxigênio durante o período. A diferença entre o teor de OD no dia zero e no 5o dia representa o oxigênio consumido para a oxidação da matéria orgânica, sendo portanto a DBO5
	Para resíduos com alta concentração em matéria orgânica, como é o caso dos esgotos domésticos, algumas adaptações têm que ser feitas, uma vez que o oxigênio pode ser consumido totalmente antes dos 5 dias. Faz-se necessário então a realização de diluições para reduzir a concentração de matéria orgânica, possibilitando que o consumo em 5 dias seja numericamente inferior ao oxigênio disponível na amostra. 
	As principais vantagens do teste da DBO, que ainda não conseguiram ser igualados por nenhum outro teste são:
A INDICAÇÃO APROXIMADA DA FRAÇÃO BIODEGRADÁVEL DO DESPEJO
A INDICAÇÃO DA TAXA DE DEGRADAÇÃO DO DESPEJO
A INDICAÇÃO DA TAXA DE CONSUMO DE OXIGÊNIO EM FUNÇÃO DO TEMPO
A DETERMINAÇÃO APROXIMADA DA QUANTIDADE DE OXIGÊNIO REQUERIDA PRA A ESTABILIZAÇÃO BIOLÓGICA DA MATÉRIA ORGÂNICA PRESENTE.
		
Este teste apresenta no entanto, algumas limitações a saber:
SE OS MICRORGANISMOS PRESENTES NÃO ESTIVEREM ADAPTADOS AO DESPEJO, AS CONCENTRAÇÕES DE DBO DETERMINADAS NÃO SÃO VERDADEIRAS E NA MAIORIA DAS VEZES SÃO FALSOS VALORES BAIXOS
OS MICRORGANISMOS PODEM SER INIBIDOS OU DESTRUIDOS POR METAIS PESADOS E OUTRAS SUBSTÂNCIAS TÓXICAS
OS MICRORGNISMOS RESPONSÁVEIS PELA OXIDAÇÃO DA AMONIA DEVEM SER INIBIDOS PARA EVITAR QUE A NITRIFICAÇÃO CONSUMA O OXIGÊNIO DISSOLVIDO E INTERFIRA NA DEMANDA CARBONÁCEA
A RELAÇÃO DBOU/DBO5, VARIA EM FUNÇÃO DO DESPEJO
A RELAÇÃO DBOU/DBO5, VARIA PRA UM MESMO DESPEJO AO LONGO DA LINHA DE TRATAMENTO DE ETE
O TESTE DEMORA NO MÍNIMO 5 DIAS NÃO SENDO ÚTIL PARA EFEITO DE CONTROLE OPERACIONAL DE UMA ESTAÇÃO DE TRATAMENTO DE ESGOTO
DEMANDA QUÍMICA DE OXIGÊNIO (DQO)
	O teste da DQO mede o consumo de oxigênio durante a oxidação química da matéria orgânica, sendo portanto uma indicação indireta do teor de matéria orgânica.
3.10 - Qual a principal diferença entre os testes de DBO e DQO?
	A DQO corresponde a uma oxidação química da matéria orgânica, obtida por meio de um forte oxidante (dicromato de potássio) em meio ácido.
	As principais vantagens do teste da DQO são:
O TESTE LEVA CERCA DE 2 HORAS PRA SER REALIZADO
O SEU RESULTADO DÁ UMA INDICAÇÃO DO OXIGÊNIO REQUERIDO PARA A ESTABILIZAÇÃO DA MATÉRIA ORGÂNICA
O TESTE NÃO É AFETADO PELA NITRIFICAÇÃO, DANDO UMA INDICAÇÃO APENAS DA MAT;ÉRIA ORGÂNICA CARBONÁCEA
Suas principais limitações são:
NESTE TESTE SÃO OXIDADAS TANTO A FRAÇÃO BIODEGRADÁVEL, QUANTO A FRAÇÃO INERTE DO DESPEJO. HA PORTANTO UMA SUPERESTIMATIVA DO OXIGÊNIO A SER CONSUMIDO NO TRATAMENTO BIOLÓGICO DOS DESPEJOS
O TESTE NÃO FORNECE INFORMAÇÃO SOBRE TAXA DE CONSUMO DE MATÉRIA ORGÂNICA AO LONGO DO TEMPO
CERTOS CONSTITUINTES INORGÂNICOS PODEM SER OXIDADOS E INTERFERIR NO RESULTADO
	Existe uma relação entre a DBO e a DQO que pode fornecer algumas informações sobre o despejo e as prováveis indicações de tratamento. esta relação no entanto, varia de despejo para despejo.
