Buscar

Exercicios-Resolvidos-Psicrometria

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 13 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 13 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 13 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

1 
 
 
 
LISTA DE EXERCÍCIOS SOBRE PSICROMETRIA 
Prof. Daniel Marçal de Queiroz 
 
 
1) O que acontece com a pressão de vapor de saturação quando a temperatura aumenta? 
Reposta: 
Quando a temperatura aumenta a pressão de vapor de saturção também aumenta. É 
necessário mais vapor de água para saturar o ar. 
 
 
2) O que significa umidade relativa do ar? 
Resposta: 
A umidade relativa é a razão entre a pressão de vapor do ar e a pressão de vapor de 
saturação. Ou seja, a umidade relativa do ar dá uma idéia do estado de saturação do vapor 
d’água contido no ar. Quando a umidade relativa atinge 100% significa que o ar está 
saturado de vapor d’água. 
 
 
3) Dois recipientes contêm cada um dois metros cúbicos de volume. Num recipiente a 
umidade relativa é 60% e a temperatura é de 20o C, no outro a umidade relativa é de 
90% e a temperatura é de 10o C. A pressão atmosférica do local é de 100 kPa. Qual 
recipiente contém mais massa de vapor de água? 
Resposta: 
Vamos resolver esse problema utilizando as equações apresentadas na apostila. Você 
poderia resolver esse problema usando o GRAPSI ou a planilha eletrônica disponibilizada 
no “Material de Apoio” do Módulo PSICROMETRIA. 
 
Primeiramente vamos determinar a massa de vapor no existente no recipiente que está 
a 20º C e 60% de umidade relativa. Para isso vamos precisar determinar a pressão de 
vapor de saturação para a temperatura de 20º C. 
 
 
 
 
 
 
 
 
 
 
 2 
A pressão de vapor de saturação é calculada por: 
( )
( )2
432
'
ln
GTFT
ETDTCTBTA
R
psat
−
++++
=�
�
�
�
�
�
�
 
em que, 
2
7
3
1039381,0
34903,4
1048502,0
1012558,0
146244,0
5413,97
526,40527
25,64910522'
−
−
−
=
=
−=
=
−=
=
−=
=
xG
F
xE
xD
C
B
A
R
 
 
Substituindo 16,29316,27320 =+=T na equação acima obtem-se: 
 
1544,9
25,22105649
ln −=�
�
�
�
�
� satp
 
 
Ou seja, 
kPaPapsat 33774,274,2337 == 
 
A pressão de vapor de saturação para a temperatura de 20º C é portanto de 2,33774 
kPa. Como a umidade relativa do ar é de 60% pode-se determinar a pressão de vapor do 
ar. Utilizando-se a definição de umidade relativa, tem-se: 
 
33774,2100
60 vp
= 
 
ou seja, 
 
kPapv 402646,1= 
 
O próximo passo é determinar o volume específico do ar: 
( )[ ]
( )
( ) oararvatm kg
m
molkg
kg
kPa
PakPa
K
Kmolkg
mPa
x
Mpp
RT
v
sec
3
3
3
853,0
97,281000402646,1100
16,29310314,8
=
�
�
	
�
�
��
�
�
��
�
�
�
�
�
�
�
�
−
��
�
�
��
�
�
=
−
=
 
Como o volume de cada recipiente 2 metros cúbicos, então a massa de ar seco contida 
no recipiente é de: 
oaroar kg
okgar
m
m
v
VM sec3
3
sec 343,2
sec
853,0
2
=== 
 3 
Para determinar a massa de vapor existente no recipiente precisamos determinar 
primeiro a razão da mistura do ar contido no ambiente. Usando a equação que relaciona a 
razão de mistura com a pressão de vapor e a pressão atmosférica tem-se: 
( ) ( ) oar
vapor
vatm
v
kg
kg
pp
pRM
sec
008863,0
402646,1100605,1
402646,1
605,1
=
−
=
−
= 
 
 A massa de vapor d’água pode ser finalmente obtida utilizando a massa de ar seco e a 
razão de mistura do ar: 
vapor
oar
vapor
oaroarvapor kgkg
kg
kgRMMM 02077,0008863,0343,2
sec
secsec =⋅=⋅= 
 Portanto, no recipiente de 2 metros cúbicos com ar a 20º C e 60% de umidade 
relativa terá 0,02077 kgvapor. 
 
