Logo Studenta

T10-Derivada por Inc-Asqui

¡Estudia con miles de materiales!

Vista previa del material en texto

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO 
 
 
 
 
 
 
 
 
 
 
 
 
PRIMER SEMESTRE 
PARALELO ¨B¨ 
ANÁLISIS MATEMÁTICO 
ASQUI VACA BORIS JOSUE 
DERIVADAS 
2020-2021 
 
 
 
 
 
 
 
 
 
𝒚 = 𝒙𝒏 → 𝒚´ = 𝒏𝒙𝒏−𝟏 
𝑦′ = lim
∆𝑥→0
(𝑥 + ∆𝑥)𝑛 − 𝑥𝑛
∆𝑥
 
lim
∆𝑥→0
𝑥𝑛 + 𝑛𝑥𝑛−1∆𝑥 + (
𝑛
2
) 𝑥𝑛−2∆𝑥2 + ⋯ + (
𝑛
𝑛
)∆𝑥𝑛 − 𝑥𝑛
∆𝑥
 
lim
∆𝑥→0
∆𝑥(𝑛𝑥𝑛−1 + (
𝑛
2
) 𝑥𝑛−2∆𝑥 + ⋯ + (
𝑛
𝑛
) ∆𝑥𝑛−1)
∆𝑥
= 𝒏𝒙𝒏−𝟏 
 
𝒚 = 𝒔𝒆𝒏 𝒙 → 𝒚´ = 𝒄𝒐𝒔𝒙 
𝑓′(𝑥) = 𝑙𝑖𝑚
𝛥𝑥→0
𝑓(𝑥 + 𝛥𝑥) − 𝑓(𝑥)
𝛥𝑥
= 𝑙𝑖𝑚
𝛥𝑥→0
sen(𝑥 + 𝛥𝑥) − 𝑠𝑒𝑛𝑥
𝛥𝑥
 
= 𝑙𝑖𝑚
𝛥𝑥→0
sen 𝑥 ∗ 𝑐𝑜𝑠𝛥𝑥 + 𝑐𝑜𝑠𝑥 ∗ 𝑠𝑒𝑛𝛥𝑥 − 𝑠𝑒𝑛𝑥
𝛥𝑥
 
𝑙𝑖𝑚
𝛥𝑥→0
sen 𝑥(𝑐𝑜𝑠 𝛥𝑥 − 1)
𝛥𝑥
+ 𝑙𝑖𝑚
𝛥𝑥→0
𝑐𝑜𝑠𝑥 ∗ 𝑠𝑒𝑛𝛥𝑥
𝛥𝑥
 
𝑙𝑖𝑚
𝛥𝑥→0
sen 𝑥(𝑐𝑜𝑠𝛥𝑥−1)
𝛥𝑥
+ 𝑙𝑖𝑚
𝛥𝑥→0
𝑐𝑜𝑠𝑥∗𝑠𝑒𝑛𝛥𝑥
𝛥𝑥
= 𝑙𝑖𝑚
𝛥𝑥→0
1−𝑐𝑜𝑠𝛥𝑥
𝛥𝑥
( 𝑙𝑖𝑚
𝛥𝑥→0
sen𝑥) + ( 𝑙𝑖𝑚
𝛥𝑥→0
cos𝑥) 𝑙𝑖𝑚
𝛥𝑥→0
𝑠𝑒𝑛𝛥𝑥
𝛥𝑥
 = 
𝑙𝑖𝑚
𝛥𝑥→0
1 − 𝑐𝑜𝑠𝛥𝑥
𝛥𝑥
− 0 ∧ 𝑙𝑖𝑚
𝛥𝑥→0
𝑠𝑒𝑛𝛥𝑥
𝛥𝑥
− 1 = 𝑓(𝑥) = 0 ∗ 𝑠𝑒𝑛𝑥 + 𝑐𝑜𝑠𝑥 ∗ 1 = 𝑪𝒐𝒔 𝒙 
 
𝒚 = 𝒄𝒐𝒔 𝒙 → 𝒚´ = −𝒔𝒆𝒏𝒙 
𝑓′(𝑥) = 𝑙𝑖𝑚
𝛥𝑥→0
𝑓(𝑥 + 𝛥𝑥) − 𝑓(𝑥)
𝛥𝑥
= 𝑙𝑖𝑚
𝛥𝑥→0
cos(𝑥 + 𝛥𝑥) − 𝑐𝑜𝑠𝑥
𝛥𝑥
 