Relação DQO/DBO baixa
FRAÇÃO BIODEGRADÁVEL ELEVADA
PROVÁVEL INDICAÇÃO PARA TRATAMENTO BIOLÓGICO
Relação DQO/DBO elevada
A FRAÇÃO INERTE (NÃO BIODEGRADÁVEL) É ELEVADA
SE A FRAÇÃO NÃO BIODEGRADÁVEL NÃO FOR IMPORTANTE EM TERMOS DE POLUIÇÃO DO CORPO RECEPTOR, POSSÍVEL INDICAÇÃO PARA TRATAMENTO BIOLÓGICO
SE A FRAÇÃO NÃO BIODEGRADÁVEL FOR IMPORTANTE EM TERMOS DE POLUIÇÃO DO CORPO RECEPTOR,POSSÍVEL INDICAÇÃO PARA TRATAMENTO FÍSICO-QUÍMICO
CARBONO ORGÂNICO TOTAL (COT)
	Neste teste o carbono orgânico é medido diretamente através de medidas instrumentais, sobretudo eficiente para amostras com baixas concentrações em matéria orgânica. neste teste é medido todo carbono liberado na forma de CO2.
	Nitrogênio
	O nitrogênio na biosfera alterna-se em várias formas e estados de oxidação, como resultado de diversos processos bioquímicos. no meio aquático o nitrogênio pode ser encontrado nas seguintes formas:
NITROGÊNIO MOLECULAR (N2), SENDO LIBERADO PARA A ATMOSFERA
NITROGÊNIO ORGÂNICO (DISSOLVIDO E EM SUSPENSÃO)
AMÔNIA (LIVRE - NH3 E IONIZADA - NH4+)
NITRITO (NO2-)
NITRATO (NO3-)
	O nitrogênio é um componente bastante importante na geração e no controle de poluição das águas devido principalmente a fatores relacionados com a poluição das águas e do próprio tratamento de efluentes.
	Com relação à poluição das águas pode-se destacar os seguintes aspectos: (1) o nitrogênio é um elemento indispensável para o crescimento de algas, e em grandes concentrações pode levar a acelerar o processo de eutrofização que é um processo natural de envelhecimento de corpos receptores estagnados.(2)nos processos de conversão da amônia a nitrito e este a nitrato ha um consumo de oxigênio dissolvido nos corpos d’água receptores.(3) na forma de amônia livre o nitrogênio é diretamente tóxico aos peixes. (4) na forma de nitrato o nitrogênio está associado à doenças como a metahemoglobinemia
Com relação ao tratamento de esgotos .os seguintes aspectos devem ser considerados (1) o nitrogênio é um elemento indispensável para o crescimento de microrganismos responsáveis pelo tratamento biológico. (2) nos tratamentos aeróbios o nitrogênio compete diretamente com a degradação carbonácea, apesar de sua degradação começar a ocorrer após a degradação daquela materia. 
	
Fósforo
	O fósforo, de um modo geral, apresenta-se de três forma na água:
ORTOFOSFATO
POLIFOSFATO
FÓSFORO ORGÂNICO
Os ortofosfatos são diretamente disponíveis para o metabolismo biológico sem necessidade de conversão a formas mais simples. O solo, os detergentes, os fertilizantes, os despejos industriais e os esgotos domésticos, são as principais fontes de ortofosfato na água.
O pH influencia diretamente na forma como os ortofosfatos se apresentam na água. Nos esgotos domésticos a forma predominante de fósforo é o HPO4. Outras formas são PO4-3, HPO42-, H2PO4, H3PO4.
Os polifosfatos são moléculas mais complexas, com dois ou mais átomos de fósforo. Por meio do mecanismo de hidrólise (usualmente lenta) os polifosfatos se transformam em ortofosfatos.
O fósforo orgânico é de menor importância nos esgotos domésticos, mas pode ser importante em águas residuárias industriais e lodos oriundos de tratamento de esgotos. O fósforo orgânico é convertido a ortofosfatos, nos tratamentos de esgoto e nos corpos receptores.
O fósforo é importante porque é um nutriente essencial para o crescimento dos microrganismos responsáveis pela estabilização da matéria orgânica e para o crescimento de algas.
