Logo Studenta

Ecuaciones exactas y factor integrante

¡Estudia con miles de materiales!

Vista previa del material en texto

ECUACIONES EXACTAS Y FACTOR INTEGRANTE 
Instrucciones: Resuelve lo que te pide en cada apartado. 
I. Encuentra la solución general de las siguientes ecuaciones 
diferenciales exactas. 
1. [𝐭𝐚𝐧 𝒙 − 𝐬𝐢𝐧 𝒙 𝐬𝐢𝐧 𝒚]𝒅𝒙 + [𝐜𝐨𝐬 𝒙 𝐜𝐨𝐬 𝒚]𝒅𝒚 = 𝟎 
𝑀 = [tan 𝑥 − sin 𝑥 sin 𝑦]𝑑𝑥 𝑁 = [cos 𝑥 cos 𝑦]𝑑𝑦 
Comprobando que sean ecuaciones exactas: 
𝜕𝑀
𝜕𝑦
=
𝜕
𝜕𝑦
tan 𝑥 − (sin 𝑥
𝜕
𝜕𝑦
sin 𝑦 + sin 𝑦
𝜕
𝜕𝑦
sin 𝑥) 
→ 0 − (sin 𝑥 cos 𝑦 + 0) → − 𝐬𝐢𝐧 𝒙 𝐜𝐨𝐬 𝒚 
𝜕𝑁
𝜕𝑥
= cos 𝑥
𝜕
𝜕𝑥
cos 𝑦 + cos 𝑦
𝜕
𝜕𝑥
cos 𝑥 
→ 0 − (sin 𝑥 cos 𝑦 + 0) → − 𝐬𝐢𝐧 𝒙 𝐜𝐨𝐬 𝒚 
 
∫[tan 𝑥 − sin 𝑥 sin 𝑦]𝑑𝑥 + ∫[𝑐𝑜𝑠 𝑥 𝑐𝑜𝑠 𝑦 ]𝑑𝑦 = ∫ 0 
→ ∫ tan 𝑥 𝑑𝑥 − sin 𝑥 ∫ sin 𝑦 𝑑𝑥 + ∫[cos 𝑥 cos 𝑦]𝑑𝑦 = ∫ 0 
→ 𝐥𝐧|𝐬𝐞𝐜 𝒙| − 𝐬𝐢𝐧 𝒚 𝐜𝐨𝐬 𝒙 − 𝐜𝐨𝐬 𝒙 𝐬𝐢𝐧 𝒚 = 𝑪 
 
 
 
 
 
2. [
𝒙
(𝒙𝟐+𝒚𝟐)
𝟑
𝟐
] 𝒅𝒙 + [
𝒚
(𝒙𝟐+𝒚𝟐)
𝟑
𝟐
] 𝒅𝒚 = 𝟎 
𝑀 = [
𝑥
(𝑥2+𝑦2)
3
2
] 𝑑𝑥 𝑁 = [
𝑦
(𝑥2+𝑦2)
3
2
] 𝑑𝑦 
Comprobando que sean ecuaciones exactas: 
𝜕𝑀
𝜕𝑦
= 𝑥
𝜕
𝜕𝑦
((𝑥2 + 𝑦2)
3
2) → −
3
2(𝑥2+𝑦2)
6
2
𝜕
𝜕𝑦
(𝑥2 + 𝑦2) → −
3
2(𝑥2+𝑦2)
∗ 2𝑦 
→ −
𝟑𝒙𝒚
(𝒙𝟐+𝒚𝟐)
 
𝜕𝑁
𝜕𝑥
= 𝑦
𝜕
𝜕𝑦
(
1
(𝑥2+𝑦2)
3
2
) → 𝑦
𝜕
𝜕𝑦
[(𝑥2 + 𝑦2)
3
2] → −
3
2(𝑥2+𝑦2)
6
2
𝜕
𝜕𝑦
(𝑥2 + 𝑦2) 
→ −
3
2(𝑥2+𝑦2)
∗ 2𝑥 → −
𝟑𝒙𝒚
(𝒙𝟐+𝒚𝟐)
 