= 𝑙𝑖𝑚
𝛥𝑥→0
cos 𝑥 ∗ 𝑐𝑜𝑠𝛥𝑥 − 𝑠𝑒𝑛𝑥 ∗ 𝛥𝑥 − 𝑐𝑜𝑠𝑥
𝛥𝑥
 
= 𝑙𝑖𝑚
𝛥𝑥→0
cos 𝑥 (𝑐𝑜𝑠𝛥𝑥 − 1) − 𝑠𝑒𝑛𝑥 ∗ 𝑠𝑒𝑛𝛥𝑥
𝛥𝑥
= 𝑙𝑖𝑚
𝛥𝑥→0
cos 𝑥 (𝑐𝑜𝑠𝛥𝑥 − 1)
𝛥𝑥
− 𝑠𝑒𝑛𝑥
𝑠e𝑛𝛥𝑥
𝛥𝑥
 
= −𝒔𝒆𝒏 𝒙 
 
𝒚 = 𝒌 ∗ 𝒇(𝒙) → 𝒚´ = 𝒌 ∗ 𝒇´(𝒙) 
𝑓′(𝑥) = 𝑙𝑖𝑚
𝛥𝑥→0
𝑓(𝑥 + 𝛥𝑥) − 𝑓(𝑥)
𝛥𝑥
= 
𝑙𝑖𝑚
𝛥𝑥→0
𝑘 ∗ 𝑓(𝑥 + 𝛥𝑥) − 𝑘 ∗ 𝑓(𝑥)
𝛥𝑥
 
𝑘 ∗ 𝑙𝑖𝑚
𝛥𝑥→0
𝑓(𝑥 + 𝛥𝑥) − 𝑓(𝑥)
𝛥𝑥
= 𝒌 ∗ 𝒇´(𝒙) 
 
𝒚 = 𝑼(𝒙) + 𝑽(𝒙) + 𝑾(𝒙) 
 
𝑦 + ∆𝑦 = 𝑈 + ∆𝑈 + 𝑉 + ∆𝑉 + 𝑊 + ∆𝑊 
∆𝑦 = 𝑈 + ∆𝑈 + 𝑉 + ∆𝑉 + 𝑊 + ∆𝑊 − 𝑈 − 𝑉 − 𝑊 = ∆𝑈 + ∆𝑉 + ∆𝑊 
∆𝑦
∆𝑥
=
∆𝑈 + ∆𝑉 + ∆𝑊
∆𝑥
 
lim
∆𝑥→𝑥
∆𝑦
∆𝑥
= lim
∆𝑥→𝑥
(
∆𝑈
∆𝑥
+
∆𝑉
∆𝑥
+
∆𝑊
∆𝑥
) = 𝑼´𝑿 + 𝑽´𝑿 + 𝑾´𝑿 
 
𝒚 = 𝑼. 𝑽 → 𝒚` = 𝑼,𝑽 +𝑽,𝑼 
lim
ℎ→0
𝑢(𝑥 + ℎ)𝑣(𝑥 + ℎ) − 𝑢(𝑥)𝑣(𝑥)
ℎ
 
lim
ℎ→0
(
𝑢(𝑥 + ℎ) − 𝑢(𝑥)
ℎ
)(
𝑣(𝑥 + ℎ) − 𝑣(𝑥)
ℎ
) 
lim
ℎ→0
𝑢(𝑥 + ℎ)𝑣(𝑥 + ℎ) − 𝑢(𝑥 + ℎ)𝑣(𝑥) − 𝑢(𝑥)𝑣(𝑥 + ℎ) + 𝑢(𝑥)𝑣(𝑥)
ℎ
 
lim
ℎ→0
(𝑢(𝑥 + ℎ) − 𝑢(𝑥)) ∗ 𝑣(𝑥 + ℎ)
ℎ
+lim
ℎ→0
(𝑣(𝑥 + ℎ) − 𝑣(𝑥)) ∗ 𝑢(𝑥)
ℎ
 
lim
ℎ→0
(𝑢(𝑥 + ℎ) − 𝑢(𝑥))
ℎ
∗ lim
ℎ→0
𝑣(𝑥 + ℎ) +lim
ℎ→0
(𝑣(𝑥 + ℎ) − 𝑣(𝑥))
ℎ
∗ lim
ℎ→0
𝑢(𝑥) 
𝑈, ∗ 𝑣(𝑥 + 0) +𝑉 , ∗ 𝑢(𝑥) 
= 𝑼,𝑽 +𝑽,𝑼 
 
