Buscar

Apostila Laboratório 2013.1

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 74 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 74 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 74 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

QUI1709 
 
LABORATÓRIO DE QUÍMICA GERAL 
DEPARTAMENTO DE QUÍMICA 
 
 
 
 
 
 
 
 
 
Coordenação 
Profa. Tatiana D. Saint’Pierre 
 
Colaboração 
Professores: Adriana Gioda, Adriana H. Nudi, Camilla Buarque, Daniela Soluri, Fatima 
V. P. Meirelles, Flavia de A. Vieira, Isabel M. Moreira, José Guerchon, Lucia C. Fortes, 
Nadia S. H. Schneider, Roseli M. Souza, Whei Oh Lin. 
 
Comitê de QSMS do Departamento de Química da PUC-Rio. 
 
Técnicos: Carlos Alberto da Silva e Charles Albert R. de Lima. 
 
1 
 
 
Programação das aulas de Laboratório de Química Geral 
 
 
Aula 
1ª semana na PUC 
Apresentação do laboratório e Guia do aluno 
Experiência 1: Medidas, algarismos significativos e erros 
Experiência 2: Estequiometria – reação envolvendo gás 
Experiência 3: Gases e o princípio de Avogadro 
Experiência 4: Equilíbrio químico e princípio de Le Chatelier 
Experiência 5: Equilíbrio ácido-base: indicadores 
Experiência 6: Equilíbrio ácido-base: determinação da concentração 
de ácido acético no vinagre 
Experiência 7: Equilíbrio de precipitação: Reações com formação de 
compostos pouco solúveis 
Experiência 8: Titulação de neutralização com indicador 
condutométrico 
Experiência 9: Termoquímica: reações com trocas de calor e Lei de 
Hess 
Experiência 10: Cinética química: Estudo da velocidade de reação – 
efeito da concentração 
Experiência 11: Eletroquímica: reações de oxi-redução 
Experiência 12: Eletroquímica: células galvânicas 
 
 
2 
 
 
Guia do Aluno 
 
Tópicos abordados: 
 Objetivos do laboratório de química geral. 
 Normas do curso, comportamento no laboratório e regras de segurança. 
 Cronograma das aulas. 
 Critérios de avaliação. 
 
Objetivo geral: 
Consolidar a aprendizagem dos conteúdos da química geral através da aplicação dos 
conceitos teóricos em práticas no laboratório. Ser capaz de reconhecer e compreender os 
conceitos de química aplicados a situações do laboratório e correlacionar com situações 
interdisciplinares comuns do dia a dia. 
 
Rotina das aulas: 
O Laboratório de Química Geral consiste em 1 encontro semanal de 2 h/aula, durante 
as quais serão abordados os seguintes itens: 
 
a) Comentários sobre a prática do dia. 
b) Teste: o teste poderá ser sobre o conteúdo teórico/experimental da prática a ser realizada 
no dia ou sobre práticas anteriores. O teste poderá ser aplicado no início ou no final da aula, 
a critério do professor. Serão feitos 4 testes durante o semestre. 
c) Realização da aula prática. 
d) Preenchimento do relatório. 
 
Normas do curso: 
O aluno é responsável pelo seu aprendizado. Ao professor cabe a tarefa de orientar o 
aluno, visando à eficiência desse aprendizado. Os experimentos de laboratório são 
realizados em grupo, mas a participação individual será avaliada. 
 
 
 
3 
 
As seguintes normas de laboratório devem ser obedecidas: 
a) Pontualidade: é dada uma tolerância de 15 min. O aluno não poderá entrar no 
laboratório depois desse prazo e terá nota zero no respectivo relatório e no teste, se houver. 
Não é permitido sair antes do final da prática e da entrega do relatório, sob pena de ter nota 
zero no mesmo. 
b) Roteiro da prática: os roteiros das aulas práticas estão disponíveis no site 
www.cbctc.puc-rio.br O grupo que não tiver o roteiro não poderá realizar a prática e receberá 
nota zero no respectivo relatório. 
c) Equipamentos de proteção individual (EPI): É obrigatório o uso dos seguintes 
EPIs dentro do laboratório: jaleco, calças compridas e calçados fechados, luvas e óculos de 
segurança. 
d) Relatório: deverá ser preenchido e entregue ao término da aula. Nesta ocasião, os 
alunos deverão assinar a lista de presença. O aluno que não assinar a lista de presença 
receberá nota zero no respectivo relatório. Em caso de falta, o aluno recebe nota zero no 
relatório, podendo ter, no máximo, 25% de faltas para aprovação na disciplina. Em caso de 
falta justificada de acordo com as normas do DAR, a nota do relatório será abonada, não 
sendo incluída no cálculo da média final. 
 
Comportamento no laboratório: 
 Deve-se ter em mente que, em um laboratório de química, existem substâncias que 
podem trazer algum tipo de risco, tanto na forma sólida, como líquida e, principalmente, na 
forma gasosa, muitas vezes de forma imperceptível. Por isso, espera-se do aluno um 
comportamento no laboratório com maturidade, responsabilidade e respeito aos colegas, 
monitores, técnicos e professores. O professor poderá atribuir notas diferentes no relatório 
aos membros de um mesmo grupo, com base nesse critério. 
 A limpeza do material utilizado e da bancada de trabalho é de responsabilidade do 
grupo. Esse item também será avaliado pelo professor na nota do relatório. 
 
Critérios de avaliação: 
A nota de Laboratório de Química Geral é independente da nota de Química Geral 
teórica. A média final será composta pela média das notas dos testes (60%) e média das 
notas dos relatórios (40%). 
 
Testes: Serão realizados 4 testes por semestre, sem marcação prévia das datas dos 
mesmos. Os testes serão respondidos e avaliados individualmente. O teste poderá ter 
questões sobre o assunto da prática a ser realizada e/ou de práticas anteriores. O aluno 
4 
 
deve ler o roteiro da prática antes da aula de laboratório. Em caso de falta, o aluno recebe 
nota zero no teste. Em caso de falta justificada de acordo com as normas do DAR, o 
professor poderá aplicar um teste de reposição, no final do semestre, com toda a matéria da 
disciplina. 
 
Relatórios: Cada grupo deve entregar um relatório relativo à prática do dia no final de cada 
aula. É importante que o aluno tenha um caderno de laboratório para anotar as observações, 
os dados coletados e os cálculos realizados, que serão usados no relatório. O relatório 
segue um modelo simplificado, devendo conter obrigatoriamente: 
* Título, data da experiência e nomes dos participantes do grupo. 
* Objetivos: descrever, resumidamente, o que se pretende com a aula experimental e 
os conceitos teóricos envolvidos; 
* Dados obtidos e observações: anote todas as medidas feitas (massa, volume, etc.) e 
descreva os fenômenos observados (cor, precipitação, produção de gás etc.). 
* Resultados: escreva os cálculos necessários para se chegar aos resultados. 
Quando for o caso, deve-se comparar o valor experimental com o valor conhecido ou teórico 
e calcular os erros absoluto e relativo. 
* Conclusões: Discuta os resultados experimentais obtidos, avalie se os objetivos 
foram alcançados, proponha possíveis causas de erro e descreva as conclusões às quais o 
grupo chegou. 
 