	Indicadores de Contaminação Fecal
	É extremamente difícil a detecção de agentes patogênicos, como bactérias e protozoários e vírus, em uma amostra de água, devido às suas baixas concentrações, o que necessitaria de um grande volume de amostra, para a detecção de um único ser patogênico. As principais razões destas dificuldades são: Em uma população apenas uma determinada faixa apresenta doenças de veiculação hídrica; Nas fezes dos habitantes a presença de patogênicos pode não ocorrer em elevada proporção; Após o lançamento no corpo receptor ou no sistema de esgotos há ainda uma grande diluição do despejo contaminado.
	Estas dificuldades são superadas por meio do estudo dos chamados organismos indicadores de contaminação fecal. Estes organismos não são patogênicos mas, dão uma indicação satisfatória de quando uma água apresenta contaminação por fezes humanas ou de animais e, assim, a sua potencialidade para transmitir doenças.
	Os organismos mais comumente utilizados para esta indicação são as bactérias do grupo coliforme. As principais razões para a utilização do grupo coliforme são: Apresentam-se em grande quantidade nas fezes humanas; Apresentam-se em grande número apenas nas fezes do homem e de animais de sangue quente; Apresentam resistência aproximadamente similar à maioria das bactérias patogênicas intestinais; As técnicas bacteriológicas para detecção de coliformes são rápidas e econômicas.
3.11 - Características de esgotos industriais
	Conceitos Gerais
	Como já mencionado anteriormente os esgotos industriais apresentam uma variabilidade muito grande de características, dependendo de sua origem, o que dificulta sobremaneira uma generalização. Em todo caso sob o ponto de vista do tratamento biológico os seguintes parâmetros são bastante importantes:
Biodegradabilidade: capacidade de serem degradados através de processos bioquímicos por microrganismos.
Tratabilidade: facilidade de tratamento através de processos biológicos.
Concentração de Matéria Orgânica: em termos de DBO que pode ser maior ou menor que dos esgotos domésticos. Se maior grande indicação para remoção por processos biológicos de tratamento. Se menor forte indicação de despejos inorgânicos, que hoje em dia já podem ter indicação de tratamento por processos biológicos.
Disponibilidade de Nutrientes: a disponibilidade dos nutrientes C:P:N é essencial para o desenvolvimento e crescimento dos microrganismos intervenientes nos processos biológicos de tratamento, esta disponibilidade em geral está presente nos esgotos domésticos, no caso de esgotos industriais muitas vezes estes nutrientes têm que ser acrescentados.
Toxidez: certos componentes tóxicos podem inibir ou até mesmo inviabilizar o tratamento biológico, porém já existem tratamentos biológicos para redução de componentes tóxicos de efluentes industriais.
	Equivalente Populacional
	Este parâmetro indica a equivalência entre o potencial poluidor de uma indústria, geralmente em termos de matéria orgânica, e uma determinada população que produza esta mesma carga poluidora. quando se diz que uma industria tem o equivalente populacional de 30.000 habitantes, significa dizer que esta indústria tem um poder poluidor, em termos de carga de DBO, que eqüivale à carga gerada por uma cidade de 30.000 habitantes. o cálculo do equivalente populacional de DBO é feito pela seguinte expressão:
		 EP = carga de DBO da indústria (kg/d)
contribuição per capta de DBO (kg/hab.d)
		Freqüentemente adota-se para contribuição per capta o valor de 54gDBO/hab.d.
4- IMPACTO DO LANÇAMENTO DE EFLUENTES NOS CORPOS RECEPTORES
4.1 - Poluição por Matéria Orgânica e Autodepuração
	A introdução de matéria orgânica em um corpo d’água resulta, indiretamente, no consumo de oxigênio dissolvido. Tal se deve aos processos de estabilização da matéria orgânica realizada pelas bactérias decompositoras, as quais utilizam o oxigênio disponível no meio líquido para a sua respiração. O decréscimo da concentração de oxigênio dissolvido tem diversas implicações do ponto de vista ambiental, constituindo-se em um dos principais problemas de poluição das águas em nosso meio.
Qual a importância deste fenômeno no tratamento de resíduos?
Qualidade
Nível
Eficiência
Em termos mais amplos, o fenômeno
O inicio da autodepuração se da a partir da incorporação de Matéria orgânica no corpo d’água
Qual a importância de conhecer este fenômeno?