𝒚 =
𝑼
𝑽
→ 𝒚´ =
𝑼,𝑽 − 𝑽,𝑼
𝑽𝟐
 
lim
ℎ→0
𝑈
𝑉
= lim
ℎ→0
(𝑢,(𝑥) ∗
1
𝑣(𝑥)
) → 𝒚, = 𝑼,𝑽 + 𝑽,𝑼 
lim
ℎ→0
𝑢,(𝑥)
1
𝑣(𝑥)
+
𝑣(𝑥)
𝑣2(𝑥)
𝑢(𝑥) 
= 𝑢,(𝑥)
1
𝑣(𝑥)
+
(−𝑣 ,(𝑥))
𝑣2(𝑥)
𝑢(𝑥) =
𝑢,(𝑥)
𝑣(𝑥)
−
𝑣 ,(𝑥)𝑢(𝑥)
𝑣2(𝑥)
 
=
𝑢,(𝑥)𝑣(𝑥)−𝑣 ,(𝑥)𝑢(𝑥)
𝑣2(𝑥)
=
𝑼,𝑽 − 𝑽,𝑼
𝑽𝟐
 
 
𝒚 = 𝒇(𝒙) ± 𝒈(𝒙) ± 𝒘(𝒙) → 𝒚´ = 𝒇´(𝒙) ± 𝒈´(𝒙) ± 𝒘´(𝒙) 
*𝑌 = (𝑓 + 𝑔 + 𝑤)(𝑥) 
𝑓(𝑥) + 𝑔(𝑥) + 𝑤(𝑥) = (𝑓 + 𝑔 + 𝑤)(𝑥) 
𝑦´ = lim
∆𝑥→0
(𝑓 + 𝑔 + 𝑤)(𝑥 + ∆𝑥) − (𝑓 + 𝑔 + 𝑤)(𝑥)
∆𝑥
 
𝑦´ = lim
∆𝑥→0
𝑓(𝑥 + ∆𝑥) + 𝑔(𝑥 + ∆𝑥) + 𝑤(𝑥 + ∆𝑥) − 𝑓(𝑥) − 𝑔(𝑥) − 𝑤(𝑥)
∆𝑥
 
𝑦´ = lim
∆𝑥→0
[𝑓(𝑥 + ∆𝑥) + −𝑓(𝑥)] + [𝑔(𝑥 + ∆𝑥) − 𝑔(𝑥)] + [𝑤(𝑥 + ∆𝑥) − 𝑤(𝑥)]
∆𝑥
 
𝑦´ = lim
∆𝑥→0
[𝑓(𝑥 + ∆𝑥) + −𝑓(𝑥)]
∆𝑥
+ lim
∆𝑥→0
[𝑔(𝑥 + ∆𝑥) + −𝑔(𝑥)]
∆𝑥
+ lim
∆𝑥→0
[𝑤(𝑥 + ∆𝑥) + −𝑤(𝑥)]
∆𝑥
 
SABIENDO QUE: 
lim
∆𝑥→0
[𝑓(𝑥 + ∆𝑥) + −𝑓(𝑥)]
∆𝑥
= 𝑓´(𝑥) 
lim
∆𝑥→0
[𝑔(𝑥 + ∆𝑥) + −𝑔(𝑥)]
∆𝑥
= 𝑔´(𝑥) 
lim
∆𝑥→0
[𝑤(𝑥 + ∆𝑥) + −𝑤(𝑥)]
∆𝑥
= 𝑤´(𝑥) 
DEDUCIMOS: 𝑦´ = 𝑓´(𝑥) ± 𝑔´(𝑥) ± 𝑤´(𝑥) 
𝑦 = 𝑓(𝑥) ± 𝑔(𝑥) ± 𝑤(𝑥) → 𝑦´ = 𝑓´(𝑥) ± 𝑔´(𝑥) ± 𝑤´(𝑥) 
𝒚 =
𝟏
√𝒙
𝟑 + 𝟐 𝒄𝒐𝒔(𝒙) −
√𝒙
𝟓
√𝒙 
𝟒 
𝑦´ = (
1
√𝑥
3 ) ′ + (2 cos(𝑥))′ − (
√𝑥
5
√𝑥 
4 )′ 
𝑦′ = (𝑥−
1
3) ′ + 2 cos(𝑥) − (𝑥
1
20)′ 
𝑦′ =
1
3
(𝑥−
4
3) − 2 sen(𝑥) +
1
20
(𝑥
21
20)′ 
𝑦′ = (𝑥−
1
3) ′ + 2 cos(𝑥) − (𝑥
1
20)′ 
 