 
∫ [
𝑥
(𝑥2+𝑦2)
3
2
] 𝑑𝑥 + ∫ [
𝑦
(𝑥2+𝑦2)
3
2
] 𝑑𝑦 = ∫ 0 
𝒖 = 𝒙𝟐 + 𝒚𝟐 
𝑑𝑢 = 2𝑦 
𝒅𝒖
𝟐𝒖
= 𝒚 
𝑣 = 𝑥2 + 𝑦2 
𝑑𝑣 = 2𝑥 
𝒅𝒗
𝟐𝒗
= 𝒙 
 
→ ∫
𝑑𝑢
2(𝑢)
3
2
+ ∫
𝑑𝑣
2(𝑣)
3
2
= ∫ 0 → 
1
2
∫
𝑑𝑢
(𝑢)
3
2
+
1
2
∫
𝑑𝑣
(𝑣)
3
2
= ∫ 0 → 
1
2
∫(𝑢)
3
2 +
1
2
∫(𝑣)
3
2 = ∫ 0 
→ 
1
2
(
1
𝑢
−1
2
−
1
2
) +
1
2
(
1
𝑣
−1
2
−
1
2
) = 𝐶 → 
1
2
(
−2
𝑢
1
2
) +
1
2
(
−2
𝑣
1
2
) = 𝐶 
 → 
1
2
(
−2
𝑢
1
2
) +
1
2
(
−2
𝑣
1
2
) = 𝐶 → 
1
𝑢
1
2
+
1
𝑣
1
2
= 𝐶 → 
1
(𝑥2+𝑦2)
1
2
+
1
(𝑥2+𝑦2)
1
2
= 𝐶 
→ 
𝟏
(𝒙𝟐+𝒚𝟐)
𝟏
𝟐
= 𝑪 
 
3. (𝒆𝒕𝒚 + 𝒕𝒆𝒕𝒚)𝒅𝒕 + (𝒕𝒆𝒕 + 𝟐)𝒅𝒚 = 𝟎 
𝑀 = (𝑒𝑡𝑦 + 𝑡𝑒𝑡𝑦)𝑑𝑡 𝑁 = (𝑡𝑒𝑡 + 2)𝑑𝑦 
Comprobando que sean ecuaciones exactas: 
𝜕𝑀
𝜕𝑦
= (𝑒𝑡
𝜕
𝜕𝑦
𝑦 + 𝑦
𝜕
𝜕𝑦
𝑒𝑡) + 𝑡𝑒𝑡
𝜕
𝜕𝑦
𝑦 → 𝒆𝒕 + 𝒆𝒕𝒕 
𝜕𝑁
𝜕𝑡
= (𝑡
𝜕
𝜕𝑡
𝑒𝑡 + 𝑒𝑡
𝜕
𝜕𝑡
𝑡) +
𝜕
𝜕𝑦
2 → 𝒆𝒕 + 𝒆𝒕𝒕 
 
 
∫(𝑒𝑡𝑦 + 𝑡𝑒𝑡𝑦)𝑑𝑡 + ∫(𝑡𝑒𝑡 + 2)𝑑𝑦 = ∫ 0 
→ 𝑦 ∫ 𝑒𝑡𝑑𝑡 + 𝑦 ∫ 𝑡𝑒𝑡𝑑𝑡 + ∫ 𝑡𝑒𝑡𝑑𝑦 + ∫ 2𝑑𝑦 = ∫ 0 
→ 𝑦 ∫ 𝑒𝑡𝑑𝑡 + 𝑦 ∫ 𝑡𝑒𝑡𝑑𝑡 + ∫ 𝑡𝑒𝑡𝑑𝑦 + ∫ 2𝑑𝑦 = ∫ 0 
→ 𝑒𝑡𝑦 + 𝑡𝑒𝑡𝑦 − 𝑡𝑒𝑡𝑦 + 2𝑦 = 𝐶 → 𝒆𝒕𝒚 + 𝒕𝒆𝒕𝒚 + 𝟐𝒚 = 𝑪 
 
 
 