Utilizar a Capacidade de Assimilação dos corpos 
Estabelecer limites para poluição dos corpos d’água
4.2 - Autodepuração - Análise Ecológica
O que ocorre quando se introduz poluentes em um corpo d’água?
 poluição
Ecossistema Desordem Novo Equilíbrio
em equilibrio inicial comunid. estável
Como Detectar as condições de um Ecossistema?
	Pela Diversidade Das Espécies
Condições Naturais - grande quantidade e muitas espécies
Condições Perturbadas- grande quantidade de uma espécie
A poluição é Seletiva para as Espécies
Estágios de Autodepuração: Zonas fisicamente identificáveis.
ZONAS DE AUTODEPURAÇÃO:
Degradação
Decomposição Ativa
Recuperação
Águas Limpas
ZONAS
1 - Zona de Águas Limpas
2 - Zona de Degradação
3 - Zona de Decomposição Ativa
4 - Zona de Recuperação
5 - Zona de Águas Limpas
Principais Características Das Zonas De Autodepuração
	
ZONA DE DEGRADAÇÃO
Ecossistema Perturbado
Alta Concentração de Matéria Orgânica
Formação de Bancos de Lodo
Presença de Microrganismos (predominância aeróbios)
Produtos: CO2 (oxidação aeróbia); H2S (oxidação anaeróbia); Compostos Nitrogenados
ZONA DE DECOMPOSIÇÃO ATIVA
Ecossistema começa a se organizar (decomposição ativa de matéria orgânica)
Coloração da água intensa, com lodo escuro ao fundo
Menor concentração de Oxigênio dissolvido
Diminuição do n0 de bactérias decompositoras, devido à redução de alimento, incidência de luz, floculação, etc.
Produtos: CO2, H2S, H2O, CH4, NH3, mercaptanas, etc.
Elevação do n0 de protozoáriose surgimento de larvas e de insetos
ZONA DE RECUPERAÇÃO
Inicio da etapa de recuperação
Água mais clara
Lodo mais granulado e não tão fino
Ausência de desprendimento de gases e odores
Matéria orgânica quase toda estabilizada
Menor consumo de O.D.
Ausência de condições anaeróbias
Recuperação da flora e fauna aquáticas
Produtos: principalmente nutrientes (nitrogênio e fósforo)
Maior penetração de Luz
Diversificação da cadeia alimentar: micro crustáceos, moluscos, vermes, larvas de insetos
ZONAS DE ÁGUAS LIMPAS
Águas limpas e ricas em nutrientes
Retorno às condições normais anteriores à poluição, com relação aos níveis de O.D., matéria orgânica e quantidade de bactérias
Predominância, na massa líquida, de formas completamente oxidadas e estáveis dos compostos minerais
Nível de O.D. próximo ao da saturação, baixo consumo e elevada produção pelas algas.
Presença de peixes, moluscos e grandes crustáceos.
4.3 - Balanço de oxigênio dissolvido
Qual o objetivo da determinação da concentração de O.D.
	Obter o grau de poluição e autodepuração
Equação Simplificada da Estabilização de Matéria Orgânica
Matéria Orgânica + O2 + Bactérias CO2 + H2O + Energia
Nitrificação
Amônia + O2 Nitrito + H+ + H2O + Energia
Nitrito + O2 Nitrato + Energia
4.4 - A curva de oxigênio dissolvido
Quais as informações possíveis por meio de seu estudo?
Identificar as conseqüências da poluição
Fazer uma associação da poluição com as zonas de autodepuração
Verificar o consumo e produção de OD
Identificar o ponto crítico (menor concentração de OD)
Comparar a concentração no ponto crítico com a estabelecida pela legislação
Identificar o local em que o curso d’água volta a atingir as condições desejadas.
Para estabelecer-se um modelo do balanço de OD há a necessidade do conhecimento dos fenômenos que estão ocorrendo.
CINÉTICA DE DESOXIGENAÇÃO
Ponto de Análise: Como se dá o consumo de O2 com o tempo?