 
 Agora, vamos repetir todos os cálculos para o outro recipiente que contém ar a 10º C e 
90% de umidade relativa. 
 
Substituindo 16,28316,27310 =+=T na equação usada para calcular a pressão de 
vapor de saturação obtem-se: 
 
7980,9
25,22105649
ln −=�
�
�
�
�
� satp
 
 
Ou seja, 
kPaPapsat 22823,123,1228 == 
 
A pressão de vapor de saturação para a temperatura de 10º C é portanto de 1,22823 
kPa. Como a umidade relativa do ar é de 90% pode-se determinar a pressão de vapor do 
ar. Utilizando-se a definição de umidade relativa, tem-se: 
 
22823,1100
90 vp
= 
 
ou seja, 
 
kPapv 736939,0= 
 
O próximo passo é determinar o volume específico do ar para a temperatura de 10º C 
e pressão de vapor de 0,736939 kPa: 
( )[ ]
( )
( ) oararvatm kg
m
molkg
kg
kPa
PakPa
K
Kmolkg
mPa
x
Mpp
RT
v
sec
3
3
3
819,0
97,281000736939,0100
16,28310314,8
=
�
�
	
�
�
��
�
�
��
�
�
�
�
�
�
�
�
−
��
�
�
��
�
�
=
−
=
 
 
Como o volume de cada recipiente 2 metros cúbicos, então a massa de ar seco contida 
no recipiente é de: 
 4 
oaroar kg
okgar
m
m
v
VM sec3
3
sec 443,2
sec
819,0
2
=== 
Para determinar a massa de vapor existente no recipiente precisamos determinar 
primeiro a razão da mistura do ar contido no ambiente. Usando a equação que relaciona a 
razão de mistura com a pressão de vapor e a pressão atmosférica tem-se: 
( ) ( ) oar
vapor
vatm
v
kg
kg
pp
pRM
sec
0046256,0
736939,0100605,1
736939,0
605,1
=
−
=
−
= 
 
 A massa de vapor d’água pode ser finalmente obtida utilizando a massa de ar seco e a 
razão de mistura do ar: 
vapor
oar
vapor
oaroarvapor kgkg
kg
kgRMMM 0113,00046256,0443,2
sec
secsec =⋅=⋅= 
 Portanto, no recipiente de 2 metros cúbicos com ar a 10º C e 90% de umidade 
relativa terá 0,0113 kgvapor. 
 
Moral da Estória !!!! 
Ar com umidade relativa mais elevada não significa que ele conterá mais 
vapor d’água. No caso estudado, um ar com umidade relativa de 60% 
continha mais vapor d’água do que um ar com 90% de umidade relativa. 
Portanto, para fazer qualquer afirmativa quanto ao conteúdo de vapor 
d’água precisamos saber qual é a temperatura do ar. 
 
 
 
 
4) Considere que 750 toneladas de um determinado produto esteja armazenado em um 
silo cujo o volume é de 1000 m3. Se o ar intergranular estiver a uma temperatura de 
25o C e 65% de umidade relativa, e se o volume do ar intergranular corresponder a 
40% do volume do silo, pergunta-se: 
a) Qual o volume que é ocupado pelo ar intergranular? 
b) Qual o volume específico do ar para a temperatura de 25o C e umidade relativa 
de 70%? Considere que a pressão atmosférica do local é de 100 kPa. 
c) Qual a quantidade de massa de vapor d’água existe no ar intergranular? 
d) Considerando que 13% da massa do produto seja constituído por água, 
quantos kg de água existe nas 750 toneladas de produto? 
e) Para cada quilograma de água do ar, quantos quilogramas de água existe no 
produto? 
f) Considere que existisse uma forma de fazer passar toda a água existente no ar 
intergranular para o produto, se o produto está inicialmente com 13% de 
umidade para quanto subiria o teor de umidade do produto? 
Resposta: 
4.a) O volume de ar integranular é obtido multiplicando-se a porosidade pelo volume total 
da massa de grãos 
34001000
100
40
mVpV totalar =⋅=⋅= 
Portanto, o volume do ar intergranular é de 400 metros cúbicos. 
 5 
 