II. Determina el factor integrante para las siguientes ecuaciones 
diferencial. 
1. 𝒚(𝟒𝒙 + 𝒚)𝒅𝒙 − 𝟐(𝒙𝟐 − 𝒚)𝒅𝒚 = 𝟎 
𝑀 = 𝑦(4𝑥 + 𝑦)𝑑𝑥 𝑁 = 𝑦(4𝑥 + 𝑦)𝑑𝑦 
𝑀𝑦 = [
𝜕
𝜕𝑦
𝑦(4𝑥 + 𝑦)] → [𝑦
𝜕
𝜕𝑦
(4𝑥 + 𝑦)] → 4𝑥 + 𝑦 + 𝑦 = 𝟒𝒙 + 𝟐𝒚 
𝑁𝑥 = 2 
𝜕
𝜕𝑥
(𝑥2 − 𝑦) → 2(2𝑥) = 𝟒𝒙 
𝑝(𝑦) =
(−4𝑥) − (4𝑥 + 2𝑦)
𝑦(4𝑥 + 𝑦)
 → 
(−4𝑥) − (4𝑥 + 2𝑦)
𝑦(4𝑥 + 𝑦)
 → 
−8𝑥 − 2𝑦
𝑦(4𝑥 + 𝑦)
 
→ 
−2(4𝑥 + 𝑦)
𝑦(4𝑥 + 𝑦)
 → −
𝟐
𝒚
 
𝐹(𝑦) = 𝑒
∫
2
𝑦
𝑑𝑦
 → 𝑒−2 ln|𝑦| →
1
𝑦2
 
→ (
1
𝑦2
) [𝑦(4𝑥 + 𝑦)𝑑𝑥 − 2(𝑥2 − 𝑦)𝑑𝑦] = 0 → 
𝟒𝒙+𝒚
𝒚
𝒅𝒙 −
𝟐(𝒙𝟐−𝒚)
𝒚𝟐
𝒅𝒚 = 𝟎 
𝑀𝑦 = [
𝜕
𝜕𝑦
4𝑥+𝑦
𝑦
] → −
4𝑥
𝑦2
 
𝑁𝑥 = 2 
𝜕
𝜕𝑥
(𝑥2−𝑦)
𝑦2
𝑑𝑦 → −
4𝑥
𝑦2
 
 
∫
4𝑥+𝑦
𝑦
𝑑𝑥 − ∫
2(𝑥2−𝑦)
𝑦2
𝑑𝑦 = ∫ 0 → ∫
4𝑥
𝑦
𝑑𝑥 + ∫
𝑦
𝑦
𝑑𝑥 − 2 ∫
(𝑥2−𝑦)
𝑦2
𝑑𝑦 = ∫ 0 
→ 𝑥 +
2𝑥2
𝑦
+
2𝑥2
𝑦
+ 2 ln 𝑦 = 𝐶 → 𝒙 +
𝟐𝒙𝟐
𝒚
+ 𝟐 𝐥𝐧 𝒚 = 𝑪 
 
 
2. 𝒚(𝒙 + 𝒚 + 𝟏)𝒅𝒙 + (𝒙 + 𝟐𝒚)𝒅𝒚 = 𝟎 
𝑀 = 𝑦(𝑥 + 𝑦 + 1)𝑑𝑥 𝑁 = (𝑥 + 2𝑦)𝑑𝑦 
𝑀𝑦 = 𝑦
𝜕
𝜕𝑦
(𝑥 + 𝑦 + 1) + (𝑥 + 𝑦 + 1)
𝜕
𝜕𝑦
 𝑦 → 𝑦 + 𝑥 + 𝑦 + 1 = 𝟐𝒚 + 𝒙 + 𝟏 
𝑁𝑥 =
𝜕
𝜕𝑥
𝑥 = 𝟏 
 
