Buscar

16-Memória de Massa em sistemas operacionais

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 25 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 25 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 25 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Memória de Massa em sistemas 
operacionais
APRESENTAÇÃO
Você sabia que, para utilização de sistemas operacionais em computadores, muitas vezes, faz-se 
necessário a utilização de um dispositivo de memória permanente? 
Esses dispositivos podem ser chamados de memória de massa e servem para armazenar dados p
ermanentemente, ou seja, diferentemente da memória RAM, os dados permanecem nos dispositi
vos mesmo com a ausência de energia elétrica. Existe uma variedade de dispositivos para armaz
enamento em massa, como por exemplo, disco rígido, pendrive e cartões de memória. 
Nesta Unidade de Aprendizagem, o foco do conteúdo está no principal dispositivo de memória d
e massa, o disco rígido, e na tecnologia RAID, que permite alterar as características do armazen
amento com disco rígido. 
Bons estudos.
Ao final desta Unidade de Aprendizagem, você deve apresentar os seguintes aprendizados:
Definir o funcionamento das interfaces de discos.•
Identificar os diversos tipos de RAID.•
Descrever o funcionamento da paridade em sistemas RAID.•
DESAFIO
Você é o Analista de Suporte de uma empresa e deseja implementar um arranjo de discos do tip
o RAID 5.
Esse arranjo de discos será utilizado em um servidor de arquivos e, quanto maior for a capacida
de de armazenamento, melhor, pois serão definidas cotas para cada compartilhamento desse serv
idor.
Você possui 6 discos de 800 gigabytes para formar o arranjo. Qual será a capacidade máxima de 
armazenamento nesse servidor? Justifique.
INFOGRÁFICO
Existem diversos tipos de dispositivos de armazenamento e eles podem funcionar através de mei
os magnéticos como por exemplo: disco rígido e meios ópticos como CD e DVD além dos meio
s eletrônicos como SSDs/chip, cartão de memória ou pen drive. Importante salientar que a Rand
om Access Memory (RAM), não é um dispositivo de armazenamento de informações.
Veja neste Infográfico os principais dispositivos e tecnologias de armazenagem de dados.
CONTEÚDO DO LIVRO
No capítulo indicado para leitura nesta unidade de aprendizagem é possível entender melhor sob
re as tecnologias utilizadas em memórias de massa. Dentre as tecnologias apresentadas no capítu
lo estão IDE, SATA, e RAID.
Boa leitura! 
 
SISTEMAS 
OPERACIONAIS
Ramiro Córdova Júnior
Memória de massa em 
sistemas operacionais
Objetivos de aprendizagem
Ao final deste texto, você deve apresentar os seguintes aprendizados:
 � Definir o funcionamento das interfaces de discos.
 � Identificar os diversos tipos de RAID.
 � Descrever o funcionamento da paridade em sistemas RAID.
Introdução
Os dispositivos de armazenamento em massa são essenciais ao funciona-
mento de um sistema operacional. Esses dispositivos são responsáveis por 
armazenar os dados permanentes, ou seja, os que devem estar sempre 
disponíveis no computador. Existem diversas tecnologias que permitem 
realizar a comunicação entre os discos e a placa-mãe e também o ge-
renciamento dessas comunicações.
Neste capítulo você vai conhecer as tecnologias mais comuns rela-
cionadas a discos, bem como entender os tipos de arranjos RAID e seus 
níveis. O esquema de paridade que garante a integridade dos dados nos 
arranjos RAID também será abordado durante a descrição dos níveis.
Funcionamento das interfaces de discos
O armazenamento de dados em discos conhecidos como Disco Rígido ou Hard 
Disk (HD) é bastante utilizado em computadores para guardar desde arquivos 
pessoais até arquivos com informações de mais baixo nível, utilizados para 
o funcionamento do sistema operacional. A gravação dos dados no disco se 
dá por um campo magnético que se cria entre os pratos (discos). Um HD é 
um tipo de memória "não volátil". Isso significa, que mesmo se a energia do 
computador for desligada, os dados permanecerão no disco.