 
NORMAS INTERNAS BÁSICAS DE SEGURANÇA PARA UTILIZAÇÃO DO 
LABORATÓRIO 
Um acidente nunca avisa quando vai acontecer, mas comportamentos inadequados no 
laboratório aumentam significativamente a probabilidade de ocorrer um acidente! 
 Usar calça comprida de algodão, sapato fechado, óculos de segurança e luvas 
apropriadas. 
 Trabalhar com jaleco de algodão, longo e abotoado, com mangas compridas. 
 Prender os cabelos compridos. Não utilizar brincos e colares grandes, anéis e pulseiras. 
 Não comer, beber ou fumar no laboratório. Não colocar alimentos ou bebidas sobre as 
bancadas. Não usar lentes de contato. 
 Não fazer brincadeiras e não utilizar equipamentos de som e aparelhos celulares. 
 Só utilizar reagentes químicos de frascos devidamente identificados. Leia corretamente 
os rótulos. 
 Não realizar a “pipetagem” com a boca, para isto, utilize pipetadores adequados. 
 Não provar ou engolir reagentes ou soluções do laboratório. 
5 
 
 Não deixar frascos de reagentes abertos. Tenha a certeza de que os fechou 
corretamente. 
 Evitar qualquer contato dos reagentes com a pele. Caso ocorra, lave imediatamente o 
local com água corrente (torneira) e avise ao professor. 
 Quando quiser identificar um gás pelo odor, traga o vapor para o nariz com a mão. 
Nunca cheire diretamente nos frascos. Usar a capela para experiências em que ocorra a liberação de gases ou vapores. 
 Na diluição de ácidos concentrados, sempre adicione o ácido sobre a água, nunca o 
contrário. 
 Solicitar limpeza imediata de qualquer derramamento de produtos químicos. 
 Evite desperdício de reagentes, soluções e água. Após o experimento, o descarte deve 
ser realizado conforme orientação do técnico ou professor. Não realizar nenhum descarte na 
pia. 
 Não pesar qualquer material diretamente sobre o prato da balança. 
 Não trabalhar com materiais defeituosos, principalmente os de vidro. 
 Os vidros quebrados devem ser armazenados, de forma cautelosa, em bombonas 
específicas para sólidos, devidamente identificadas. 
 Antes de utilizar chapas ou mantas de aquecimento, verificar se há produtos inflamáveis 
por perto ou em uso. Não deixar vidro quente em lugar que possam pegá-lo 
inadvertidamente. 
 Consultar o professor quando tiver dúvidas e avisá-lo de qualquer acidente que ocorra, 
por menor que pareça. 
 Ao final do trabalho, deixar sempre a bancada e todas as vidrarias limpas. 
 Lavar bem as mãos e antebraços ao deixar o laboratório. 
 
Tão importante quanto trabalhar em segurança é trabalhar ordenadamente, com consciência 
da sequência a ser realizada. Leia atentamente o procedimento experimental certificando-se 
de que todos os materiais e reagentes necessários estão disponíveis. Anote os resultados 
obtidos, relacionando-os à teoria da prática. 
 
 
Material de laboratório usado nesta disciplina: 
 
Tubos de ensaio e estantes para tubos de ensaio 
Tubos de vidro cilíndricos, com tamanhos variados, usados para reações simples. Podem ser 
utilizados em centrífugas e podem ser levados diretamente ao fogo de um bico de Bunsen. 
 
 
 
 
 
 
6 
 
 
Copo de béquer 
Copo usado para preparar aquecer ou resfriar soluções, 
reações, recolher filtrados, etc. Pode ser aquecido em banho-maria 
ou em fogo direto, sobre uma tela de amianto em suporte. 
 
 
Tela de amianto 
Distribui o calor pela superfície, evitando que frascos de vidro quebrem 
quando aquecidos em fogo direto. É colocada sobre um tripé de ferro. 
 
 
Erlenmeyer 
Recipiente de vidro utilizado principalmente em titulações, pois 
devido ao seu formato, permite agitar o líquido, com reduzido risco de 
perda. 
 
 
Bastão de vidro 
Utilizado para misturar e auxiliar a transferência de líquidos de um recipiente para outro, 
evitando perdas. 
 
 
 
 
 
 
Suporte universal, garras e argolas 
Suporte de ferro utilizado para prender garras para bureta, argola para funil, etc. 
 
 
 
 
 
 
 
 
Pinças 
Usadas para pegar tubos, cadinhos, cápsulas etc. Pode ser de metal ou madeira. 
 
 
 
 
 
 
 
 
7 
 
Cadinho e cápsula de porcelana 
O cadinho é um pequeno copo que resiste a altas temperaturas. Utilizado em calcinações, 
evaporações e fusões. Pode ser de porcelana ou de metal, dependendo do uso. A cápsula é mais 
empregada para evaporações e dissoluções a quente. 
 
 
 
 
 
 
 
Gral e pistilo: 
Geralmente de porcelana ou ágata, servem para pulverizar substâncias sólidas. 
 
 
 
 
 
 
 
Instrumentos de pesagem: vidro de relógio e pesa filtro 
Vidro de relógio é usado para pesagem direta de reagentes e pesa filtro para pesagem por 
diferença. 
 
 
 
 
Espátula 
Utilizada para retirar reagentes sólidos de frascos. 
 
 
 
 
 
 
Instrumentos volumétricos: 
Balão volumétrico 
Balão de fundo chato e gargalo comprido, calibrado para conter 
determinados volumes líquidos. Possui um traço de referência que marca o volume 
exato. É utilizado no preparo de soluções de concentração conhecida. 
 
 
Proveta: Utilizada para medir volumes de líquidos 
sem grande precisão. 
8 
 
 
Pipeta graduada 
Tubo de vidro que serve para efetuar medições de volume escoado, sem 
grande precisão. 
 
 
 
 
 
Pipeta volumétrica 
Tubo de vidro com uma “barriga” no meio, utilizada na medição de 
volume escoado, com precisão. 
 
 
 
 
Bureta 
Tubo de vidro calibrado, graduado em mL. Serve para medir volume escoado, com precisão. 
Possui uma torneira de vidro na parte inferior. Algumas buretas possuem torneiras na parte lateral 
para titulações a quente, para o calor da solução quente não afetar o volume da bureta. 
 
 
 
 
Ajuste de volume dos equipamentos volumétricos: Ao ajustar o volume de líquidos em 
equipamentos volumétricos, o traço de referência deve estar na mesma altura que o olho do 
observador e a tangente inferior do menisco deve coincidir com o traço de referência. Ver figura na 
Experiência 1 (página 11). 
 
 
Frasco lavador ou pissete 
 Utilizado para lavar vidraria com água destilada e também para auxiliar a 
lavagem de precipitados em filtração, etc. Pode conter água destilada ou outra 
solução de lavagem. 
 
 
9 
 
Dessecador 
Recipiente de vidro com tampa, que contém em sua parte inferior uma 
substância higroscópica, principalmente sílica-gel ou cloreto de cálcio anidro, usado 
para conservar substâncias ao abrigo da umidade. Alguns dessecadores possuem 
uma saída na tampa, na qual pode-se adaptar uma trompa de vácuo, para 
efetuarmos secagens à pressão reduzida. As bordas da tampa do dessecador são 
untadas com vaselina para melhorar a vedação. 
 
 
Estufa 
Aparelho utilizado para a secagem de substâncias sólidas, 
evaporações lentas de líquidos, etc. As estufas, em geral, são elétricas e 
possuem um termômetro para controle da temperatura. 
 
 
Balança 
A balança é um instrumento muito sensível que deve ser utilizada 
tomando-se os seguintes cuidados: a) nenhum reagente deve ser colocado 
diretamente sobre o prato para evitar ataque químico; b) o objeto a ser 
pesado deve estar em equilíbrio térmico com o ambiente onde se encontra a 
balança e c) deve-se manter a balança sempre limpa. 
 