 
4.b) Para determinar o volume específico do ar é necessário primeiro determinar a pressão 
de vapor. Para determinar a pressão de vapor é necessário determinar a pressão de vapor 
de saturação. Então, vamos determinar primeiramente a pressão de vapor de saturação 
para a temperatura de 25º C. 
A pressão de vapor de saturação é calculada por: 
( )
( )2
432
'
ln
GTFT
ETDTCTBTA
R
psat
−
++++
=�
�
�
�
�
�
�
em que, 
2
7
3
1039381,0
34903,4
1048502,0
1012558,0
146244,0
5413,97
526,40527
25,64910522'
−
−
−
=
=
−=
=
−=
=
−=
=
xG
F
xE
xDC
B
A
R
 
 
Substituindo 16,29816,27325 =+=T na equação acima obtem-se: 
 
8508,8
25,22105649
ln −=�
�
�
�
�
� satp
 
 
Ou seja, 
kPaPapsat 16701,301,3167 == 
 
A pressão de vapor de saturação para a temperatura de 25º C é portanto de 3,16701 
kPa. Como a umidade relativa do ar é de 65% pode-se determinar a pressão de vapor do 
ar. Utilizando-se a definição de umidade relativa, tem-se: 
 
16701,3100
65 vp
= 
 
ou seja, 
 
kPapv 0586,2= 
 
Com o valor da pressão de vapor determinado, pode-se então determinar o volume 
específico do ar: 
 6 
( )[ ]
( )
( ) oararvatm kg
m
molkg
kg
kPa
PakPa
K
Kmolkg
mPa
x
Mpp
RT
v
sec
3
3
3
874,0
97,2810000586,2100
16,29810314,8
=
�
�
	
�
�
��
�
�
��
�
�
�
�
�
�
�
�
−
��
�
�
��
�
�
=
−
=
 O volume específico da ar para a temperatura de bulbo seco de 25º C e umidade 
relativa de 65% é de 0,873 metros cúbicos para cada kilograma de ar seco. 
 
4.c) Para determinar a quantidade de vapor d’água existente no ar é necessário primeiro 
saber quanto de ar seco existe no volume, e depois calcular a razão de mistura do ar para 
finalmente determinar quanto de vapor existe no ar. 
Como o volume do ar intergranular é de 400 m3, então a massa de ar seco 
intergranular é de: 
oaroar kg
okgar
m
m
v
VM sec3
3
sec 842,457
sec
874,0
400
=== 
Para determinar a massa de vapor existente no ar intergranular precisamos determinar 
primeiro a razão da mistura do ar contido no ambiente. Usando a equação que relaciona a 
razão de mistura com a pressão de vapor e a pressão atmosférica tem-se: 
( ) ( ) oar
vapor
vatm
v
kg
kg
pp
pRM
sec
013096,0
0586,2100605,1
0586,2
605,1
=
−
=
−
= 
 
 A massa de vapor d’água pode ser finalmente obtida utilizando a massa de ar seco e a 
razão de mistura do ar: 
vapor
oar
vapor
oaroarvapor kgkg
kg
kgRMMM 996,5013096,0842,457
sec
secsec =⋅=⋅= 
 Portanto, no ar intergranular existe 5,996 kg
 
de vapor d’água. 
 
4.d) A quantidade de água existente no produto pode ser determinada diretamente a partir 
do teor de umidade e da massa de total do produto: 
 
kgMUM produtoagua 97500750000100
13
100
=⋅=⋅= 
Portanto, nas 750 toneladas do produto existem 97500 kg de água. 
 
4.e) A relação entre a quantidade de água existente no produto e a existente no ar é, 
portanto, de: 
4,16261
996,5
97500
==
arvapor
produtoágua
M
M
 
 
Ou seja, existe 16261,4 vezes mais água no produto do que no ar. 
 
4.f) Se toda a água existente no ar fosse transferida para o ar a massa total de água no 
produto passaria a ser: 
 
kgM finalágua 996,97505996,597500 =+= 
 7 
 
A massa final do produto passaria a ser: 
kgM finalproduto 996,750005996,5750000 =+= 
 
O teor de umidade final do produto passaria a ser de: 
0007,13
996,750005
996,97505100 =⋅=finalU 
Portanto, se toda água existente no ar passasse para o produto, a umidade do produto 
praticamente não se alteraria. 
 