Os HDs têm grande variedade em sua capacidade de armazenamento, 
medida em gigabytes e terabytes. Discos rígidos de 500 GB, por exemplo, são 
comuns em muitos computadores atuais. A média da música de quatro minutos 
no iTunes é de aproximadamente 4 MB. Como existem 1.000 megabytes em 1 
gigabyte, isso significa que um computador com um disco rígido de 500 GB 
pode armazenar cerca de 250.000 músicas.
Internamente um HD é constituído de pratos circulares chamados de discos, 
onde os dados são armazenados. Com a utilização de um braço atuador, que 
fica entre os pratos que compõem o disco, os dados são escritos e lidos. Os 
discos ficam em rotação constante enquanto estiverem energizados. A Figura 1 
apresenta a estrutura interna de um HD.
Figura 1. Estrutura interna de um HD.
Fonte: Microcamp Tecnologia (2013, documento on-line).
Outra tecnologia utilizada para armazenamento de dados em massa, que 
vem se consolidando no mercado, é a dos discos SSD (Solid State Drive). 
Diferentemente de um HD, os discos SSDs não possuem nada mecânico, 
pois os dados são armazenados em chips de memória flash. Esta tecnologia 
proporciona mais rapidez no acesso aos dados e é menos propensa a falhas 
Memória de massa em sistemas operacionais2
pelo fato de não possuir peças que se movimentam. Como os discos SSDs são 
uma tecnologia recente, o valor dos discos é mais elevado em comparação 
com os HDs. A Figura 2 apresenta uma comparação entre a estrutura de um 
HD e um disco SSD.
Figura 2. Comparação de um HD e um disco SSD.
Fonte: Recomendações de notebooks (2015, documento on-line).
Os HDs necessitam de uma interface que controle a comunicação entre o 
disco e a placa-mãe. As interfaces mais conhecidas são: 
 � IDE (Integrated Drive Electronics);
 � SCSI (Small Computer System Interface);
 � SATA (Serial Attachment).
A IDE é uma interface utilizada em discos rígidos e unidades de CD ou 
DVD. Seu funcionamento é baseado no padrão de barramento de 16 bits IBM 
PC Industry Architecture (ISA), mas é usada também em computadores que 
usam outros padrões de barramento. O IDE foi adotado como padrão pelo 
American National Standards Institute (ANSI) em novembro de 1990. Nos 
computadores atuais, o controlador IDE é geralmente embutido na placa-mãe. 
No passado, os controladores eram dispositivos externos e separados, o que 
reduzia os problemas relacionados aos controladores integrados.
3Memória de massa em sistemas operacionais
As placas-mãe mais antigas possuíam apenas uma interface IDE mas, 
ao longo do tempo, tornou-se padrão o uso de duas interfaces IDE, chama-
das de IDE0 e IDE1. Cada interface IDE pode gerenciar dois dispositivos e 
para diferenciar aqueles conectados à mesma interface, um dos dispositivos 
era configurado como “master” e o outro como “slave”. Essa configuração 
geralmente era realizada por meio de jumpers. A Figura 3 apresenta como 
pode ser realizada a conexão através de um cabo chamado flat cable e ajuda 
a compreender como essas interfaces se organizam.
Figura 3. Conexão de dispositivos IDE.
Fonte: Pctechguide.com (2011, documento on-line).
A interface de comunicação SCSI foi criada nos anos 1980 e era bastante 
utilizada em computadores de grande porte, os chamados mainframes. Ao 
Memória de massa em sistemas operacionais4
longo do tempo, a taxa de transferência das interfaces SCSI foi aumentando, 
permitindo modelos de discos mais velozes que os IDE. As placas de interfaces 
SCSI possuem um conector externo e dois conectores internos. A Figura 4 
apresenta uma placa de interface SCSI.
Figura 4. Placa de interface SCSI.
Fonte: Tyson e Wilson (2006, documento on-line).
As interfaces SATA vem ao longo do tempo substituindo as interfaces 
IDE, tanto em computadores pessoais quanto nos portáteis. A primeira grande 
vantagem da SATA em relação ao IDE é referente ao tamanho dos cabos, 
que eram enormes nos dispositivos IDEs, por apresentarem transferência de 
dados de forma paralela. Como no SATA tudo é feito em série, um pequeno 
cabo é capaz de realizar a tarefa. A transferência de dados em um dispositivo 
SATA também supera os antigos padrões IDE. No novo formato, temos dois 
tipos de velocidade, que são 150MB/s, no padrão SATA normal, e chegama 300MB/s nos novos discos denominados SATA II. A Figura 5 apresenta a 
conexão SATA em um disco.