 
Armazenagem de reagentes 
 Reagentes e soluções devem ser guardados em frascos apropriados. Os frascos podem ser 
de vidro ou plástico, principalmente. Existem diversos tamanhos. Os de vidro podem ser 
transparentes ou âmbar, para reagentes que sofrem algum tipo de reação na presença de luz. Os 
frascos devem ser mantidos bem fechados com sua tampa quando não se estiver retirando o 
reagente. Deve-se ter cuidado de não trocar tampas de diferentes frascos para evitar contaminações. 
Todo frasco de reagente deve ter rótulo com as informações sobre o reagente contido, data de 
validade ou de preparação e o nome de quem preparou. 
 
 
 
 
 
 
 
 
 
10 
 
 
Terminologia científica: 
 
A tabela abaixo apresenta alguns termos comumente empregados em química, que foram 
atualizados pela IUPAC (União Internacional de Química Pura e Aplicada, do inglês: International 
Union for Pure and Applyed Chemistry). 
Consulte a tabela para não cometer erros nos seus relatórios. 
 
 
Retirado de: R. R. Silva e R. C. Rocha Filho, Mol: Uma Nova Terminologia, Química Nova na 
Escola, 1 (1995) 12-14. 
 
Obs.: De acordo com as recomendações atualizadas da IUPAC, as unidades devem ser 
escritas utilizando o seguinte formato: mol L-1 
11 
 
 
 
 
Bibliografia recomendada: 
Princípios de Química “Questionando a vida moderna e o meio ambiente” – Peter Atkins 
e Loretta Jones – Artmed Editora. 
 
Química e Reações Químicas, vol. 1 e 2 – John C. Kotz e Paul Treichel, Jr. – Cengage 
Learning (ou em inglês, 1 volume: Kotz & Purcell - Saunders College Publishing). 
 
Química, a ciência central – T. L. Brown, H. E. LeMay Jr., B. E. Bursten, J. R. Burdge – 
Ed. Pearson. 
 
Química Geral aplicada à Engenharia – Lawrence S. Brown e Thomas A. Holme – 
Cengage Learning. 
 
Química Geral, vol. 1 e 2 – John B. Russell – Ed. Pearson. 
 
General Chemistry, Principles and Modern Applications – Ralph H. Petrucci - Macmillan 
Publishing Company. 
 
Química Geral - Darrell D. Ebbing – Livros Técnicos e Científicos Editora S.A. 
 
 
 
 
 
 
 
 
 
 
 
12 
 
 
Experiência 1: Medidas, algarismos significativose erros 
 
Nessa experiência, serão feitas medições com diferentes instrumentos, a fim de 
diferenciar exatidão e precisão, expressar resultados de medidas com o número correto de 
algarismos significativos, calcular média e desvio-padrão de uma série de medidas, 
conhecer os erros inerentes aos instrumentos, calcular erro absoluto e erro relativo. 
 
Método Científico 
 
 
 
 
 
 
Medidas de volume: 
 Existem diversos instrumentos de medidas de volume com diferentes precisões. A 
medida de volumes deve ser feita segurando-se o instrumento de tal forma que a leitura do 
volume seja feita na altura dos olhos, para evitar erro de paralaxe. O volume contido ou 
escoado é lido na linha que tangencia a parte inferior do menisco do líquido, como mostrado 
na figura 1.1. Para instrumentos com volume exato, como pipetas ou balões volumétricos, 
deve-se acertar o nível do líquido com a parte inferior do menisco tangenciando a linha de 
referência. Esses instrumentos com volume exato devem ser aferidos antes do primeiro uso. 
 
 
 
 
Figura 1.1: Ajuste de volume de um 
equipamento graduado (18,00 mL) e de um 
equipamento volumétrico. 
 
Fenômeno 
físico ou 
químico 
Medição 
Resultados e 
suas 
limitações 
 Erros: 
 - sistemáticos 
 - aleatórios 
Observações Coleta de 
dados 
Busca de 
regularidades 
Organização das 
informações 
Leis 
13 
 
 
Incerteza nas medidas / limitações dos aparelhos 
Nenhuma medida é um valor absoluto. Trata-se sempre de uma faixa mais ou menos 
estreita de valores, dependendo do aparelho utilizado (maior ou menor precisão). 
Um exemplo é a medição do comprimento de uma peça, utilizando uma régua com 
incerteza de mais ou menos 0,02 cm, como mostra a figura 1.2: 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 1.2: Medida feita com uma régua com precisão de 0,02 cm. 
 
Na leitura, deve-se ter em mente que não é 12,4 nem 12,5, mas sim, algo entre esses 
dois valores. Estima-se um valor nesse intervalo (12,46), acrescenta-se a incerteza da régua 
(0,02) e assim se escreve: 
12,46  0,02 cm. Faixa: 12,44 a 12,48 cm. 
 
Algarismos significativos nas medidas 
 Número de algarismos significativos é o número de algarismos lidos mais um estimado. 
 A leitura é feita com os valores disponíveis no instrumento e, obrigatoriamente, mais um 
único algarismo, que é estimado. 
 Quanto maior o número de algarismos significativos, maior é a precisão da medida. 
A figura 1.3 mostra a leitura em uma balança de escala tríplice: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12,46 0,02 cm 
 

 
A medida tem cinco 
algarismos significativos: 
quatro medidos com certeza 
e um estimado. 
P = 153,54 g 
estimado 
14 
 
Figura 1.3: Medida feita com uma balança de escala tríplice. 
 
Operações envolvendo algarismos significativos: 
Na soma ou subtração de medidas, o resultado deve ser expresso com o número de 
algarismos significativos da medida com menor número de casas decimais: 
Por ex.: 
2,42 cm + 5,5 cm = 7,9 cm 
 
Na multiplicação ou divisão de medidas, o resultado deve ser expresso com o número 
de algarismos significativos igual ao número de algarismos da medida menos precisa, ou 
seja, da medida que possui o menor número de algarismos significativos. 
Por ex.: 
3,12 cm x 11,45 cm = 35,7 cm2 
 
 
Atenção: um número sem unidade tem pouco ou nenhum significado. Por ex., 
dependendo da substância, uma concentração de 1 mol L-1 pode ser muito diferente de 1 g 
L-1. A expressão correta das unidades será sempre exigida e avaliada em relatórios e testes. 
 
Média e desvio-padrão: 
 A maneira mais correta de expressar um resultado é através da média de uma série 
de medidas. Por exemplo, ao expressar o volume aferido contido em um balão volumétrico, 
pesa-se o balão vazio e depois com água até a marca de referência. Medindo-se a 
temperatura da água, pode-se saber sua densidade exata e determinar o volume contido no 
balão. Repete-se esse procedimento pelo menos 3x e calcula-se a média e o desvio-padrão. 
Pode-se ainda calcular o valor do desvio da medida a partir do desvio-padrão e das 
incertezas inerentes ao método (incerteza da balança, incerteza da medida da temperatura, 
etc.). Dessa maneira, tem-se um intervalo de volume dentro do qual se pode dizer que está 
o volume correto contido no balão. Esse valor de volume aferido deve ser usado para futuras 
medidas feitas com este instrumento. 
 
