Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Prévia do material em texto

Discussão sobre a Aritmética no Ensino e sua Relação com a BNCC
Introdução
A aritmética sempre ocupou um lugar central nos currículos de ensino obrigatório, sendo um dos pilares da educação matemática desde a Antiguidade até os dias atuais. Historicamente, a aritmética foi ensinada por meio de livros que enfatizavam regras e técnicas, uma abordagem que se manteve predominante por séculos.
Duas Visões da Aritmética no Passado
1. Visão Formal: Focada em procedimentos rigorosos e algoritmos.
2. Visão Manipulativa: Enfatizava o uso prático e operacional dos conceitos aritméticos.
Ambas as visões muitas vezes negligenciavam aspectos importantes da aritmética, como:
· Representações e Significações Diversas: Ampliando a ideia simples do manipulativo.
· Análise dos Algoritmos e Divisibilidade: Enfoque em elementos conceituais.
· Uso Adequado de Regras: Desenvolvimento de técnicas, destrezas e habilidades.
· Descobertas e Teoremas: Estímulo à elaboração de conjecturas e processos de raciocínio.
Aritmética no Século XX e XXI
A aritmética moderna começou a responder a problemas teóricos recentes, como a matemática discreta, criptografia, minimização e exploração máxima na economia, análise numérica e problemas de iteração. Isso levanta a questão: por que reduzir a aritmética a regras escolares e números naturais?
Questões e Mudanças no Ensino da Aritmética
· Perda do Valor Central do Sistema de Numeração Decimal: Foco excessivo em um único sistema numérico.
· Valor Intercultural da Aritmética: Importância de reconhecer e valorizar as diversas culturas numéricas.
· Relativização de Temas Clássicos: Necessidade de repensar o valor teórico conceitual de tópicos como divisibilidade.
· Novo Sentido Funcional do Numérico: Abordagem mais aberta, considerando várias estratégias para um mesmo problema e diferentes significados de número.
Exemplos e Aplicações
· Cálculo de Diagonais em Figuras Convexas: Um exemplo de problema combinatório que ilustra a necessidade de técnicas de contagem, diagramas e tabelas para resolução.
· Aritmética Integradora: Foco na resolução de problemas diversos com um mesmo tipo de técnicas, em vez de ensinar técnicas isoladamente.
Relação com a BNCC
A Base Nacional Comum Curricular (BNCC) estabelece diretrizes que refletem muitos dos princípios discutidos no texto sobre aritmética:
1. Competências Gerais de Matemática:
· Pensamento Computacional: Desenvolvimento de habilidades para resolver problemas de forma lógica e eficiente.
· Resolução de Problemas: Aplicação de conhecimentos matemáticos em contextos variados e reais.
· Representações Matemáticas: Utilização de diferentes formas de representar conceitos matemáticos, como diagramas e tabelas.
2. Práticas Pedagógicas:
· Contextualização e Significado: Ensino de matemática de forma que os alunos compreendam seu uso prático e relevante em suas vidas.
· Valorização Histórica e Cultural: Reconhecimento da importância histórica e cultural da aritmética, promovendo uma visão integrada e multicultural.
· Habilidades Práticas e Conceituais: Desenvolvimento de habilidades que vão além da memorização de regras, estimulando a compreensão profunda dos conceitos e a capacidade de resolução de problemas.
A BNCC descreve que no Ensino fundamental a aritmética, precisa garantir que os alunos relacionem observações do mundo real a representações (tabelas, figuras e esquemas) e associem essas representações a uma atividade matemática (conceitos e propriedades), fazendo induções e deduções. Espera-se que eles desenvolvam a capacidade de identificar oportunidades de utilização da matemática para resolver problemas, aplicando conceitos, procedimentos e resultados para obter soluções e interpretá-las segundo as situações.
Conclusão
A aritmética, quando ensinada de maneira integrada e contextualizada, pode preparar os alunos para enfrentar desafios contemporâneos e desenvolver uma compreensão profunda e prática dos conceitos matemáticos. A BNCC apoia essa visão, enfatizando a importância de um ensino que valorize a história, a cultura e a aplicação prática da matemática.
Promover uma educação matemática que transcenda as técnicas básicas e prepare os alunos para um mundo complexo e interconectado é essencial para o desenvolvimento de competências que serão úteis ao longo de suas vidas.
Apresentação: Aritmética no Ensino e a BNCC
Slide 1: Introdução
· Aritmética no Currículo Escolar: Parte fundamental dos currículos de ensino obrigatório em todos os países.
· Histórico: Primeiros livros de matemática ocidental focados em regras e técnicas.
· Objetivo: Ampliar a compreensão da aritmética além das regras escolares.
Slide 2: Visões Históricas da Aritmética
· Formal: Enfoque em procedimentos e algoritmos.
· Manipulativa: Uso prático e operacional.
· Elementos Frequentes Ignorados:
· Representações e significações diversas.
· Análise conceitual de algoritmos.
· Uso racional de regras.
· Descobertas e elaboração de conjecturas.
Slide 3: Aritmética Moderna
· Século XX: Respostas a problemas teóricos, como matemática discreta e criptografia.
· Questões Relevantes:
· Por que reduzir a aritmética a regras escolares e números naturais?
· Necessidade de uma visão mais ampla e integrada.
Slide 4: Ensino-Aprendizagem da Aritmética
· Problemas no Ensino Atual:
· Foco excessivo no sistema de numeração decimal.
· Perda do valor central de conceitos aritméticos.
· Lentidão no processo de aquisição aritmética.
· Falta de consideração por abordagens interculturais.
Slide 5: Propostas para o Ensino da Aritmética
· Valores Interculturais: Reconhecimento da diversidade cultural na aprendizagem da aritmética.
· Nova Visão Funcional:
· Reconhecimento de várias estratégias possíveis.
· Significados diferentes da ideia de número.
· Introdução experimental da ideia de variável.
· Sentido Integrador:
· Resolução de problemas diversos com técnicas similares.
Slide 6: Exemplos Práticos
· Problemas Combinatórios: Cálculo de diagonais em figuras convexas.
· Raciocínio Funcional:
· Reversibilidade de problemas.
· Uso de diagramas, tabelas e generalizações.
· Aplicações Multidisciplinares:
· Geometria, lógica, estatística, probabilidade.
Slide 7: Relação com a BNCC
· BNCC - Competências Gerais de Matemática:
· Desenvolvimento do pensamento computacional.
· Resolução de problemas em contextos diversos.
· Utilização de diferentes representações matemáticas.
· Práticas Propostas:
· Enfoque em problemas reais e significativos.
· Valorização do conhecimento histórico e cultural.
· Integração de habilidades práticas e conceituais.
Slide 8: Conclusão
· Repensar a Aritmética: Necessidade de uma abordagem mais rica e integrada.
· Educação Matemática: Incorporar avanços metodológicos e interculturais.
· Visão Ampla: Preparar os alunos para desafios contemporâneos, utilizando a aritmética de maneira significativa e aplicada.
Notas Adicionais
· Interligação com a BNCC:
· A abordagem proposta no texto está alinhada com os princípios da BNCC, que enfatiza a aprendizagem significativa, resolução de problemas e contextualização cultural.
· A BNCC incentiva o desenvolvimento de competências que vão além da mera memorização de regras, promovendo a aplicação prática e a compreensão profunda dos conceitos matemáticos.
Esses tópicos e relacionamentos destacam a importância de uma educação matemática que transcende as técnicas básicas, preparando os alunos para um mundo cada vez mais complexo e interconectado.

Mais conteúdos dessa disciplina