𝑦′ = −
1
3√𝑥4
3 − 2𝑠𝑒𝑛(𝑥) +
1
20 √𝑥21 
20 
 
𝒚′ = −
𝟏
𝟑 √𝒙𝟒
𝟑 − 𝟐𝒔𝒆𝒏(𝒙) +
𝟏
𝟐𝟎𝒙 √𝒙 
𝟐𝟎 
 
y´=𝒆𝒙 → 𝒚´ = 𝒆𝒙 
𝑦 = log𝑎 𝑥 → 𝑦´ =
1
𝑥
log𝑎 𝑒 
𝑦´ =
1
𝑥
𝑙𝑛𝑒
𝑙𝑛𝑎
= 𝑦´ =
1
𝑥𝑙𝑛𝑎
 
 
𝒚 = 𝐥𝐧(𝒙) 
𝑦´ =
1
𝑥
 
 
𝒚 = 𝟐𝒙𝟑 + 𝟑 
𝑦′ = 2(𝑥3) + 0 
𝑦′ = 2(𝑥2) + 0 
𝒚′ = 𝟔𝒙𝟐 
 
𝒚 = 𝒙𝟒 + 𝒙𝟐 
𝑦′ = 4𝑥3 + 2𝑥 
𝒚′ = 𝟐𝒙(𝟐𝒙𝟐 + 𝟏) 
 
𝒚 = √𝒙
𝟑
 
𝑦′ = 𝑥
1
3 
𝑦′ =
1
3
𝑥
1
3−1 
𝑦′ =
1
3
𝑥−
2
3 
𝒚′ =
𝟏
𝟑𝒙
𝟐
𝟑
 
 
𝒚 =
𝒙√𝒙
√𝒙
𝟒 → 𝑦
′ =
𝑥√𝑥
𝑥
1
4
 → 𝑦′ = 𝑥. 𝑥
1
2. 𝑥−
1
4 
𝑦´ =
5
4
𝑥−
1
4 → 𝑦´ =
5
4 √𝑥
4 
 
𝒚 = √𝒙
𝒂
√𝒙
𝒃
→ 𝑦′ = ( √𝑥
𝑎
) √𝑥
𝑏
+ ( √𝑥
𝑏
) √𝑥
𝑎
→ 𝑦′ = 𝑥
1
𝑎 √𝑥
𝑏
+ 𝑥
1
𝑏 √𝑥
𝑎
 
𝑦′ =
1
𝑎
𝑥
1
𝑎−1 √𝑥
𝑏
+
1
𝑏
𝑥
1
𝑏−1 → 𝑦′ =
𝑥
1−𝑎
𝑎
𝑎
√𝑥
𝑏
+
𝑥
1−𝑏
𝑏
𝑏
√𝑥
𝑎
 → 
𝑦′ =
𝑥
−𝑎+1
𝑎 √𝑥
𝑏
𝑎
+
𝑥
−𝑏+1
𝑏 √𝑥
𝑎
𝑏
 
𝑦′ =
𝑥
1−𝑎
𝑎 √𝑥
𝑏
𝑎
+
𝑥
1−𝑏
𝑏 √𝑥
𝑎
𝑏
 
 
 
 
 
𝒚 = √𝒙√𝒙√𝒙 ⋅
𝟏
𝒙
 
𝑦′ =
√
𝑥√𝑥. 𝑥
1
2. 𝑥−1 → 𝑦′ = √𝑥
7
4. 𝑥−1 → 𝑦´ =
3
8
𝑥
3
8−1 
 
𝑦´ =
3
8
𝑥−
5
8 → 𝑦´ =
3
8
1
√𝑥5
8 → 𝑦´ =
3
8 √𝑥5
8 
𝒚 = 𝝅𝐜𝐨𝐬 (𝒙) 
𝑦′ = 𝜋(−𝑠𝑒𝑛(𝑥)) 
𝑦′ = − 𝜋 𝑠𝑒𝑛 (𝑥) 
 
𝒚 = √𝒂 + 𝒃 . 𝒙𝟓 
𝑦′ = √𝑎 + 𝑏 .5 𝑥5−1 
𝑦′ = 5 𝑥4√𝑎 + 𝑏 
 
𝒚 = 𝒆. 𝒔𝒆𝒏(𝒙) 
𝑦′ = 𝑒. 𝑐𝑜𝑠(𝑥) 
 
𝒚 =
𝟏
𝟐
 𝒙𝟏𝟎𝟎 
𝑦′ =
1
2
. 100𝑥100−1 
𝑦′ =
1
2
. 100𝑥99 
𝑦′ = 100 .
1
2
𝑥99 
𝑦′ =
1 . 100
2
𝑥99 
𝑦′ =
100
2
𝑥99 
𝑦′ = 50 𝑥99

Continuar navegando