 
 Média: Desvio-padrão: 
 
 
 
 Desvio padrão relativo: 
 
15 
 
 
 
Erros que podem ocorrer nas medições: 
 Uma medida sempre tem um erro associado embutido. Esse erro pode ser 
simplesmente devido à incerteza das medidas inerente à precisão dos equipamentos, mas 
também podem ocorrer erros que são classificados como: 
 
Erros sistemáticos: 
 Em geral, os erros sistemáticos podem ser facilmente identificados e corrigidos ou 
compensados, pois as medidas seguem uma mesma tendência. Resultam em falta de 
exatidão e podem ocorrer devido ao método (uso de indicador ou reagentes não 
apropriados), aos instrumentos de medida (erro de calibração ou aferição dos equipamentos, 
impureza de reagentes) ou ao analista (visualização do ponto exato da mudança de cor de 
um indicador). 
 
Erros aleatórios: 
 São imprevisíveis e normalmente acidentais, afetando uma ou mais medida de forma 
aleatória, como uma flutuação de corrente em um equipamento eletrônico ou uma 
contaminação em uma das replicatas. Resultam em falta de precisão e dificilmente podem 
ser totalmente eliminados. 
 
Erros grosseiros: 
 Causados por inabilidade ou falta de conhecimento do analista, como por ex. o uso de 
equipamento ou reagentes errados. 
 
Erro absoluto e erro relativo: 
 O erro absoluto é a diferença entre o resultado da medida e o valor considerado 
verdadeiro. Pode ser positivo ou negativo, mas costuma ser representado em módulo. 
 
Erro absoluto = |valor experimental – valor verdadeiro| 
 
 O erro relativo é a razão entre o erro absoluto e o valor verdadeiro. Pode ser expresso 
como erro relativo percentual: 
100X)
verdadeiro valor
absoluto erro
(% erro 
 
 
16 
 
 
Precisão e exatidão: 
A exatidão de um resultado é a proximidade do mesmo com o valor verdadeiro. 
Quanto menor é o erro em relação ao valor verdadeiro, mais exato é o resultado. 
A precisão de um resultado é a proximidade dos valores das replicatas entre si. 
Quanto menor é o desvio entre as medidas, mais preciso é um resultado. 
A figura 1.4 mostra um exemplo que ilustra bem a diferença entre precisão e exatidão. 
Tente identificar cada caso: 
 
Figura 1.4: Alvos mostrando situações de boa ou ruim precisão e exatidão. 
 
Precisão e incerteza: 
A precisão de um equipamento expressa a incerteza do mesmo, relativa à medida. 
Quanto maior for o número de algarismos significativos que pode ser expresso com um 
equipamento, mais preciso é o mesmo. 
Compare os 3 termômetros mostrados na figura 1.5, em relação à precisão. 
 
 1- 
 
 
 
 
 
 
 
2- 3- 
 
 
 
 
 
 
 
 
 
 
Figura 1.5: Medidas de temperatura com 3 termômetros diferentes. 
17 
 
 
Experiência 1: Medidas, algarismos significativos e erros 
Procedimento experimental 
 
Sobre a bancada, você vai encontrar a vidraria necessária para exercitar medições. 
Para a vidraria volumétrica de precisão, observe a temperatura marcada no 
instrumento de medida e meça a temperatura do líquido. Se o valor nominal (especificado na 
vidraria) corresponder ao mesmo do líquido, então o volume escoado corresponde 
exatamente ao valor nominal. Caso contrário, uma correção é necessária. Discuta com o seu 
professor. 
 
Determinação do volume exato de um instrumento volumétrico: 
Nessa experiência, você irá medir os volumes exatos de alguns equipamentos 
volumétricos. Para isso, você irá medir um determinado volume de água indicado no 
equipamento e pesar a massa de água correspondentea esse volume. A partir da massa da 
água e da sua densidade na temperatura do experimento, você poderá determinar o volume 
exato medido. 
Coloque água da torneira em um copo de béquer, mergulhe o termômetro e aguarde 
alguns minutos para estabilizar. Verifique na tabela 1.1 a densidade da água a essa 
temperatura. 
 
Tabela 1.1: Densidade da água em função da temperatura (g mL-1). 
ºC unidade 
dezena 0 1 2 3 4 5 6 7 8 9 
0 0,9999 0,9999 1,0000 1,0000 1,0000 1,0000 1,0000 0,9999 0,9999 0,9998 
10 0,9997 0,9996 0,9995 0,9994 0,9993 0,9991 0,9990 0,9988 0,9986 0,9984 
20 0,9982 0,9980 0,9978 0,9976 0,9973 0,9971 0,9968 0,9965 0,9963 0,9960 
30 0,9957 0,9954 0,9951 0,9947 0,9944 0,9941 0,9937 0,9934 0,9930 0,9926 
40 0,9922 0,9919 0,9915 0,9911 0,9907 0,9902 0,9898 0,9894 0,9890 0,9885 
50 0,9881 0,9876 0,9872 0,9867 0,9862 0,9857 0,9852 0,9848 0,9842 0,9838 
60 0,9832 0,9827 0,9822 0,9817 0,9811 0,9806 0,9800 0,9765 0,9789 0,9784 
70 0,9778 0,9772 0,9767 0,9761 0,9755 0,9749 0,9743 0,9737 0,9731 0,9724 
80 0,9718 0,9712 0,9706 0,9699 0,9693 0,9686 0,9680 0,9673 0,9667 0,9660 
90 0,9653 0,9647 0,9640 0,9633 0,9626 0,9619 0,9612 0,9605 0,9598 0,9591 
 
Condições ambientais: 
Temperatura da água: _____________Temperatura ambiente: _____________ 
Pressão ambiente: _________ Densidade da água nas condições experimentais: ________ 
18 
 
 
Etapa 1: Medida da precisão de um instrumento em diferentes volumes medidos: 
a) Meça, com uma proveta de 50,0 mL, 10,0 mL de água. Transfira para um copo de béquer 
previamente pesado e seco e calcule o volume exato através da massa e da densidade. 
Faça o procedimento em triplicata e calcule a média e o desvio-padrão. 
 
b) Repita o experimento com a mesma proveta e um volume de água superior a 30,0 mL. 
 
c) Compare os desvios-padrão relativos (RSD) para cada volume médio. 
 
 
Etapa 2: Comparação da exatidão e da precisão de diferentes instrumentos de 
medida: 
Faça 3x cada procedimento para calcular média e desvio-padrão do volume de cada um: 
 
a) Utilizando uma pipeta graduada (na tabela: PG) de 10,0 mL, pipete água acima do traço 
de referência (zero), seque a parte externa com papel toalha e acerte o zero. Transfira para 
um copo de béquer seco e previamente pesado e calcule o volume escoado. 
 
b) Utilizando uma pipeta volumétrica de 10,00 mL (volume escoado) (na tabela PV), pipete 
água acima do traço de referência (zero), seque a parte externa com papel toalha e acerte o 
zero. Transfira o líquido para um béquer seco e previamente pesado e calcule o volume 
escoado. 
 
c) Repita o mesmo procedimento com uma bureta (na tabela: B). A bureta deve ser cheia 
com água até acima da marca. Cuidar para não ficarem bolhas de ar aderidas às paredes ou 
próximo à torneira. Seque a ponta da bureta por fora e ajuste o volume até o menisco 
tangenciar a marca do zero. Transfira também 10,00 mL de água da bureta para o béquer 
seco e pesado e calcule o volume correto dispensado. Preencha a bureta e zere antes de 
cada repetição. 
 
d) Usando o valor encontrado para a proveta (Etapa 1 a), compare a exatidão e precisão dos 
4 instrumentos, através das médias, desvios-padrão e desvios-padrão relativos (RSD). 
 
