218 pág.

Pré-visualização | Página 3 de 49
L, VL = - L di / dt. O fator L é denominado indutância da bobina e a unidade adotada é o 8 Henry (H), correspondendo a 1 V s / A (homenagem a Joseph Henry). Indutor é o nome genérico para o componente que apresenta indutância. Notar o sinal negativo na fórmula da indutância. Isto significa que a força eletromotriz auto- induzida produz uma corrente que se opõe à variação da corrente aplicada. Analogia entre Circuitos Magnéticos e Elétricos Um circuito elétrico de resistência (R), ilustrado na figura a), é percorrido por uma corrente (I) de cargas elétricas movidas por uma força eletromotriz (f.e.m.), segundo a lei de Ohm: V = f.e.m. = R.I De modo análogo, um circuito magnético de relutância (R), ilustrado na figura b), é submetido a um fluxo (ö), resultante da orientação dos dipolos magnéticos do material por ação de uma força magnetomotriz. Enquanto cargas elétricas de fato percorrem o circuito elétrico, os dipolos magnéticos apenas modificam a sua orientação, sendo o fluxo magnético uma abstração para explicar como o efeito magnético se propaga através dos materiais. A noção de campo elétrico (E) e campo magnético (H) é necessária para explicar a ação remota dos fenômenos eletromagnéticos, mesmo através do vácuo, onde não existem nem cargas nem A f.e.m. cria um campo elétrico devido à separação das cargas de polaridade diferente (Positiva e Negativa), resultando a corrente elétrica I no circuito condutor. A f.m.m., por sua vez, cria um campo magnético através da orientação dos dipolos magnéticos (Norte-Sul). Esse campo estabelece um fluxo magnético � porém não resulta em uma “corrente magnética”, daí a analogia entre circuito elétrico e circuito magnético não ser perfeita e a "lei de Ohm magnética” requerer devida interpretação. Com o alinhamento dos dipolos, resultam as linhas de campo magnético através do meio, produzindo os enlaces que chamamos de fluxo magnético, responsável pela ação à distância sobre outros campos magnéticos. O grande vínculo que acontece entre campos elétricos e magnéticos, decorre do fato de uma corrente de cargas elétricas em um circuito elétrico produzir um campo magnético associado, observação que foi feita pela primeira vez em 1820 por Oersted, durante uma aula de Física. Em 1831, Faraday verificou que, reversamente, um campo magnético variável era capaz de produzir uma força eletromotriz em um circuito elétrico submetido ao campo magnético. Da observação de Oersted conclui-se que podemos produzir campos magnéticos usando correntes elétricas. A força magnetomotriz resultante em uma bobina é proporcional à corrente e ao número (N) de espiras enlaçadas: fmm = N.I = R.Ø Uma f.m.m. apreciável pode ser produzida pela corrente elétrica percorrendo um solenóide com muitas espiras, que concentra o campo magnético em seu interior, conforme mostrado na figura ao lado. 9 Com essa propriedade, podemos substituir o ímã da figura b por um eletroímã como fonte magnética, resultando o circuito eletromagnético seguinte: no qual podemos controlar o fluxo magnético através da variação da corrente elétrica: dö / dt . f.e.m. fecha-se o laço básico da conversão eletromagnética, representado pela figura 5. f.e.m. f.m.m. Todas as grandezas envolvidas (elétricas e magnéticas) são orientadas, o que significa que tanto o sentido da corrente como o sentido do fluxo são prefixados pela orientação das forças eletro ou magnetomotrizes. Verifica-se que o laço se fechou através de uma relação diferencial entre fluxo e f.e.m., expressando taxa de variação no tempo. Tipos de materiais magnéticos: Átomos podem ser considerados ímãs. Os elétrons têm um movimento de rotação próprio (spin) e giram em torno do núcleo, formado pequenos dipolos magnéticos. Diferentes materiais podem apresentar comportamentos magnéticos diferentes devido ao modo de interação desses dipolos elementares com o