Deve-se analisar sob dois ângulos distintos:
DBO remanescente 
DBO exercida
5 - INTRODUÇÃO AO CONTROLE DE POLUIÇÃO
PROBLEMAS AMBIENTAIS EFEITOS DESASTROSOS RESÍDUO
COMPLEXIDADE DOS NOVOS TIPOS DE COMPOSTOS INDUSTRIALIZADOS
NÃO EXISTIAM
PRESENTES EM PEQUENAS QUANTIDADES
NÃO BIODEGRADÁVEIS
 URBANIZAÇÃO
NOVAS TÉCNOLOGIASS
CRESCIMENTO DEMOGRÁFICO
POLUIÇÃO AMBIENTAL
5.1 - Poluição ambiental
Toda matéria ou energia que introduzida no ambiente provoca a sua degradação altera as características físico-químicas ou biológicas do ar, da água ou do solo, inviabilizando o meio para a saúde humana, a própria natureza inadequando-o às atividades sociais e econômicas, além de afetar as condições estéticas e sanitárais do meio ambiente
VIOLA O EQUILIBRIO DO ECOSSISTEMA
DESTRUINDO
CAPACIDADE DE AUTO-REGULAÇÃO E RENOVAÇÃO
CARACTERIZAÇÃO DA POLUIÇÃO POLUENTE
FÍSICA
QUÍMICA
FÍSICO-QUÍMICA
BIOQUÍMICA
RADIATIVA
GERAÇÃO DE RESÍDUOS ATIVIDADES HUMANAS
DESCARTE DE PRODUTOS INDUSTRIALIZADOS
PROCESSO INDUSTRIAL
5.2 - Classificação geral dos resíduos
RESÍDUOS
EFLUENTE LÍQUIDO
RESÍDUO SÓLIDO
EFLUENTE GASOSO
ORIGEM INDUSTRIALAAAAAAAAL
ORIGEM DOMÉSTICA
PROCESSO INDUSTRIAL
REJEITOS INDUSTRIALIZADOS
ESGOTO DOMÉSTICO
ALIMENTO DESCARTADO
5.3 - Eliminação ou minimização dos problemas ambientais
CONSCIENTIZAÇÃO DA SOCIEDADE
AIA (1960) DIAGNÓSTICO AMBIENTAL
ORIENTAR
CONTROLAR
PUNIR
LEIS E MECANISMOS
DE ACORDO COM LEIS E POLÍTICAS VIGENTES
 E I A
INVENTÁRIOS DE RESÍDUOS
PESQUISA COM BASE CIENTÍFICA
ATIVIDADES LUCRATIVAS X POLÍTICA DE GERENCIAMENTO AMBIENTAL
5.4 - Sistema de gestão ambiental
CONJUNTO DE REGRAS ADMINISTRATIVAS
PROCEDIMENTOSGERENCIAMENTO DAS 
ATIVIDADES X MEIO AMBIENTE
POLÍTICAS
INSTRUÇÕES
SISTEMA DE GESTÃO AMBIENTAL
TRATAMENTO DE EFLUENTES
CONTROLE DE EMISSÕES GASOSAS
TRATAMENTO DE EFLUENTES
TRATAMENTO AMBIENTAL
GERENCIAMENTO DE RESÍDUOS
OBJETIVOS:
IDENTIFICAR OS ASPECTOS AMBIENTAIS RELEVANTES
DEMONSTRAR UM DESEMPENHO AMBIENTAL CORRETO, CONTROLANDO O IMPACTO DE SUAS ATIVIDADES, PRODUTOS OU SERVIÇO NO MEIO AMBIENTE
5.5 - Normas e procedimentos
ISO (1946) INTERNATIONAL ORGANIZATION FOR STANDARTION
GENEBRA– SUÍÇA 111 PAÍSES MEMBROS E 180 COMITÊS TÉCNICOS
NORMAS DE APLICAÇÃO VOLUNTÁRIAS COMPULSÓRIAS
ISO 14000 23 CERTIFICADOS (CINCO NORMATIZADOS)
ISO 14001: Sistema de Gestão Ambiental – Especificação com guia de uso.
ISO 14004: Sistema de Gestão Ambiental - Diretrizes Gerais sobre princípios, sistemas e técnicas de suporte.
ISO 14010: Diretrizes para Auditoria Ambiental – Princípios Gerais para Auditoria Ambiental.
ISO 14011-1: Diretrizes para Auditoria Ambiental – Procedimentos de Auditoria. Sistemas de Gestão Ambiental.
ISO 14011-2: Diretrizes para Auditoria Ambiental – Procedimentos de Auditorias. Auditorias de Adequação.
