A maior rede de estudos do Brasil

Grátis
8 pág.
Relatório 27 - Princípio de Arquimedes Empuxo

Pré-visualização | Página 1 de 1

Curso: Engenharia Mecânica
Disciplina: Física Experimental I		
Aluna: Joyce Ingrid Venceslau de Souto
EXPERIMENTO: PRINCÍPIO DE ARQUIMEDES - EMPUXO
Fevereiro de 2018
Campina Grande – PB
Sumário
1. Introdução	3
1.1 Objetivos Gerais	3
2. Materiais Necessários	3
3. Metodologia	4
3.1 Medidas/Tabelas	4
3.2 Procedimentos e Análises	4
4. Conclusão	6
1. Introdução
1.1 Objetivo Geral
Determinar o empuxo exercido pela água sobre um corpo de forma cilíndrica. Além disso, comparar o valor experimental do empuxo com aquele previsto pela teoria.
2. Materiais Necessários
· Corpo Básico (1);
· Armadores (2.1);
· Manivela (2.4);
· Balança (2.10);
· Bandeja (2.11);
· Massas padronizadas (2.12);
· Suporte para Suspensões Diversas (2.13); 
· Paquímetro (2.20);
· Cilindro metálico (2.30);
· Becker com água, cordão e linha de nylon.
3.Metodologia
3.1 Medidas e Tabelas
Peso da Bandeja......................
DIMENSÕES DO CILINDRO METÁLICO
	Altura...............................................
	Diâmetro da seção reta....................
PESOS DO CILINDRO
	Peso real do Cilindro.........................
	Peso aparente do Cilindro..................
3.2 Procedimentos e Análises
	O Corpo Básico já estava previamente armado na posição adequada ao experimento. Mediu-se o peso da bandeja, e obteve-se . Mediu-se ainda, usando o paquímetro, a altura () e o diâmetro da secção reta do cilindro (). Fixou-se o cilindro em uma das extremidades do Suporte para Suspensões Diversas e na outra se coloca a bandeja. Determina-se, então, o peso do cilindro metálico (). Movimentando a manivela, mergulhou-se o cilindro totalmente no Becker com água e reequilibra-se, retirando alguns pesos, a Balança na posição horizontal para se determinar o peso aparente do cilindro, que foi .
Observe o diagrama de forças sobre o cilindro imerso:
Temos, então, a força exercida pela balança (), o Peso (P), uma força aplicada de baixo para cima devido a pressão da água () e uma segunda força devido a pressão da água ().
Desconsiderando a pressão atmosférica e determinando expressões literais para as forças exercidas pelo líquido sobre as seções retas superior e inferior do Cilindro, de profundidades e , temos:
 Onde é a densidade da água, g é a gravidade eé a área da seção reta do cilindro. Logo após, calcula-se a resultante das forças exercidas pelo líquido sobre o cilindro:
	A partir disso, é notório que exerce a função de comprimento do cilindro, que multiplicado pela área da sua seção reta, obtém-se o seu volume. Assim, tem-se que a força resultante é dada pelo produto da densidade do liquido com a aceleração da gravidade e com o volume do líquido deslocado.
	Depois, calcula-se, no C.G.S., o volume do Cilindro e o valor do empuxo () nele exercido:
	Agora, calcula-se o valor do empuxo, através do experimento, onde este deverá ser obtido através da diferença entre o peso real e o peso aparente:
Para .
	Consideram-se os cálculos do Empuxo Teórico isentos de erros e, a partir disso, calcula-se o erro percentual cometido na determinação experimental do empuxo:
4. Conclusão
	Conclui-se que o empuxo é uma força contrária ao peso, que tenta expulsar o corpo do líquido e é dado por . Com isso, nota-se que, basicamente, o empuxo é equivalente ao peso do líquido deslocado, pois é a massa do líquido deslocado, que multiplicado pela gravidade, é igual ao seu peso. Caso o cilindro tivesse sido mergulhado parcialmente em água, a Expressão teórica do empuxo continuaria a mesma, porém, deveria-se tomar cuidado na hora de aplicar o volume do líquido deslocado, que seria justamente o volume do corpo submerso no líquido. Tendo posse da massa e do volume do cilindro, podemos agora calcular sua densidade:
. Cujo valor se aproxima muito do Aço ().
	Se o Cilindro fosse colocado em um recipiente com mercúrio, que tem não teríamos uma imersão total, pois para obter uma imersão total:
 
 . O que representa uma força superior a seu peso.
Deveria-se utilizar água destilada e usar barbante de massa mais desprezível. Ao movimentar a balança para cima e para baixo, fazendo o cilindro chegar próximo a superfície e logo depois ao fundo do recipiente, foi observado que o empuxo é independente da profundidade, pois não ocorreu desequilíbrio da balança.
	A expressão para o empuxo é válida para todos os fluidos, englobando assim os líquidos e os gases. O balão flutua, pois o gás (ar aquecido, hélio ou mais raramente o nitrogênio, devido aos riscos gerados pela sua inflamabilidade) que é utilizado em sua câmara tem o valor da sua densidade inferior à densidade do ar, provocando o empuxo que o ar exerce sobre ele maior que a força peso do sistema, fazendo-o levitar.
B
F
Sr
liq
Sr
A
gh
F
A
P
F
1
1
1
1
r
=
=
Sr
liq
Sr
A
gh
F
A
P
F
2
2
2
2
r
=
=
liq
r
Sr
A
1
2
h
h
-
teo
E
2
F
1
F
1
h
2
h

Crie agora seu perfil grátis para visualizar sem restrições.