Prévia do material em texto
12/08/2022 08:47 Avaliação II - Individual 1/5 Prova Impressa GABARITO | Avaliação II - Individual (Cod.:740011) Peso da Avaliação 1,50 Prova 42943877 Qtd. de Questões 10 Acertos/Erros 9/0 Canceladas 1 Nota 10,00 José trabalha em uma loja de informática. Ele recebe um salário fixo mensal de R$ 2.000,00 mais R$ 15,00 por hora extra trabalhada no mês. Como podemos expressar o salário mensal total de José em um determinado mês por meio de uma expressão matemática? A 2.000 + 15. B 2.000 + 15 x. C 2.000 + x + 15. D 2.015 + x. Resolva as seguintes equações do 2º grau: a) 3x2 - 7x + 4 = 0. b) 9y2 - 12y + 4 = 0. c) 2z2 + 2z - 4 = 0. Assinale a alternativa CORRETA: A xl = xll = 1 / yl = yll= 3/2 / zl = 1/2 ; zll = 2. VOLTAR A+ Alterar modo de visualização 1 2 12/08/2022 08:47 Avaliação II - Individual 2/5 B xl = -2 ; xll = 4/3 / yl = yll= 2/3 / zl = 2,5 ; zll = 4/3. C xl = 4/3 ; xll = 1 / yl = yll= 2/3 / zl = 1 ; zll = -2. D xl = -1 ; xll = 3/2 / yl = -3 ; yll= 2/3 / zl = -1 ; zll = 2. Considere o valor de t para que a equação tx – y – 3t + 6 = 0 represente a reta que passa pelo ponto (5,0). Assinale a alternativa CORRETA: A 1. B -3. C 0. D -5. Ao iniciar o estudo das equações e inequações, um dos objetivos é identificar equações de 1º, 2º, 3º e 4º graus e seus elementos. Sobre uma equação do segundo grau, assinale a alternativa INCORRETA: A – x² + 4 = 0. B 2x² – 10x = 0. C 2x³ + 3x² + 5x – 6 = 0. D X² – 5x + 3 = 0. 3 4 12/08/2022 08:47 Avaliação II - Individual 3/5 Ao iniciar o estudo das equações e inequações, um dos objetivos é identificar equações de 1º, 2º, 3º e 4º graus e seus elementos. Sobre uma equação do terceiro grau, assinale a alternativa INCORRETA: A X³ + 2x² – 3 = 0. B –x² + 4 = 0. C 2x³ + 3x² + 5x – 6 = 0. D X³ –5x² + 6x = 0. As relações de Girard são responsáveis pela relação existente entre os coeficientes de uma equação e suas raízes. Sendo assim, determine as raízes da equação x3 - 2 x2 - x + 2 = 0: A x1 = - 2 , x2 = -1 e x3 = -1. B x1= 2 , x2 = - 1 e x3 = 1. C x1 = 2 , x2 = -1 e x3 = - 1. D x1 = - 2 , x2 = 1 e x3 = 1. Em um estacionamento há carros e motos, totalizando 78. O número de carros é igual a 5 vezes o de motos. Quantas motos há no estacionamento? 5 6 7 12/08/2022 08:47 Avaliação II - Individual 4/5 A 12. B 11. C 14. D 13. Atenção: Esta questão foi cancelada, porém a pontuação foi considerada. As equações de segundo grau possuem como resultado um conjunto solução denominado raiz. Sobre isso, podemos afirmar que a equação 5a² + 3a + 5 = 0 possui quantas raízes? A Duas raízes reais diferentes. B Nenhuma raiz real. C Duas raízes reais iguais. D Duas raízes imaginárias. As equações do tipo ax² + bx + c = 0, onde a, b e c são coeficientes numéricos pertencentes ao conjunto dos números reais, com a ≠ 0, são denominadas equações do 2º grau. Como toda equação, elas possuem como resultado um conjunto solução denominado raiz. O diferencial dessas equações em relação às do 1º grau é que elas podem ter três soluções diferentes, de acordo com o valor do discriminante, representado pela letra grega delta. A respeito disso, analise as sentenças a seguir: I- Delta > 0, a equação possui duas raízes reais e distintas. II- Delta = 0, a equação possui raízes reais iguais. III- Delata < 0, a equação não possui raízes reais. 8 9 12/08/2022 08:47 Avaliação II - Individual 5/5 Assinale a alternativa CORRETA: A Somente a sentença II está correta. B Somente a sentença I está correta. C Somente a sentença III está correta. D As sentenças I, II e III estão corretas. Referente ao método da redução de ordem da equação de 3º grau para o 2º grau ou até mesmo para 1º grau, deve ser utilizado quando o termo independente, ou seja, o termo sem a variável for inexistente na equação. Sobre o exposto, assinale a alternativa CORRETA: A Esse método consiste em agrupar a equação, colocando em evidência a variável x que possui o menor expoente. B Esse método consiste em fatorar a equação, colocando em evidência a variável x que possui o menor expoente. C Esse método consiste em fracionar a equação, colocando em evidência a variável x que possui o maior expoente. D Esse método consiste em fatorar a equação, colocando em evidência a variável x que possui o maior expoente. 10 Imprimir