 
 
19 
 
 
 
Relatório 1: Medidas, algarismos significativos e erros. 
 
Objetivos (se necessário, use o verso da folha): 
Resultados (Indique os cálculos no verso): 
Temperatura da água:__________ Temperatura ambiente:_____________ 
Pressão ambiente:__________ Densidade da água nas condições experimentais: _______ 
Etapa 1 
 Volume medido (proveta) 10,0 mL 30,0 mL 
Replicata 1ª 2ª 3ª 1ª 2ª 3ª 
Massa do béquer (vazio e seco) 
Massa do béquer com água 
Massa de água 
Volume exato 
Volume médio ± s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data da prática: _____ / _____ / _____ Turma: __________ Nota: __________ 
Professor:_______________________________________________________________ 
Aluno(s):________________________________________________________________
________________________________________________________________________ 
________________________________________________________________________ 
 
Etapa 2 
Instrumento PG PG PG PV PV PV B B B 
Replicata 1ª 2ª 3ª 1ª 2ª 3ª 1ª 2ª 3ª 
Massa do béquer (vazio e seco) 
Massa do béquer com água 
Massa de água 
Volume exato 
Volume médio ± s 
PG: pipeta graduada PV: pipeta volumétrica B: bureta 
 
A partir dos resultados das etapas 1 e 2, complete a tabela abaixo, marcando com X o instrumento mais exato e o mais preciso: 
 
 
 
 
 
 
 
 
 
 
 
Conclusões: (utilize o verso da folha) 
Instrumento Volume médio ± s, 
mL 
RSD, 
% 
+ exato + preciso 
Proveta (Etapa 2) 
Pipeta graduada (PG) 
Pipeta volumétrica (PV) 
Bureta (B) 
 
Experiência 2: Estequiometria - reação envolvendo gás 
 
Relembrando conceitos teóricos: 
Massa Molar: é a massa (g) de 1 mol de elemento ou substância. 
Exemplos: 
1) M (Mg) = 24,3 g mol-1 
24,3 g é a massa de 1 mol de átomos de Mg ou a massa de 6,022 x 1023 átomos de Mg. 
 
2) M (HCl) = 36,5 g mol-1 
36,5 g é a massa de 1 mol de moléculas de HCl ou a massa de 6,022 x 1023 moléculas de 
HCl. 
 
Equação dos gases ideais: PV = nRT 
 
Volume Molar: é o volume de um mol de qualquer gás, sendo 22,414 L mol-1 nas Condições 
Normais de Temperatura e Pressão, CNTP (760 mmHg e 273,15 K). 
 
Lei da Conservação das Massas ou Lei de Lavoisier: “Em uma reação química, a massa 
total dos reagentes é igual à massa total dos produtos”. 
O balanço de massa de uma equação química é feito em função da quantidade de 
matéria (mol) dos reagentes e produtos, obedecendo à proporção dos mesmos na reação 
(estequiometria). 
 
Mg(s) + 2HCl(aq)  MgCl2(aq) + H2(g) 
1 mol 2 mol 1 mol 1 mol 
24,3 g + 2 x 36,5 g = 95,3 g + 2 g 
 
Equação simplificada: 
Mg(s) + 2H+(aq)  Mg2+(aq) + H2(g) 
 
Concentração de uma solução: é a quantidade de matéria por volume de solução: mol L-1 
 
Lei de Dalton: Em uma mistura gasosa, a pressão total é igual a soma das pressões 
parciais dos gases. 
22 
 
Experiência 2: Estequiometria - reação envolvendo gás 
Procedimento experimental 
Nessa experiência, a estequiometria será comprovada, através da determinação da 
quantidade de gás hidrogênio, através da medida do seu volume, produzido quando uma 
amostra de magnésio metálico reage com ácido clorídrico. 
 
Etapa 1: 
Leia e anote a temperatura (em oC ou K) e a pressão (em mmHg) do laboratório. 
Localize os instrumentos de medição no laboratório. 
 
Etapa 2: 
Consulte na tabela 2.1 e anote a pressão de vapor da água na temperatura ambiente. 
Tabela 2.1 – Pressão de vapor d’água a diferentes temperaturas 
Temperatura, oC Pressão, mm Hg Temperatura, oC Pressão, mm Hg 
15 12,8 23 21,0 
16 13,6 24 22,4 
17 14,5 25 23,8 
18 15,5 26 25,2 
19 16,5 27 26,7 
20 17,5 28 28,3 
21 18,6 29 30,0 
22 19,8 30 31,8 
 
Etapa 3: 
 Conhecendo a pressão do seu ambiente de trabalho e a pressão de vapor da água na 
temperatura ambiente, você pode calcular a pressão parcial do hidrogênio numa mistura de 
gás hidrogênio com vapor d’água. 
Pambiente = PH2(g) + PH2O(v) 
 
Etapa 4: Pese uma amostra de fita de Mg na balança de prato externo. 
 
Etapa 5: 
Dobre a fita de magnésio metálico de maneira que ela possa ser 
colocada dentro de uma gaiola feita de fio de cobre. Deixe alguns poucos 
centímetros sem enrolar, para servir de cabo e fixar na gaiola. Adapte a 
gaiola a uma rolha furada, como mostra a figura 2.1. 
 
Figura 2.1: Esquema de montagem da fita de Mg na gaiola de cobre. 
23 
 
Etapa 6: 
Adicione 10 mL de HCl (6 mol L-1) a um tubo graduado de 50 mL (próprio para esta 
experiência) ligeiramente inclinado e use o frasco lavador para arrastar o ácido das paredes 
internas e completartotalmente o volume do tubo com água. Tenha o cuidado de lavar as 
paredes internas do tubo para que o ácido vá todo para o fundo e não fique nenhum resíduo 
nas paredes. O tubo deve estar totalmente preenchido, não deixe ar dentro. Feche o tubo 
com a rolha com a gaiola e coloque, com cuidado, o tubo na posição vertical (Figura 2.2). 
Observações: 
O tubo deve ficar bem fechado, com a gaiola de cobre contendo a fita de Mg cerca de 
3 cm para dentro. Como o tubo está totalmente cheio, ao tampar, deverá derramar água. 
É importante limpar todo o resíduo de ácido das paredes do tubo com água destilada, 
utilizando o pissete, para que a reação não comece precocemente. 
 
 
 
 
 
 
 
 
Figura 2.2: Depois de completar o tubo com água até a borda, feche com a rolha. 
 
Etapa 7: 
Cubra o furo do conjunto rolha + gaiola com o dedo e inverta o tubo num béquer de 
400 mL contendo 250 mL de água deionizada, fixando-o com a garra, como mostra a figura 
2.3. O ácido, por ser mais denso que a água, vai se difundir através da água e irá reagir com 
o magnésio metálico, liberando o gás hidrogênio. Não ocorre reação com o cobre. 
 
 
 
 
 
 
 
 
 
Figura 2.3: Inverta o tubo e mergulhe sua extremidade no béquer com água. 
24 
 
Etapa 8: 
Após a reação acabar, espere mais cinco minutos para que o sistema atinja a 
temperatura ambiente. O hidrogênio produzido na reação estará na parte superior (é menos 
denso), juntamente com um pouco de vapor d’água. 
 