 
 
Moral da Estória !!! 
Existe muito mais água no produto do que no ar existente no espaço intergranular. 
Mesmo essa quantidade de água sendo tão pequena ela exerce uma grande influência nas 
condições de armazenagem como poderá ser constatado nos Módulos seguintes deste 
curso. 
 
5) Que tipo de aparelhos pode ser utilizado para se medir a umidade relativa? 
Resposta: 
Para se medir a umidade relativa podem ser usados higrômetros, como os que utilizam 
fios de cabelo como elemento sensor ou os psicrômetros que são compostos por um 
termômetro de bulbo seco e outro de bulbo molhado. Os psicrômetros podem ter de 
ventilação forçada ou não. 
 
6) O que é um abrigo meteorológico? 
Resposta: 
 O abrigo meteorológico (Figura 1) é utilizado para instalação dos equipamentos que 
medem a temperatura e a umidade do ar em uma estação meteorológica. As dimensões 
dos abrigos são padronizadas, são construídos utilizando-se venezianas de madeira e são 
pintados de branco que é para refletir a luz solar. 
 
 
Figura 1 – Vista de um abrigo meteorológico 
 
 
7) Em um silo de 1000 t é utilizado um ventilador com vazão de 50 m3/min. Acoplado 
ao ventilador de aeração existe um sistema de refrigeração para resfriamento do ar. O 
ar ambiente em média tem temperatura de bulbo seco de 25º C e umidade relativa de 
70%. O sistema de refrigeração é dotado de um evaporador para promover o 
resfriamento do ar e de um aquecedor secundário para ajuste da temperatura e 
 8 
umidade relativa do ar de saída. Tanto o evaporador com o aquecedor apresentam-se 
na forma de uma serpentina. O usuário do sistema pretende ajustar o sistema de 
refrigeração de tal forma de a temperatura de bulbo seco do sistema seja de 12º C e a 
umidade relativa seja em torno de 70%. Determine quanto de energia o sistema de 
aeração deverá remover do ar. Admita que a pressão atmosférica do local é próxima 
da pressão ao nível do mar. 
Resposta: 
 A quantidade de energia removida do ar em um sistema de refrigeração pode ser 
calculada por 
v
QhCR
⋅∆
= 
em que, 
CR = capacidade de refrigeração do sistema, kJ/h; 
�h = diferença de entalpia do ar, kJ/kg de ar seco; 
Q = vazão de ar, m3/h; 
v = volume específico do ar, m3/kg de ar seco. 
 
Usando o gráfico psicrométrico da Figura 2, podemos calcular a diferença de entalpia 
entre o ar ambiente e o ar na saída do sistema de refrigeração (representada pelas linhas 
vermelhas). A entalpia do ar ambiente é de 62 kJ/kg de ar seco e a entalpia do ar 
refrigerado é de 28,5 kJ/kg de arf seco (Note que a divisão de escala do gráfico é de 2 
kJ/kg de ar seco). Assim tem-se 
oardekg
kJh
sec
5,335,2862 =−=∆ 
O volume específico do ar é de 0,863 m3/kg de ar seco (linha verde). Ou seja, 
oardekg
m
v
sec
863,0
3
= 
A vazão de ar. em m3/hora, é dada por 
h
m
h
mQ
33
3000
1
min60
min
50 =⋅= 
 
Assim, a quantidade de energia de deverá ser removida do sistema é de: 
h
kJCR 2,116454863,0
30005,33
=
⋅
= 
Portanto, o sistema de refrigeração deverá remover 116454,2 kJ por hora. 
 
 
 9 
 
 
Figura 2 – Gráfico psicrométrico ilustrando as transformações apresentadas no exercício 
7. 
 
 
 
 
8) Um secador de milho de 40 toneladas por hora trabalha com 1200 m3 por minuto de ar 
a 100º C. Se o ar ambiente está com temperatura de bulbo seco de 25º C e umidade 
relativa de 80%, determine a quantidade de energia necessária para aquecer o ar 
durante uma hora. Se o sistema de aquecimento de ar tiver uma eficiência energética 
de 80% e se o combustível utilizado liberar 12000 kJ por kg, calcule o consumo de 
combustível por hora de operação do secador. 
Resposta: 
 Vamos utilizar um gráfico psicrométrico para obter as condições do ar ambiente e do 
ar de secagem. Será considerado que o combustível libera uma quantidade de água 
desprezível para o ar. Assim, de acordo com o gráfico psicrométrico representado na 
Figura 3 tem-se: 
 