5Memória de massa em sistemas operacionais
Figura 5. Conexões SATA.
Fonte: Koch (2019).
Arranjos RAID
RAID é uma tecnologia usada para aumentar o desempenho e/ou a confiabi-
lidade do armazenamento de dados. A abreviatura significa Redundant Array 
of Inexpensive Disks. Um sistema RAID consiste em dois ou mais drives 
trabalhando em paralelo. Esses discos podem ser discos rígidos, mas há uma 
tendência de também usar a tecnologia para SSDs. Existem diferentes níveis 
de RAID, cada um otimizado para uma situação específica. 
No RAID nível 0 (striping) os dados são divididos em blocos que são 
gravados em todas as unidades da matriz. Usando múltiplos discos (pelo 
menos dois) ao mesmo tempo, isso oferece um desempenho elevado nas 
operações de entrada e saída. Esse desempenho pode ser aprimorado ainda 
mais usando vários controladores RAID. O RAID 0 é ideal para arma-
zenamento não crítico de dados que precisam ser lidos/gravados em alta 
velocidade, como em uma estação de edição de vídeo. A Figura 6 apresenta 
a organização do RAID 0.
Memória de massa em sistemas operacionais6
Figura 6. RAID 0.
Fonte: Prepressure (2017, documento on-line).
Nos arranjos de RAID nível 1, os dados são armazenados duas vezes, 
sendo gravados na unidade de dados (ou conjunto de unidades de dados) 
e em uma unidade espelhada (ou conjunto de unidades). Se uma unidade 
falhar, o controlador usará a unidade de dados ou a unidade espelhada para 
recuperação de dados e continuará a operação. Para a implementação desse 
nível, são necessárias duas unidades para uma matriz RAID 1. Esse é ideal 
para armazenamento de missão crítica, por exemplo, para sistemas contábeis. 
Também é adequado para pequenos servidores nos quais apenas duas unidades 
de dados serão usadas. A Figura 7 apresenta o arranjo de discos de RAID 1.
7Memória de massa em sistemas operacionais
Figura 7. Arranjo de discos RAID 1.
Fonte: Prepressure (2017, documento on-line).
O arranjo de RAID 2 é similar ao RAID 0 e atualmente esta tecnologia 
é obsoleta. 
O RAID 3 divide os dados, a nível de bytes, entre vários discos. A paridade 
é gravada em um disco separado. Para o uso desse nível, o hardware deve 
possuir esse tipo de suporte implementado. Se um drive falhar, o controlador 
apenas finge que todos os seus bits são “zeros”. Se uma palavra apresentar erro 
de paridade, o bit que vem do drive extinto deve ter sido um “um”, portanto, 
é corrigido. Isso aumenta a confiabilidade dos dados gravados. Ou seja, se 
algum dos discos avariar, a paridade pode ser imediatamente utilizada para 
reconstituir seu conteúdo. 
O RAID 4 é semelhante ao RAID 3, mas utiliza bloco de dados maiores. 
O RAID 5 é o nível mais comum de RAID seguro. Requer pelo menos três 
unidades, mas pode trabalhar com até 16. Os blocos de dados são distribuídos 
pelas unidades. Em uma delas, é gravada uma soma de verificação de paridade 
de todos os dados. Os dados de paridade não são gravados em uma unidade 
fixa, mas espalhados em todas as unidades, como mostra a Figura 8. Usando 
os dados de paridade, o computador pode recalcular os dados de um dos outros 
blocos de dados, caso esses dados não estejam mais disponíveis. Isso significa 
Memória de massa em sistemas operacionais8
que um arranjo RAID 5 pode suportar uma única falha de unidade sem perder 
ou acessar dados. Embora o RAID 5 possa ser alcançado via software, um 
controlador de hardware é recomendado. Muitas vezes, a memória cache 
extra é usada nesses controladores para melhorar o desempenho de gravação. 
