Seja Premium

Movimento Circular

Seja Premium e tenha acesso liberado!

São milhões de conteúdos disponíveis pra você.

Já tem cadastro?

Você viu 1 do total de 2 páginas deste material

Prévia do material em texto

1 
 
-Um radiano (rad) é a medida do ângulo central (𝜑) 
de uma circunferência que determina um arco de 
comprimento s, igual ao raio R da mesma 
circunferência. 
 
 
 
 
-A figura anterior mostra uma partícula, em 
movimento circular, passando por uma posição P1, 
em um instante t1, e por uma posição P2, em um 
instante t2. 
-Nesse intervalo de tempo, ∆𝑡 , o ângulo central 
variou ∆𝜑. 
Velocidade angular (𝝎) → a razão entre ∆𝜑 e ∆𝑡: 
 
 
 
Unidade de medida: radianos por segundo (rad/s). 
 
-A relação entre as velocidades angular e linear de 
um corpo, em movimento circular, pode ser 
expressa por: 
 
 
-Em que R é o raio da circunferência. 
-A aceleração angular média 𝛾 no intervalo de 
tempo ∆𝑡 é, por definição 
 
 
 
Unidade de medida: rad/s². 
-A relação entre as acelerações angular e linear de 
um corpo, em movimento circular, pode ser 
expressa por: 
 
 
-Em que R é o raio da circunferência. 
 
Resumindo... 
 
 
-Dizemos que um fenômeno é periódico quando ele 
se repete, identicamente, em intervalos de tempo 
sucessivos e iguais. 
Período (T) → é o menor intervalor de tempo da 
repetição do fenômeno. 
𝝋 = 
𝒔
𝑹
 
𝝎 = 
∆𝝋
∆𝒕
 
𝒗 = 𝝎𝑹 
𝜸 = 
∆𝝎
∆𝒕
 
𝒂 = 𝜸𝑹 
 
 
2 
Unidade de medida: segundo (s). 
Frequência (f) → número de vezes em que o 
fenômeno periódico se repete na unidade de tempo. 
Unidade de tempo: 1/s = 1 Hertz (Hz) 
 
 
 
-No movimento uniforme, o ponto material percorre 
distâncias iguais em intervalos de tempo iguais. 
-No caso particular do movimento circular uniforme 
(MCU), como a trajetória é circular, decorrer que o 
intervalo de tempo de cada volta completa é sempre 
o mesmo, isto é, de tempos em tempos iguais o ponto 
material passa pela mesma posição. 
 
Função horário angular do MCU 
 
 
-Adotando-se 𝜑0 = 0, quando o ponto material 
completa uma volta têm-se: 𝜑 = 2𝜋 e t = T (período). 
-Da função angular do MCU, vem: 
 
 
 
-Sabemos que 1/T = f. Assim, obtemos: 
 
 
-Com 𝜔 = 𝑐𝑡𝑒. ≠ 0. 
1. Uma roda de bicicleta de raio 0,30 m executa 
20 voltas em 5,0 s. Determine: 
(a) A frequência do movimento. 
(b) O período. 
(c) A velocidade angular da roda. 
 
 
(d) A velocidade linear de um ponto situado na 
extremidade da roda. 
-O movimento circular uniformemente variado 
(MCUV) não é um movimento periódico, pois o 
módulo de sua velocidade varia e, portanto, o 
tempo de cada volta na circunferência é variável. 
-Possui aceleração centrípeta (𝑎𝑐𝑝⃗⃗ ⃗⃗ ⃗⃗ ) e aceleração 
tangencial (𝑎𝑡⃗⃗ ⃗). 
A aceleração total (𝑎 ) é a soma vetorial de 𝑎𝑐𝑝⃗⃗ ⃗⃗ ⃗⃗ com 
𝑎𝑡⃗⃗ ⃗, como se representa na figura a seguir. 
 
 
2. Um ponto material, partindo do repouso, 
percorre uma circunferência com raio de 10 
cm em MCUV. Durante os dois primeiros 
segundos, o ponto descreve um ângulo de 
𝜋
4
 rad. Determine: 
(a) A aceleração angular e a aceleração linear do 
movimento; 
(b) A velocidade angular e a velocidade linear no 
instante t = 4 s. 
𝒇 = 
𝟏
𝑻
 𝑜𝑢 𝑻 = 
𝟏
𝑭
 
𝝋 = 𝝋𝟎 + 𝝎𝒕 
2𝜋 = 0 + 𝜔𝑇 → 𝝎 = 
𝟐𝝅
𝑻
 
𝝎 = 𝟐𝝅𝒇