Etapa 9: 
Para determinar o volume dos gases hidrogênio + vapor d’água nas 
condições de pressão e temperatura ambiente, proceda da seguinte 
maneira: de novo, cubra com o dedo o furo da rolha para tirar o conjunto 
tubo + rolha de dentro do béquer com água e coloque o mesmo em uma 
proveta de 1 L bem cheia com água (acima da marca de 1000 mL) à 
temperatura ambiente, como mostra a figura 2.4. Eleve ou abaixe o tubo 
até que o líquido em seu interior fique no mesmo nível que a água da 
proveta. Assim, a pressão interna é igual à pressão externa. Anote o 
volume (mL) da mistura gasosa que está na parte superior do tubo. 
Figura 2.4: Ajuste o tubo mergulhado na proveta, de maneira que os 
níveis interno e externo dos líquidos sejam iguais. 
 
Etapa 10: 
Calcule a quantidade de H2(g) obtida, em mol, aplicando a lei dos gases ideais: PV = nRT 
Onde: P é a pressão parcial (atm ou mmHg) do H2(g), V é o volume (L) do H2(g), R é 
a constante dos gases ideais (0,0821 atm L mol -1 K-1 ou 62,3 mmHg L K-1 mol-1) e T é a 
temperatura ambiente (K). 
Observação: Tanto o H2(g) quanto o vapor d’água (H2O(v)) ocupam o mesmo volume 
no tubo graduado, porém com pressões parciais diferentes; logo, o volume lido no tubo é o 
próprio volume ocupado pelo H2(g). 
Etapa 11: 
A partir da massa de Mg, calcule a quantidade de matéria (mol) de H2(g) teórico que 
deveria ter sido produzido no experimento. 
Determine os erros absoluto e relativo percentual obtidos experimentalmente. 
Fórmulas: Erro absoluto = |valor experimental – valor verdadeiro| 
 
100X)
verdadeiro valor
absoluto erro
(% erro 
. 
25 
 
 
Relatório 2: Estequiometria - reação envolvendo gás 
 
Objetivos (se necessário, use o verso da folha): 
 
 
Cálculos: 
1. Temperatura ambiente: ______ oC ou ________K 
2. Pressão atmosférica do ambiente: ______ mmHg 
3. Pressão de vapor da água na temperatura ambiente: ______ mmHg 
4. Pressão parcial do hidrogênio: ______ mmHg 
5. Volume ocupado por hidrogênio e vapor d’água nas condições ambientais: ______ L 
6. Quantidade de hidrogênio produzido na reação: ______ mol 
7. Quantidade de magnésio metálico: ______ g ou ______ mol 
8. Quantidade de hidrogênio teórica, esperada a partir da estequiometria da reação: 
_____ mol 
9. Determine os erros absoluto e relativo: 
 
 Conclusões (Proponha possíveis causas de erro. Se necessário, use o verso da folha): 
 
 
Data da prática: _____ / _____ / _____ Turma: __________ Nota: __________ 
Professor:__________________________________________________________________ 
Aluno(s):___________________________________________________________________
__________________________________________________________________________ 
__________________________________________________________________________ 
 
26 
 
 
Experiência 3: Gases e o Princípio de Avogadro 
 
A hipótese de Avogadro, enunciada em 1811, foi comprovada experimentalmente e é 
conhecida como “Princípio de Avogadro”, que diz: “Volumes iguais de quaisquer gases, 
quando medidos nas mesmas condições de pressão e temperatura, contém o mesmo 
número de moléculas”. Portanto, a relação entre as massas destes volumes iguais indica, 
diretamente, a relação das massas das 2 espécies, ou seja, do número de mols. 
 
Conceitos importantes que devem ser conhecidos: 
Densidade absoluta e massa específica. 
Empuxo. 
Peso atômico, massa molar e mol. 
Algarismos significativos. 
 
Densidade absoluta e massa específica: 
 Muitas vezes, essas duas propriedades são usadas como sinônimos, pois ambas 
relacionam massa e volume. Porém, a diferença entre elas é que a massa específica é a 
relação de massa por volume de uma substância pura, enquanto que a densidade é a 
mesma relação para objetos, que podem ser compostos por uma substância pura ou ser 
composto por uma mistura de substâncias, podendo inclusive ser um objeto oco, com ar no 
seu interior. 
 
Efeito do empuxo do ar na determinação de massas: 
Vivemos numa atmosfera de ar, ou seja, podemos dizer que estamos mergulhados no 
ar. Em geral, não consideramos o efeito do empuxo do ar sobre as medidas porque ele é 
muito pequeno. Quando um objeto é colocado em uma balança, sofre a ação do empuxo, 
que é uma força de baixo para cima igual ao peso do ar por ele deslocado. 
Exemplo: Um objeto com o volume de 1 L, nas condições ambientais (1 atm e 25 oC) 
quando submerso em água, desloca 1 L de água e é empurrado para cima com a força 
correspondente ao peso de 1,0 kg, pois 1,0 kg é a massa de 1,0 L de água pura, porque sua 
densidade é igual a 1,0 kg L-1. O mesmo objeto no ar é empurrado para cima com a força 
equivalente a aproximadamente 1,2 g, pois 1,2 g equivale à massa de 1,0 L de ar. Logo, a 
27 
 
densidade do ar nas condições ambiente é de 1,2 g L-1, ou seja, 1,2 mg mL-1. 
Massa aparente e massa real: Nesta experiência, as massas aparentes dos gases obtidas 
na pesagem serão corrigidas, somando-se a elas a massa do ar deslocado. 
 
Massa e peso: Há uma distinção entre os conceitos de massa e peso. A massa de um 
corpo é a quantidade de matéria nele contida. É uma propriedade fundamental do corpo e 
independe da sua posição com relação à Terra. O peso é o efeito do campo gravitacional 
sobre a massa do corpo, ou seja, é a massa multiplicada pela gravidade. A massa é medida 
em kg enquanto o peso é medido em kgf (quilograma-força). Na superfície da Terra, onde a 
gravidade é igual a 10 m s-2, um objeto de 1 kg de massa pesa 1 kgf. 
Em uma balança, determinamos a massa de um corpo comparando o peso do corpo 
com um peso de uma massa padrão. 
 
 
Experiência 3: Gases e o Princípio de Avogadro 
Procedimento experimental 
 
Antes de começar o trabalho, deverão ser verificadas e anotadas a pressão 
atmosférica e a temperatura no laboratório. 
 
Etapa 1: Determinação da massa do nitrogênio (N2) 
1- Faça a montagem conforme a figura 3.1, utilizando o saco plástico, a rolha e o tubo de 
vidro. 
 
Figura 3.1: Material e montagem do sistema a ser usado na prática. 
 
2- Retire a tampa de borracha do conta-gotas e expulse todo o ar do saco, alisando-o sobre 
a bancada. Recoloque a tampa de borracha e pese, para determinar a massa deste conjunto 
28 
 
com aproximação de 0,001 g, ou seja, um valor para a massa até o milésimo de grama. 
 
3- Este conjunto deverá ser cheio com gás nitrogênio, conformea figura 2, pelo tubo do 
conta-gotas sem a tampa. Antes de fechar, deixe escapar o gás em excesso, com cuidado, 
sem amassar o saco plástico, para que o gás dentro do saco fique à pressão atmosférica. A 
seguir, recoloque a tampa de borracha no conta-gotas. 
 
4- Determine a massa do conjunto que contém o gás, à temperatura ambiente e pressão 
atmosférica, também com aproximação de 0,001 g (figura 3.2) 
 
 
Figura 3.2: Enchimento do sistema com o gás e pesagem do conjunto (sistema + gás). 
 