Propriedade do ar Ar ambiente Ar de secagem 
Temperatura de bulbo seco (o C) 20 100 
Umidade relativa (%) 80,0 2,4 
Entalpia (kJ/kg de ar seco) 66,0 146,0 
Volume específico (m3/kg de ar seco) 0,87 1,07 
 
 
Quando se especifica a vazão de ar de um secador geralmente ela se refere às 
condições ambientes. Sendo assim, a massa de ar seco que passa por hora pelo secador 
para uma vazão Q = 1200 m3/min e um volume específico de 0,87 m3/kg de ar seco é de: 
 10 
hora
secoarkg82758,62
0,87
601200
v
60QM
e
=
⋅
=
⋅
=� 
 
Considerando que o ar ambiente tem uma entalpia de 66 kJ/kg de ar seco e o ar de 
secagem tem 146 kJ/kg de ar seco, a quantidade de energia necessáriapara aquecer 
82758,62 kg de ar seco por hora ar é de: 
( ) ( )
hora
kJEEME ambienteagem 66,66206896614662,82758sec =−⋅=−⋅= �� 
 
A quantidade de combustível queimada por hora, para um combustível que libera 
12000 kJ por kg e para um sistema de tem eficiência de 80%, é de: 
hora
lcombustívedekg
P
EC
c
66,689
100
8012000
66,6620689
=
⋅
=
⋅
=
η
�
�
 
 
 
9) Em um silo secador de 8,4 metros de diâmetro é colocada uma camada de 1,20 metros 
de altura de milho com 25% de umidade, em base úmida, equivalente a 47000 kg de 
milho úmido. O silo é dotado de um ventilador com vazão de 550 m3/min. O secador 
é regulado para trabalhar com 40º C e as condições ambientes são temperatura de 
bulbo seco de 25º C e umidade relativa de 70%. Determine o tempo de secagem do 
produto considerando que o ar sai em média do secador com umidade relativa de 70% 
e que o teor de umidade final médio deva ser de 13% base úmida. 
Resposta: 
Vamos utilizar um gráfico psicrométrico para obter as condições do ar ambiente, do ar 
de secagem e do ar saindo do secador. Será considerado que o combustível libera uma 
quantidade de água desprezível para o ar. Assim, de acordo com o gráfico psicrométrico 
representado na Figura 4 tem-se: 
Propriedades do ar Ar ambiente Ar de secagem Ar na saída do silo 
Temperatura de bulbo 
seco, oC 
25,0 40,0 28,4 
Umidade relativa, % 70,0 30,0 70,0 
Razão de mistura, kg de 
H2O/kg de ar seco 
0,0137 0,0137 0,0180 
Volume específico do ar, 
m
3/kg de ar seco 
0,868 0,910 0,887 
 
 
Quando se especifica a vazão de ar de um secador geralmente ela se refere às 
condições ambientes. Sendo assim, a massa de ar seco que passa por hora pelo secador 
para uma vazão Q = 550 m3/min e um volume específico ve = 0,868 m3/kg de ar seco é 
de: 
hora
secoarkg38018,43
0,868
60550
v
60QM
e
=
⋅
=
⋅
=� 
 
 
 
 11 
 
A quantidade de água removida por hora do secador para uma razão de mistura de 
entrada de 0,0137 kg de H2O por kg de ar seco e uma razão de mistura de saída de 0,0180 
kg de H20 por kg de ar seco é de: 
( ) ( )
hora
OHdekgWWMA entradasaída 248,1630137,00180,043,38018 =−⋅=−⋅= �� 
 A quantidade de água a ser removida do produto, para Ui=25% b.u. e Uf=13% b.u. e 
para uma massa de produto inicial de 47000 kg de milho, é dada por: 
águadekg
U
UU
MA
f
fi
itotal 76,648213100
132547000
100
=�
�
�
�
�
�
−
−
⋅=
�
�
�
�
�
�
�
�
−
−
⋅= 
 O tempo de secagem calculado é de: 
horas
A
A
t totalagem 65,3948,163
76,6482
sec === �
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 12 
 
Figura 3 – Esquema do aquecimento de ar apresentado no exercício 8. 
 
 
 
 
 
 
 13 
 
 
Figura 4 – Esquema mostrando as transformações ilustradas no exercício 9.

Outros materiais