Prévia do material em texto
Quando não dispomos de métodos analíticos capazes de calcular as raízes de uma função, podemos recorrer aos métodos numéricos, entre os quais está o método da iteração linear. Considerando , e uma função de iteração convenientemente escolhida. Aplique o método da iteração linear e as sequência de raízes , calcule . Assinale a alternativa correta. Resposta correta. A alternativa está correta, pois aplicando o método da iteração linear e calculando a função, encontramos, conforme a tabela a seguir: 0 1,5 1 1,24998326 0,250016739 2 1,33177094 0,081787682 · 1,33177094. · 1,24998326. · 1,30883956. · 1,31252021. · 1,30214031. Frequentemente, precisamos encontrar raízes de funções/equações associadas a problemas da Engenharia/Ciência. Um problema clássico é a determinação das órbitas dos satélites. A equação de Kepler, usada para determinar órbitas de satélites, é dada por: Suponha que sejam conhecidos e . Usando o método da iteração linear, calcule a raiz da equação dada, com uma tolerânciae o menor número possível de iterações. Para isso, isole a raiz num intervalo de comprimento 1, ou seja, ( e naturais) e . FRANCO, N. M. B. Cálculo Numérico. São Paulo: Pearson, 2006. Assinale a alternativa correta. esposta correta. A alternativa está correta, pois aplicando o método da iteração linear e calculando a função, encontramos, conforme a tabela a seguir: 0 0,2 1 0,6596008 0,459600799 2 0,78384043 0,124239632 3 0,81180133 0,027960901 4 0,8176584 0,005857072 · 0,78384043. · 0,81180133. · 0,8188639. · 0,8176584. · 0,81917211. Em problemas de fluxo em tubulações, precisamos resolver a seguinte equação: Se , e , usando o método da iteração linear, calcule a raiz da equação dada, com uma tolerânciae o menor número possível de iterações. Para isso, isole a raiz num intervalo de comprimento 1, ou seja, ( e inteiros) e . FRANCO, N. M. B. Cálculo Numérico. São Paulo: Pearson, 2006. Assinale a alternativa correta. esposta correta. A alternativa está correta, pois aplicando o método da iteração linear e calculando a função, encontramos, conforme a tabela a seguir: 0 -1 1 -0,4128918 0,587108208 2 -0,3999897 0,012902141 3 -0,3996868 0,000302884 · -0,4131667. · -0,3996868. · -0,3999897. · -0,4003081. amos considerar um problema físico de estática: uma plataforma está fixada em uma janela de madeira por meio de uma dobradiça, em que momento é calculado por , é o ângulo da plataforma com a horizontal e k é uma constante positiva. A plataforma é feita de material homogêneo, seu peso é P e sua largura é l. Modelando o problema, podemos mostrar que com . A partir do método de Newton, com uma tolerância e o menor número possível de iterações, determine o valor de para l=1 m, P=400 N, k=50 Nm/rad, sabendo que o sistema está em equilíbrio. Assinale a alternativa que corresponde ao valor correto de . Resposta correta. A alternativa está correta, pois aplicando o método de Newton na função, determinamos que satisfaz a tolerância desejada, conforme a tabela a seguir: 0 1,57079633 1,57079633 5 1 1,25663706 0,02056908 4,80422607 0,31415927 2 1,25235561 1,1379E-05 4,79889904 0,00428146 3 1,25235323 3,5203E-12 4,79889607 2,3711E-06 · . · . · . · . Antes de aplicarmos o método de Newton para determinação das raízes de uma equação, devemos isolá-las por meio do método gráfico. Dessa forma, suponha que essa etapa foi realizada e encontramos . Assinale a alternativa que apresenta quantas iterações são necessárias para calcular a raiz da função , pelo método de Newton, com uma tolerância , no intervalo [1;2]. Sua resposta está incorreta. A alternativa está incorreta, pois aplicando o método de Newton para a função , no intervalo, com uma tolerância, precisamos de pelo menos 4 iterações, conforme tabela a seguir: 0 2 2,69314718 4,5 1 1,40152285 0,30182569 3,51655529 0,598477151 