Etapa 2: Determinação da massa de dióxido de carbono (CO2) 
Utilize o mesmo conjunto da etapa 1, assegurando-se que o saco, a rolha e o conta-
gotas estejam vazios e secos. Repita a etapa 1, utilizando gás carbônico, CO2. 
 
Etapa 3: Determinação do volume do saco plástico 
1- Remova todo o gás que ainda estiver dentro do saco plástico. A seguir, encha o saco 
plástico com ar, usando uma bomba e empregando o mesmo procedimento das etapas 1 e 
2. Procure obter o mesmo volume usado anteriormente com cada um dos gases, N2 e CO2. 
 
2- Encha, até a borda, um frasco de vidro grande com água da torneira. Tampe-o e 
emborque-o dentro da bacia que deverá estar com água. Retire a tampa do frasco depois 
29 
 
que ele estiver emborcado na água. 
 
3- Substitua a tampa de borracha do conta-gotas pelo tubo de borracha. 
 
4- Introduza a outra extremidade deste tubo no gargalo do frasco emborcado. 
 
5- Conforme a montagem da figura 3.3, comprima levemente o saco plástico, de maneira 
que todo o ar contido no saco plástico desloque a água do frasco. 
 
6- Com cuidado e atenção, dobre o tubo de borracha para fechá-lo e retirá-lo do frasco. 
Tampe o frasco e o recoloque na bancada. 
 
Figura 3.3: Transferindo o gás do saco para a garrafa com água. 
 
 
Etapa 4: Determinação do volume e da massa de ar deslocado 
Para medir o volume de ar transferido para o frasco, proceda conforme mostrado na 
figura 3.4 e descrito abaixo. 
 
1- Encha a proveta com água da torneira até a marca de 1000 mL. Transfira esta água para 
o frasco, com cuidado para não derramar. 
 
2- Repita a operação até que o frasco fique completamente cheio até o gargalo. Este volume 
de água usado para encher o frasco corresponde ao volume de ar deslocado. 
30 
 
 
Figura 3.4: Medindo o volume de água deslocado pelo gás. 
 
Etapa 5: Cálculos 
1- Calcule as massas aparentes do nitrogênio e do dióxido de carbono contidos no saco 
plástico, subtraindo da massa do conjunto com gás, a massa do conjunto vazio. 
 
2- Calcule as massas reais do nitrogênio e do dióxido de carbono, somando às massas 
aparentes, a massa do ar deslocado (A massa de ar deslocado é determinada pela massa 
específica do ar seco à temperatura e à pressão atmosférica ambiente, utilizando-se os 
dados da tabela 3.1). 
 
3- Determine as densidades de cada gás nas condições do experimento, dividindo a massa 
real pelo volume medido. Compare as densidades calculadas dos 2 gases, N2 e CO2 com a 
densidade do ar (tabela 3.1) 
 
4- Se, de acordo com o Princípio de Avogadro, a quantidade de matéria de gás contido no 
saco plástico nas condições da experiência, é independente do gás (lei dos gases ideais), a 
quantidade de matéria, em mol, de N2 e de CO2 medidos devem ser iguais (R = 0,0821 atm 
L mol -1 K-1 ou 62,3 mmHg L K-1 mol-1). 
 
Dados: M (N2) = 28,0 g mol
-1 
 M (CO2) = 44,0 g mol
-1 
 
 
 
 
 
31 
 
 
Tabela 3.1: Massa específica do ar (g L-1) (incerteza + 0,01) 
Pressão Temperatura 
(mmHg) 15 oC 20 oC 25 oC 30 oC 
600 0,97 0,95 0,94 0,92 
610 0,98 0,97 0,95 0,93 
620 1,00 0,98 0,97 0,95 
630 1,02 1,00 0,98 0,97 
640 1,03 1,01 1,00 0,98 
650 1,05 1,03 1,01 1,00 
660 1,06 1,05 1,03 1,01 
670 1,08 1,06 1,04 1,03 
680 1,10 1,08 1,06 1,04 
690 1,11 1,09 1,07 1,06 
700 1,13 1,11 1,09 1,07 
710 1,14 1,12 1,10 1,09 
720 1,16 1,14 1,12 1,10 
730 1,18 1,16 1,14 1,12 
740 1,19 1,17 1,15 1,13 
750 1,21 1,19 1,17 1,15 
760 1,23 1,21 1,19 1,16 
770 1,24 1,22 1,20 1,18 
 
 
 
 
 
 
 
 
 
 
 
 
 
32 
 
 
 
Relatório 3: Gases e o Princípio de Avogadro 
 
Objetivos (se necessário, use o verso da folha): 
Dados da experiência: 
Temperatura ambiente: ______ oC ou ________K 
Pressão atmosférica do ambiente: ______ mmHg ou _________ atm 
Massa do conjunto vazio: ____________ 
Massa do conjunto cheio com gás nitrogênio (N2): ___________ 
Massa do conjunto cheio com dióxido de carbono (CO2): ________ 
Volume de ar: __________ L 
Massa do ar deslocado: __________ g 
 
Resultados: (os cálculos devem constar no relatório) 
1. Nas condições ambientais: T = _________ ºC e P = ____________atm 
Gás Massa aparente Massa real Massa específica 
N2 
CO2 
 
2. Compare as massas específicas calculadas dos 2 gases com a massa específica do ar 
(Tabela 3.1). Discuta. 
 
3. Calcule a quantidade de matéria, em mol, de cada gás, a partir das massas e massas 
molares, e compare a quantidade de matéria, em mol, obtida pela lei dos gases ideais. Com 
base no Princípio de Avogadro, discuta as causas de erro dos 2 modos de cálculo. 
 
Conclusões (use o verso da folha): 
Data da prática: _____ / _____ / _____ Turma: __________ Nota: __________ 
Professor:_______________________________________________________________ 
Aluno(s):________________________________________________________________
________________________________________________________________________
________________________________________________________________________ 
33 
 
 
Experiência 4: Equilíbrio químico e o princípio de Le Chatelier 
 
Nessa aula serão realizados experimentos que permitem identificar, por meio de 
evidências a olho nu, substâncias presentes em cada membro de uma reação reversível e 
observar o deslocamento do sentido de reações reversíveis, provocado por fatores externos. 
Serão vistos os efeitos da mudança de temperatura e da alteração da concentração 
de uma das espécies de uma reação em equilíbrio, no deslocamento do equilíbrio para um 
ou outro lado da reação. 
 
Considerações teóricas: 
Se pensarmos que as reações químicas dependem, dentre outras coisas, de colisões 
efetivas que ocorrem entre os reagentes, é de se esperar que o mesmo ocorra com os 
produtos formados. Assim, as reações químicas são reversíveis, ou seja, podem se 
processar nos dois lados (reagentes  produtos) em maior ou menor intensidade para um 
ou outro lado. 
Mesmo as reações ditas irreversíveis, que ocorrem muito intensamente para um lado, 
não deixam de possuir uma pequena reversibilidade. O nosso estudo, no entanto, estará 
voltado para as reações reversíveis, ou seja, aquelas que possuem uma taxa considerável 
de reagentes e produtos em equilíbrio. 
 
Exemplo de equilíbrio molecular 
 
2HI(g)  H2(g) + I2(g) 
 
Exemplo de equilíbrio iônico 
 
HC2H3O2(aq)  H
+(aq) + C2H3O2
-(aq) 
 
Princípio de Le Chatelier 
“Se um sistema em equilíbrio é submetido a uma tensão, o sistema muda para aliviar 
os efeitos da tensão.” 
 