O RAID 5 é ideal para servidores de arquivos e aplicativos que possuem um 
número limitado de unidades de dados.
Figura 8. RAID 5.
Fonte: Prepressure (2017, documento on-line).
O RAID 6 é similar ao RAID 5, mas os dados de paridade são gravados 
em duas unidades. Isso significa que requer pelo menos quatro unidades e 
pode suportar duas unidades falhando simultaneamente. As chances de duas 
unidades falharem exatamente no mesmo momento é muito pequena. No 
entanto, se uma unidade em um sistema RAID 5 falhar e for substituída por 
uma nova, serão necessárias várias horas, às vezes até mais de um dia, para 
reconstruí-la. Se outra unidade falhar durante esse período, todos os dados 
serão perdidos. Com o RAID 6, o arranjo RAID se mantém funcionando até 
mesmo com a segunda falha. A Figura 9 apresenta o arranjo RAID 6.
9Memória de massa em sistemas operacionais
Figura 9. RAID 6.
Fonte: Prepressure (2017, documento on-line).
Também é possível combinar as vantagens (e desvantagens) do RAID 0 
e do RAID 1 (conhecido como RAID 10) em um único arranjo. Esta é uma 
configuração RAID aninhada ou híbrida, e fornece segurança espelhando 
todos os dados nas unidades secundárias enquanto usa a distribuição em 
cada conjunto de unidades para acelerar as transferências de dados. Se algo 
der errado com um dos discos em uma configuração RAID 10, o tempo 
de reconstrução dos dados será muito rápido, já que é necessário apenas 
copiar todos os dados espelhados para uma nova unidade. Isso pode ser feito 
em apenas 30 minutos para unidades de 1 TB. Porém, um fator negativo 
para RAID 10 é que metade da capacidade de armazenamento vai para o 
espelhamento. Portanto, em comparação com grandes arranjos RAID 5 ou 
RAID 6, essa é uma maneira cara de ter redundância. A Figura 10 apresenta 
o arranjo RAID 10.
Memória de massa em sistemas operacionais10
Figura 10. RAID 10.
Fonte: Prepressure (2017, documento on-line).
KOCH, T. How to assemble a desktop PC. DocBox, 2019. Disponível em: <https://techno-
docbox.com/PC_Support/75941634-How-to-assemble-a-desktop-pc.html>. Acesso 
em: 11 jan. 2019.
MICROCAMP TECNOLOGIA. Conheça a anatomia de um disco rígido. 26 set. 2013. Dispo-
nível em: <http://bloghardwaremicrocamp.com.br/manutencao/conheca-a-anatomia-
-de-um-disco-rigido/>. Acesso em: 17 dez. 2018.
PCTECHGUIDE.COM. ideconfig.gif. 2011. Disponível em: <https://www.pctechguide.
com/how-to-install-a-front-loading-drive/cd-rw-installation-connection/attachment/
ideconfig-gif>. Acesso em: 17 dez. 2018.
PREPRESSURE. RAID. 17 jan. 2017. Disponível em: <https://www.prepressure.com/library/
technology/raid>. Acesso em: 17 dez. 2018.
11Memória de massa em sistemas operacionais
RECOMENDAÇÕES DE NOTEBOOKS. SSD é o melhor upgrade para os notebooks. 01 jun. 
2015. Disponível em: <https://www.recomendacaodenotebooks.com.br/ssd-e-o-
-melhor-upgrade-para-os-notebooks/>. Acesso em: 17 dez. 2018.
TYSON, J.; WILSON, T. V. How SCSI Works. 2006. Disponível em: <https://computer.
howstuffworks.com/scsi3.htm>. Acesso em: 17 dez. 2018.
Leituras recomendadas
MACÊDO, D. RAID: conceito e tipos. 13 jun. 2012. Disponível em: <http://www.diego-
macedo.com.br/raid-conceito-e-tipos/>. Acesso em: 17 dez. 2018.
MARKMAN, N. What are the functions of a hard drive? 2018. Disponível em: <https://
www.techwalla.com/articles/what-are-the-functions-of-a-hard-drive>. Acesso em: 
17 dez. 2018.
