Prévia do material em texto
m quarta, 1 jun 2022, 10:39 Estado Finalizada Concluída em quarta, 1 jun 2022, 11:10 Tempo empregado 31 minutos 41 segundos Avaliar 10,00 de um máximo de 10,00(100%) Questão 1 Correto Atingiu 1,00 de 1,00 Antes de aplicarmos o método de Newton para refinamento das raízes de uma função, devemos realizar o isolamento das raízes por meio do método gráfico. Nesse sentido, suponha que esse trabalho inicial foi realizado e determinamos que . Dessa forma, considere a função e uma tolerância . Ao utilizarmos o método de Newton, assinale a alternativa que corresponde ao número mínimo de iterações necessárias para encontrarmos uma raiz pertencente ao intervalo . a. 1. b. 2. c. 7 . d. 5. Resposta correta. A alternativa está correta, pois aplicando o método de Newton para a função , verificamos que o número mínimo de iterações com a tolerância e intervalos dados é igual a 5, conforme tabela a seguir: 0 0,1 -2,2025851 11 1 0,30023501 -0,9029547 4,33072417 0,20023501 2 0,50873472 -0,1670939 2,965661 0,20849971 3 0,56507759 -0,0057146 2,76966848 0,05634287 4 0,56714088 -6,65E-06 2,76323032 0,00206329 5 0,56714329 -9,003E-12 2,76322283 2,4066E-06 e. 3. A resposta correta é: 5. Questão 2 Correto Atingiu 1,00 de 1,00 Uma das aplicação dos métodos numéricos é o cálculo de raízes de funções. Ao utilizar o método de Newton, calcule a quinta ( ) aproximação da raiz positiva da função . Para tanto, isole a raiz em um intervalo ( e naturais) de comprimento 1, isto é, . Note que, ao determinar a raiz positiva da função dada, você estará calculando uma aproximação para a raiz quadrada de 10. Assinale a alternativa que apresenta o valor correto de . a. b. c. d. e. Resposta correta. A alternativa está correta, pois aplicando o método de Newton para a função , calculamos uma aproximação para a raiz quadrada de 10, logo, . 0 4 6 8 1 3,25 0,5625 6,5 0,75 2 3,16346154 0,00748891 6,32692308 0,08653846 3 3,16227788 1,401E-06 6,32455576 0,00118366 4 3,16227766 4,9738E-14 6,32455532 2,2152E-07 A resposta correta é: Questão 3 Correto Atingiu 1,00 de 1,00 Um dos métodos numéricos utilizados para determinação das raízes de uma função qualquer é o método da iteração linear. Considere , em que . Assim, a partir do uso do método linear e considerando a sequência de raízes , calcule o . Assinale a alternativa correta. a. 2,13977838. Resposta correta. A alternativa está correta, pois aplicando o método da iteração linear e calculando a função de iteração , encontramos , conforme podemos verificar na tabela a seguir: 0 2 1 2,13198295 0,131982947 2 2,13931949 0,007336548 3 2,13977838 0,000458881 b. 2,13980919. c. 2,13198295. d. 2,13235678. e. 2,13931949. A resposta correta é: 2,13977838. Questão 4 Correto Atingiu 1,00 de 1,00 Com a equação de Lambert, dada por , em que t é um número real positivo, é possível obter uma única solução , que pertence ao intervalo [0,t]. Por intermédio do método de Newton e usando essa estimativa como intervalo inicial, calcule quantas iterações são necessárias para obter o valor numérico de quando t=2, considere uma tolerância . Assinale a alternativa correta. a. 5. b. 6. Resposta correta. A alternativa está correta, pois aplicando o método de Newton na função , determinamos que o número mínimo de iterações é igual a 6, conforme a tabela a seguir: 0 2 12,7781122 22,1671683 1 1,42355686 3,910411301 10,0622731 0,57644314 2 1,03493579 0,913267121 5,7281926 0,38862107 3 0,87550206 0,10127495 4,50135492 0,15943373 4 0,85300329 0,001729204 4,34841325 0,02249877 5 0,85260562 5,29273E-07 4,34575157 0,00039766 6 0,8526055 5,01821E-14 4,34575075 1,2179E-07 c. 4. d. 7. e. 8. A resposta correta é: 6. Questão 5 Correto Atingiu 1,00 de 1,00 Vamos considerar um problema físico de estática: uma plataforma está fixada em uma janela de madeira por meio de uma dobradiça, em que momento é calculado por , é o ângulo da plataforma com a horizontal e k é uma constante positiva. A plataforma é feita de material homogêneo, seu peso é P e sua largura é l. Modelando o problema, podemos mostrar que com . A partir do método de Newton, com uma tolerância e o menor número possível de iterações, determine o valor de para l=1 