campo magnético e com os dipolos vizinhos. Paramagnetismo: Nos materiais paramagnéticos os dipolos elementares são permanentes e, na presença de um campo magnético, tendem a se alinhar com o mesmo, mas o alinhamento perfeito é impedido pelo movimento térmico. Até certo ponto, a magnetização M do material varia linearmente com o campo magnético aplicado M e a temperatura T segundo a lei de Curie: M = C B / T. Onde C é uma constante. Na Figura ao lado, a reta representa a lei de Curie e a curva a variação real. Tende portanto a um valor de saturação. Desde que os dipolos tendem a se alinhar, a suscetibilidade magnética é positiva, mas de valor bastante baixo. Em geral, 1 10-5 < Xm < 1 10-3. Sob ação de um campo magnético forte, um material paramagnético se torna um ímã, mas a magnetização desaparece com a remoção do campo. 10 Diamagnetismo: Nos materiais diamagnéticos os dipolos elementares não são permanentes. Se um campo magnético é aplicado, os elétrons formam dipolos de acordo com a lei de Lenz, isto é, eles se opõem ao campo atuante. Assim, o material sofre uma repulsão. Mas é um efeito muito fraco. Na realidade, todas as substâncias apresentam algum diamagetismo, mas o fenômeno é tão fraco que é mascarado pela ação dos dipolos permanentes naqueles que os têm (paramagnéticos e ferromagnéticos). Por sofrerem repulsão, a suscetibilidade magnética desses materiais é negativa, com valores bastante baixos (-1 10-5 < Xm < -1 10-4). Ferromagnetismo: Nos materiais ferromagnéticos os dipolos elementares são permanentes e, aparentemente, se alinham na direção de um campo magnético aplicado, resultando elevados níveis de magnetização. A suscetibilidade magnética pode ser chegar a valores na faixa de 100000. A explicação do fenômeno envolve conceitos quânticos que não são do escopo desta página. De maneira resumida, pode-se dizer que os dipolos formam regiões distintas chamadas domínios. Em cada domínio, os dipolos têm o mesmo alinhamento. Entretanto, os alinhamentos dos domínios podem estar distribuídos aleatoriamente, resultando magnetização nula. Sob ação de um campo magnético, os domínios de alinhamentos próximos aos do campo tendem a aumentar, com o sacrifício dos de alinhamentos distantes. Nestes últimos ocorre também a tendência de mudança dos alinhamentos para direções mais próximas da do campo aplicado. Tudo isso produz uma considerável magnetização. Quando o campo é removido, os domínios alterados tendem a se fixar, produzindo ímãs permanentes. A magnetização cessa acima de certa temperatura, chamada temperatura de Curie. Nos materiais ferromagnéticos, a relação entre a indução magnética B e a intensidade de campo magnético H não é linear, diferente da consideração do tópico anterior. A variação positiva do campo aplicado produz curva de magnetização diferente da variação negativa. Isto é chamado histerese. No gráfico da Fig 12, Bs é o campo aplicado, produzido por um solenóide pelo qual passa uma corrente variável. E B é o campo no material. Considera-se que o material, inicialmente, não está magnetizado. A corrente aplicada varia de zero até o valor correspondente ao ponto 1, resultando a curva verde. Reduzindo a corrente a zero, a variação segue a curva 1-2. Invertendo o sentido da corrente até um valor oposto ao do ponto 1, a curva é 2-3. E a curva 3-4-1 é o retorno á condição do ponto 1. Notar que nos pontos 2 e 4 a corrente é nula mas a magnetização não. Isso significa que foram formados imãs permanentes. O ferromagnetismo ocorre nos elementos ferro, cobalto, níquel, gadolínio, disprósio e em ligas desses e de outros elementos. Propriedades magnéticas dos materiais Existem algumas restrições importantes que devem ser observadas na analogia entre circuitos elétricos e magnéticos: * a condutividade elétrica do meio pode variar desde quase zero (materiais dielétricos) até quase infinito (materiais supercondutores). 11