VASCONCELOS, L. Hardware na prática. 4. ed. Rio de Janeiro: LVC, 2014.
Memória de massa em sistemas operacionais12
Conteúdo:
DICA DO PROFESSOR
O vídeo seguinte apresenta o aplicativo para gerenciamento de discos do Windows, que possibili
ta a execução da maioria das tarefas relacionadas a discos, sem a necessidade de reinicializar o s
istema operacional ou interromper as ações dos usuários. 
Aponte a câmera para o código e acesse o link do vídeo ou clique no código para acessar.
EXERCÍCIOS
1) Qual o nome da interface de controle de discos que utiliza o cabo flat para comunicaç
ão entre o disco e a placa-mãe? 
A) 
SCSI.
B) 
SATA.
C) 
RAID 0.
D) 
IDE.
E) 
USB.
2) Para que servem as configurações de master e slave em discos IDE? 
A) 
Para permitir a utilização de RAID.
B) 
Para permitir a conexão de dispositivos sem fio.
C) 
Para permitir a conexão de dois dispositivos IDE na mesma controladora.
D) 
Para permitir a utilização de dispositivos SCSI.
https://fast.player.liquidplatform.com/pApiv2/embed/cee29914fad5b594d8f5918df1e801fd/96c97b0cb884d509ef2cdfa42bdfba98E) 
Para permitir a utilização de mais de dois dispositivos em uma controladora IDE.
3) Qual o nível de RAID que permite a utilização de dois discos de 500 GB para armaze
namento de 1 TB de forma transparente ao usuário? 
A) 
Raid 0.
B) 
Raid 1.
C) 
Raid 3.
D) 
Raid 4.
E) 
Raid 5.
4) Qual o nível de RAID que permite o espelhamento dos dados, ou seja, uma cópia dos 
dados em outro disco de forma transparente para o usuário? 
A) 
RAID 0.
B) 
RAID 1.
C) 
RAID 2.
D) 
RAID 10.
E) 
RAID 5.
5) Qual a função da paridade na implementação de RAID? 
A) 
Permite a reconstrução de um dado perdido.
B) 
Permite a inserção de um novo disco.
C) 
Permite a definição de um dispositivo IDE como slave.
D) 
Permite a implementação de RAID nível 0.
E) 
Permite implementar um sistema de backup.
NA PRÁTICA
Alessandro necessitava criar um sistema de RAID nível 1 em um servidor de desenvolvimento d
a empresa para solucionar o problema de segurança no armazenamento dos dados. O computado
r possuía 2 discos de 200 gigabytes cada e, após realizar todas as configurações no sistema oper
acional e reiniciar o computador, Alessandro percebeu que a configuração de RAID nível 1 não 
estava funcionando.
Ele repetiu os procedimentos novamente e não obteve êxito. Então, Alessandro contatou a fabric
ante da placa-mãe, que informou que era necessário ativar o modo de operação RAID nas contro
ladoras de disco.
SAIBA +
Para ampliar o seu conhecimento a respeito desse assunto, veja abaixo as sugestões do professo
r:
No vídeo seguinte são apresentadas as configurações de RAID: espelhamento, divisão de d
ados e paridade, mostrando como os níveis de RAID utilizam essas tecnologias.
Aponte a câmera para o código e acesse o link do vídeo ou clique no código para acessar.
Você sabe qual é a diferença entre HD SATA e HD ATA? Essas terminologias se referem a
o tipo de conexão do componente. Veja mais na dica a seguir.
Aponte a câmera para o código e acesse o link do vídeo ou clique no código para acessar.
Na próxima dica você poderá ampliar seus conhecimentos sobre RAID (Redundant Array 
of Independent Disks) e seus principais níveis.
Aponte a câmera para o código e acesse o link do vídeo ou clique no código para acessar.
https://www.youtube.com/embed/8V5FoTQpjIE?list=PLQUsDCkMJBMnNF1IIsMeXIurR1XKMMqcl
https://www.techtudo.com.br/dicas-e-tutoriais/noticia/2016/05/qual-diferenca-entre-hd-sata-e-hd-ata-veja-detalhes-dos-discos-rigidos.html
https://www.infowester.com/raid.php

Continue navegando