2 1,31569292 0,00541132 3,39144161 0,085829929 3 1,31409734 1,8099E-06 3,38917331 0,001595582 4 1,3140968 2,025E-13 3,38917255 5,34032E-07 · 3 iterações. · 5 iterações. · 4 iterações. RESPOSTA CORRETA · 6 iterações. · 2 iterações. Um dos métodos mais robustos para resolução de equações é o método de Newton, uma vez que ele exige um grande conhecimento das derivadas da função. Assim, utilizando o método de Newton para a função , e sabendo que a raiz . Assinale a alternativa que indica qual o valor de . Resposta correta. A alternativa está correta, pois aplicando o método de Newton para a função, podemos verificar, por meio da tabela seguir, que. 0 -1,4 -1,0600657 2,97089946 1 -1,0431836 -0,0362392 2,72802289 0,35681642 2 -1,0298995 -8,952E-05 2,7144945 0,01328407 3 -1,0298665 -5,6E-10 2,71446054 3,2978E-05 · -1,0323456. · -1,0375845. · -1,0298665. · -1,0298995. Um dos métodos numéricos utilizados para determinação das raízes de uma função polinomial é o método da iteração linear. Isole a raiz positiva da função polinomial em um intervalo ( e naturais) de comprimento 1, isto é, Calcule a quarta ( ) aproximação para esta raiz, considere . Assinale a alternativa correta. Resposta correta. A alternativa está correta, pois aplicando o método da iteração linear e calculando a função de iteração, encontramos, conforme a tabela a seguir: 0 1,4 1 1,10048178 0,299518223 2 1,08125569 0,019226082 3 1,07998603 0,001269666 · 1,07989647. · 1,08125569. · 1,07990202. · 1,10048178. · 1,07998603. Apenas na minoria dos casos, nós podemos calcular as raízes de uma função através de métodos algébricos. Então, na maioria das situações, exige-se a aplicação de métodos numéricos. Diante disso, considerando , e uma função de iteração convenientemente escolhida. Aplique o método da iteração linear e a sequência de raízes . Assinale a alternativa que corresponde ao valor de . Resposta correta. A alternativa está correta, pois aplicando o método da iteração linear e calculando a função, encontramos, conforme a seguinte tabela: 0 1,9 1 1,16133316 0,738666842 2 1,36761525 0,206282096 3 1,29009217 0,077523087 4 1,31685381 0,026761642 · 1,16133316. · 1,3098133. · 1,29009217. · 1,36761525. · 1,31685381. O método da iteração linear, também conhecido como método do ponto fixo, é um forte aliado na determinação de raízes de funções por meio de métodos numéricos. Considerado a função , e uma função de iteração convenientemente escolhida. E, considerando a sequência de raízes , calcule o da função. Assinale a alternativa correta. Resposta correta. A alternativa está correta, pois aplicando o método da iteração linear e calculando a função, encontramos, conforme a tabela a seguir: 0 3 1 2,22023422 0,779765779 2 2,14517787 0,075056356 3 2,14014854 0,005029329 4 2,13983056 0,000317979 5 2,13981054 2,00222E-05 · 2,13981054. · 2,13983056. · 2,22023422. · 2,14517787. · 2,14014854. Antes de aplicarmos o método de Newton para refinamento das raízes de uma função, devemos realizar o isolamento das raízes por meio do método gráfico. Nesse sentido, suponha que esse trabalho inicial foi realizado e determinamos que . Dessa forma, considere a função e uma tolerância . Ao utilizarmos o método de Newton, assinale a alternativa que corresponde ao número mínimo de iterações necessárias para encontrarmos uma raiz pertencente ao intervalo . Resposta correta. A alternativa está correta, pois aplicando o método de Newton para a função, verificamos que o número mínimo de iterações com a tolerância e intervalos dados é igual a 5, conforme tabela a seguir: 0 0,1 -2,2025851 11 1 0,30023501 -0,9029547 4,33072417 0,20023501 2 0,50873472 -0,1670939 2,965661 0,20849971 3 0,56507759 -0,0057146 2,76966848 0,05634287 4 0,56714088 -6,65E-062,76323032 0,00206329 5 0,56714329 -9,003E-12 2,76322283 2,4066E-06 · 5. · 1. · 7 . · 2. · 3.