𝑝(𝑥) =
(2𝑦 + 𝑥 + 1) − (1)
(𝑥 + 2𝑦)
 → 
2𝑦 + 𝑥 + 1−1
(𝑥 + 2𝑦)
 → 
2𝑦 + 𝑥 
(𝑥 + 2𝑦)
 = 1 
𝐹(𝑥) = 𝑒∫ 1 𝑑𝑥 → 𝑒ln 𝑥 = 𝒆𝒙 
→ (𝑒𝑥)[𝑦(𝑥 + 𝑦 + 1)𝑑𝑥 + (𝑥 + 2𝑦)𝑑𝑦 = 0] 
→ (𝑒𝑥𝑦𝑥 + 𝑒𝑥𝑦 + 𝑒𝑥𝑦)𝑑𝑥 + (𝑒𝑥𝑥 + 2𝑒𝑥𝑦)𝑑𝑦 = 0 
𝑀𝑦 =
𝜕
𝜕𝑦
(𝑒𝑥𝑦𝑥 + 𝑒𝑥𝑦 + 𝑒𝑥𝑦)𝑑𝑥 = 𝒙𝒆𝒙 + 𝟐𝒆𝒙𝒚 + 𝒆𝒙 
𝑁𝑥 =
𝜕
𝜕𝑥
(𝑒𝑥𝑥 + 2𝑒𝑥𝑦)𝑑𝑦 = 𝒙𝒆𝒙 + 𝟐𝒆𝒙𝒚 + 𝒆𝒙 
 
→ ∫(𝑒𝑥𝑦𝑥 + 𝑒𝑥𝑦 + 𝑒𝑥𝑦)𝑑𝑥 + ∫(𝑒𝑥𝑥 + 2𝑒𝑥𝑦)𝑑𝑦 = ∫ 0 
→ 𝑦𝑒𝑥𝑥 + 𝑦2𝑒𝑥 + 𝑦𝑒𝑥𝑥 + 𝑦2𝑒𝑥 = 𝐶 → 𝒚𝒆𝒙𝒙 + 𝒚𝟐𝒆𝒙 = 𝑪 
 
 
 
 
 
 
3. 𝟐𝒙𝒚𝒙´ = 𝟑𝒙𝟐 − 𝒚𝟐 
→ 2𝑥𝑦 𝑑𝑥 = 3𝑥2 − 𝑦2𝑑𝑦 
→ 2𝑥𝑦 𝑑𝑥 − (3𝑥2 − 𝑦2)𝑑𝑦 = 0 
 
𝑀 = 2𝑥𝑦 𝑑𝑥 𝑁 = −(3𝑥2 − 𝑦2)𝑑𝑦 
𝑀𝑦 = 2
𝜕
𝜕𝑦
𝑥𝑦 = 𝟐𝒙 
𝑁𝑥 = −
𝜕
𝜕𝑥
3𝑥2 −
𝜕
𝜕𝑥
𝑦2 = −𝟔𝒙 
 
𝑝(𝑦) =
−6𝑥 − 2𝑥 
2𝑥𝑦
 → 
−8𝑥
2𝑥𝑦
 → 
−8
2𝑦
 → 
−2∗4
2𝑦
 → −
4
𝑦
 
𝐹(𝑦) = 𝑒
∫ −
4
𝑦
𝑑𝑦
 → 𝑒
−4 ∫
1
𝑦
𝑑𝑦
 → 𝑒−4 ln 𝑦 = 
1
𝑦4
 
 
→ (
1
𝑦4
) [2𝑥𝑦 𝑑𝑥 − (3𝑥2 − 𝑦2)𝑑𝑦 = 0 ] → 
1
𝑦4
(2𝑥𝑦)𝑑𝑥 −
1
𝑦4
(3𝑥2 − 𝑦2)𝑑𝑦 = 0 
→ 
2𝑥
𝑦3
𝑑𝑥 −
3𝑥2−𝑦2
𝑦4
𝑑𝑦 = 0 
 
𝑀𝑦 =
2𝑥
𝑦3
𝑑𝑥 = −
𝟔𝒙
𝒚𝟒
 
𝑁𝑥 = −
𝜕
𝜕𝑥
3𝑥2−𝑦2
𝑦4
= −
𝟔𝒙
𝒚𝟒
 
 
→ ∫
2𝑥
𝑦3
𝑑𝑥 − ∫
3𝑥2−𝑦2
𝑦4
𝑑𝑦 = ∫ 0 → ∫
2𝑥
𝑦3
𝑑𝑥 − ∫
1
𝑦2
𝑑𝑦 + ∫
3𝑥2
𝑦4
𝑑𝑦 = ∫ 0 
→ 
𝒙𝟐
𝒚𝟑
−
𝟏
𝒚𝟒
(−𝒚𝟐𝒙 + 𝒙𝟑) = 𝑪

Continuar navegando