m, P=400 N, k=50 Nm/rad, sabendo que o sistema está em equilíbrio. Assinale a alternativa que corresponde ao valor correto de . a. . b. . c. . d. . e. . Resposta correta. A alternativa está correta, pois aplicando o método de Newton na função , determinamos que satisfaz a tolerância desejada, conforme a tabela a seguir: 0 1,57079633 1,57079633 5 1 1,25663706 0,02056908 4,80422607 0,31415927 2 1,25235561 1,1379E-05 4,79889904 0,00428146 3 1,25235323 3,5203E-12 4,79889607 2,3711E-06 A resposta correta é: . Questão 6 Correto Atingiu 1,00 de 1,00 Questão 7 Correto Atingiu 1,00 de 1,00 Um dos métodos numéricos utilizados para determinação das raízes de uma função polinomial é o método da iteração linear. Isole a raiz positiva da função polinomial em um intervalo ( e naturais) de comprimento 1, isto é, Calcule a quarta ( ) aproximação para esta raiz, considere . Assinale a alternativa correta. a. 1,07989647. b. 1,10048178. c. 1,07998603. Resposta correta. A alternativa está correta, pois aplicando o método da iteração linear e calculando a função de iteração , encontramos , conforme a tabela a seguir: 0 1,4 1 1,10048178 0,299518223 2 1,08125569 0,019226082 3 1,07998603 0,001269666 d. 1,08125569. e. 1,07990202. A resposta correta é: 1,07998603. Quando desejamos determinar a raiz de uma função com precisão elevada, podemos utilizar o método de Newton. Sendo assim, considere a função e uma tolerância . Utilizando o método de Newton, calcule qual o número mínimo de iterações necessárias para encontrar uma raiz pertencente ao intervalo [2,7;3,3]. Assinale a alternativa correta. a. 5. b. 7. c. 9 . d. 3. Resposta correta. A alternativa está correta, pois aplicando o método de Newton para a função , percebemos que o número mínimo de iterações é igual a 3, conforme tabela a seguir: 0 3,3 1,60892373 6,52810763 1 3,05353903 0,06096316 6,03339181 0,24646097 2 3,04343474 0,00010247 6,01310873 0,01010429 3 3,0434177 2,9149E-10 6,01307452 1,7042E-05 e. 1. A resposta correta é: 3. Questão 8 Correto Atingiu 1,00 de 1,00 Um dos métodos numéricos usado na resolução de equações/funções é o método da iteração linear, também conhecido como método do ponto fixo. A partir da utilização do método citado, calcule em relação à sequência de raízes aproximadas da raiz da função no intervalo de . Para tanto, faça e escolha uma função de iteração apropriada. Assinale a alternativa correta. a. 0,003458. b. 0,444036. c. 0,000772. d. 0,054729. e. 0,006486. Resposta correta. A alternativa está correta, pois aplicando o método da iteração linear e calculando a função de iteração igual a , obtemos , como podemos verificar na tabela a seguir: 0 -0,2 1 -0,6440364 0,444036421 2 -0,5893074 0,054728994 3 -0,5957933 0,006485872 A resposta correta é: 0,006486. Questão 9 Correto Atingiu 1,00 de 1,00 Em problemas de fluxo em tubulações, precisamos resolver a seguinte equação: Se , e , usando o método da iteração linear, calcule a raiz da equação dada, com uma tolerância e o menor número possível de iterações. Para isso, isole a raiz num intervalo de comprimento 1, ou seja, ( e inteiros) e . FRANCO, N. M. B. Cálculo Numérico. São Paulo: Pearson, 2006. Assinale a alternativacorreta. a. -0,4000002. b. -0,3996868. Resposta correta. A alternativa está correta, pois aplicando o método da iteração linear e calculando a função , encontramos , conforme a tabela a seguir: 0 -1 1 -0,4128918 0,587108208 2 -0,3999897 0,012902141 3 -0,3996868 0,000302884 c. -0,4003081. d. -0,4131667. e. -0,3999897. A resposta correta é: -0,3996868. Questão 10 Correto Atingiu 1,00 de 1,00 Isolando a raiz positiva da função em um intervalo ( e naturais) de comprimento 1, isto é, e utilizando o método da Iteração Linear, calcule a terceira ( ) aproximação para esta raiz. Calcule e escolha uma função de iteração apropriada. Assinale a alternativa correta. a. 1,10048178. b. 1,07990202. c. 1,07989647. d. 1,07998603. e. 1,08125569. Resposta correta. A alternativa está correta, pois aplicando o método da iteração linear e calculando a função de iteração igual a , encontramos , conforme a tabela a seguir: 0 1,4 1 1,10048178 0,299518223 2 1,08125569 0,019226082 A resposta correta é: 1,08125569.