ISO 14012: Diretrizes para Auditoria – Critérios de Qualificação para Auditores Ambientais
5.6 - Princípios da iso 14000
COMPROMETIMENTO E POLÍTICA
DEFINIÇÃO DE POLÍTICA AMBIENTAL COMPROMETIMENTO COM SEU SISTEMA DE GESTÃO AMBIENTAL
PLANEJAMENTO
ORGANIZAÇÃO FORMULA PLANO DE AÇÃO CUMPRIR A POLÍTICA AMBIENTAL
IMPLEMENTAÇÃO
DESENVOLVIMENTO DA CAPACITAÇÃO E MECANISMOS DE APOIO ATENDER POLÍTICA, OBJETIVOS E METAS AMBIENTAIS
MEDIÇÃO E AVALIAÇÃO (OPERAÇÃO)
MEDIDAS, MONITORAMENTO E AVALIAÇÃO DO DESEMPENHO AMBIENTAL
ANÁLISE CRÍTICA E MELHORIA
ANÁLISE E APERFEIÇOAMENTO CONTÍNUO DO SISTEMA DE GESTÃO AMBIENTAL APRIMORAMENTO DO DESEMPENHO AMBIENTAL
GESTÃO AMBIENTAL GESTÃO DE QUALIDADE
ISO 9000 ISO 14000
PROCEDIMENTOS COMUNS DE GESTÃO AMBIENTAL E DA QUALIDADE
MANUAL DE GESTÃO DA QUALIDADE
PROCEDIMENTOS DE GESTÃO DA QUALIDADE
INSTRUÇÕES DE GESTÃO DA QUALIDADE
INSTRUÇÕES COMUNS DE GESTÃO AMBIENTAL E DA QUALIDADE
MANUAL DE GESTÃO AMBIENTAL
PROCEDIMENTOS DE GESTÃO AMBIENTAEFLUENTE LÍQUIDO
L
INSTRUÇÕES DE GESTÃO AMBIENTAL
DO GERENCIAMENTO
POLÍTICA DE PRESERVAÇÃO E PROTEÇÃO AMBIENTAL
BASE DO GERENCIAMENTO
POLÍTICA DE PRESERVAÇÃO E PROTEÇÃO AMBIENTAL
ESTRATÉGIAS E TECNOLOGIAS
Redução na Fonte
Segregação
Reciclagem
Tratamento
Disposição Final
REDUÇÃO NA FONTE:
MELHOR ESTRATÉGIA
AÇÃO A LONGO PRAZO, DIFICULDADES COM CUSTOS ALTERAÇÕES NO PROCESSO INDUSTRIAL 
RITMO LIMITADO NO DESENVOLVIMENTO DAS TECNOLOGIAS LIMPAS E RENOVAÇÃO DOS PARQUES INDUSTRIAIS
SEGREGAÇÃO
MAIOR CONHECIMENTO SOBRE A PERICULOSIDADE DO RESÍDUO, INDICANDO:
POSSÍVEL TRATAMENTO
POSSIBILIDADE DO RESÍDUO SER UTILIZADO COMO MATÉRIA-PRIMA EM OUTROS PROCESSOS
RECICLAGEM/REUSO
QUANDO O USO É ECONOMICAMENTE VANTAGOSO ESTRATÉGIA DE MINIMIZAÇÃO DE QUANTIDADE E POTENCIAL PERIGOSO
ESTATÍSTICAS MOSTRAM RESULTADOS TÍMIDOS
TRATAMENTO
FUNÇÃO DAS CARACTERÍSTICAS E PERICULOSIDADE DO RESÍDUO 
ELIMINAÇÃO OU REDUÇÃO DO POTENCIAL PERIGOSO
TIPOS: QUÍMICO, FÍSICO, BIOLÓGICO, TÉRMICO
6-INTRODUÇÃO AO TRATAMENTO DE EFLUENTES
 	6.1-Por que tratar efluentes?
- Razões de saúde pública: 
Para evitar que a população das regiões localizadas a jusante de corpos receptores adquira doenças de veiculação hídrica, por meio de contaminação direta (banho, lavagem de roupa, etc.), ou indireta (irrigação de verduras, abastecimento de água, etc.). 
- Razões ecológicas: 
Para manter no corpo receptor em condições favoráveis à vida animal e vegetal, evitando a degradação do ambiente.
- Razões econômicas:
A água é um bem natural utilizado em inúmeras atividades econômicas (água potável para abastecimento, água

Outros materiais