34 
 
Experiência 4: Equilíbrio químico e o princípio de Le Chatelier 
Procedimento experimental 
 
 
Etapa 1: Efeito da temperatura no equilíbrio químico. 
A um béquer de 50 ou 100 mL, adicione uma ponta de espátula de cloreto de cobalto 
sólido. Dissolva-o em aproximadamente 20 mL de ácido clorídrico 6 mol L-1. Anote a cor 
observada. Transfira essa solução para 2 tubos (Tubo 1 e Tubo 2) de ensaio (mais ou 
menos metade do volume em cada tubo). Faça os ensaios abaixo, anotando a cor da 
solução após cada ensaio. Compare com as cores mostradas na figura 4.1. 
 
Ensaio 1: Introduza o Tubo 1 num béquer com água e gelo. 
Ensaio 2: Introduza o Tubo 2 num béquer com água fervendo. 
Ensaio 3: Passe o Tubo 2, que estava no béquer com água fervendo, para o béquer 
com água e gelo. 
Ensaio 4: Passe o Tubo 1, que estava no béquer com água e gelo para o béquer comágua fervendo. 
 
[Co(H2O)6]
2+(aq) + 4 Cl-(aq)  [CoCl4]
2-(aq) + 6 H2O(l) 
 Rosa Azul 
 
 
 
Figura 4.1: Foto mostrando os resultados da etapa 1. 
 
 
A partir das observações realizadas e dos dados fornecidos, descreva no relatório, 
justificando, em qual sentido a reação é exotérmica e em qual é endotérmica. 
 
 
Etapa 2: Efeito do pH no equilíbrio dicromato de potássio / cromato de potássio. 
A um tubo de ensaio, adicione aproximadamente 5 mL de solução de dicromato de 
potássio, previamente preparada pelo técnico. 
35 
 
 
Ensaio 1: Junte de 1 a 3 mL de NaOH 0,5 mol L-1 até mudança visível de cor. Anote. 
 
Ensaio 2: No mesmo tubo, junte, agora, HCl 6 mol L-1, gota a gota, até mudança visível de 
cor. Anote. 
Compare as cores observadas com as mostradas na Figura 4.2. Descreva no 
relatório, justificando, em qual sentido a reação foi deslocada com a adição de NaOH e de 
HCl. 
 
 
 Cr2O7
2-(aq) + H2O(l)  2CrO4
2-(aq) + 2H+(aq) 
 
 laranja amarelo esverdeado 
 
 
 
 
Figura 4.2: Foto mostrando os resultados da etapa 2. 
 
 
 
 
Etapa 3: Efeito do pH no equilíbrio ácido-base de um indicador de neutralização. 
A um tubo de ensaio, adicione de 5 a 10 mL de água deionizada e, a seguir, adicione 
5 gotas do indicador azul de bromotimol. 
 
Ensaio 1: Junte à solução do indicador 1 gota de HCl 0,1 mol L-1. 
 
Ensaio 2: Junte, agora, à mesma solução, 6 gotas de NaOH 0,1 mol L-1. 
 
 Ensaio 3: Para concluir, adicione HCl 0,02 mol L-1, cuidadosamente gota a gota, à 
mesma solução, até obtenção de coloração intermediária às observadas nos itens acima, 
conforme indicado na figura 4.3. 
 
HInd(aq)  H+(aq) + Ind-(aq) 
Coloração A Coloração B 
 
 
36 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 4.3: Foto mostrando os resultados da etapa 03. 
 
 
A partir das observações realizadas, discuta com seus colegas o significado da cor 
verde e preencha o relatório com as conclusões do grupo. 
 
Etapa 4: Efeito do íon comum 
A um copo de béquer, adicione um pouco de água deionizada (± 10 mL), 1 gota de 
solução aquosa de amônia e 2 gotas do indicador fenolftaleína. Anote a cor do meio. 
A seguir, no mesmo copo de béquer, adicione pequena quantidade de cloreto de 
amônio sólido e agite bem com bastão de vidro até dissolução do sal. Anote a cor do meio. 
 
 
NH3(aq) + H2O(l)  NH4
+(aq) + OH-(aq) 
 
NH4Cl(s)  NH4
+(aq) + Cl-(aq) 
 
A partir das observações realizadas, das reações dadas e da Figura 4.4, descreva no 
relatório, justificando, como variam as concentrações de OH- e de NH3 e como varia o pH. 
 
 
 
 
 
 
 
 
 
Tabela 4.1: Cores apresentadas pelo 
indicador azul de bromotimol em diferentes 
intervalos de pH. 
 
Intervalo de pH Azul de bromotimol 
pH  6,0 Amarelo 
pH entre 6,0 e 7,6 Verde 
pH  7,6 Azul 
Tabela 4.1: Cores apresentadas pelo 
indicador fenolftaleína em diferentes 
intervalos de pH. 
 
Intervalo de pH Fenolftaleína 
pH  8,2 Incolor 
pH entre 8,2 e 10,0 Rosa claro 
pH  10 Rosa forte 
37 
 
 
Figura 4.4: Foto mostrando os resultados da etapa 4. 
 
Relatório 4: Equilíbrio químico e o princípio de Le Chatelier 
 
Objetivos (se necessário, use o verso da folha): 
 
Descreva os fatores que influenciaram no deslocamento do equilíbrio, o sentido do 
deslocamento e como foi feita a identificação da presença das espécies em cada lado da 
reação, em cada experiência (use o verso da folha, se necessário): 
 
Etapa 1: 
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________ 
Etapa 2: 
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________ 
Etapa 3: 
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________ 
Etapa 4: 
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________ 
Conclusões (se necessário, use o verso da folha): 
Data da prática: _____ / _____ / _____ Turma: __________ Nota: __________ 
Professor:_______________________________________________________________ 
Aluno(s):________________________________________________________________
________________________________________________________________________
________________________________________________________________________ 
38 
 
 
Experiência 5: Equilíbrio ácido-base e Indicadores-ácido base 
 
Nessa experiência, será estudado o conceito de pH em soluções aquosas e verificado 
o comportamento de diferentes corantes orgânicos, conhecidos como “indicadores ácido-
base”. 
 
Considerações preliminares para a definição de um meio como ácido, básico ou 
neutro: 
 
Há várias definições para ácidos e bases. Segundo Arrhenius: 
 
Ácido é toda espécie que libera H+ em meio aquoso. Ácido = H+ + Rad- 
 
Base é toda espécie que libera OH- em meio aquoso. Base = Rad+ + OH- 
 
A água comporta-se como um eletrólito muito fraco, apresentando o seguinte 
comportamento: 
H2O(l)  H
+
(aq) + OH
-
(aq) 
 
A constante de equilíbrio da reação acima é dada por Kw = [H+] x [OH-]. 
Experimentalmente, comprova-se que, a 25 ºC, Kw = 1,0 x 10-14. 
Portanto, em água pura, [H+] = [OH-] = 10-7 mol L-1. 
 
Dependendo das substâncias que estejam dissolvidas em água, poderemos ter as 
seguintes situações: 
[H+] > [OH-]  meio ácido 
[OH-] > [H+]  meio básico 
[H+] = [OH-]  meio neutro 
 
 Onde os colchetes indicam a concentração em quantidade de matéria por volume de 
solução (mol L-1). 
 
39 
 
Seguem alguns exemplos: 
 
a) Solução aquosa de HCl de concentração 0,10 mol L-1 tem [H+] = 10-1 mol L-1 e [OH-] 
= 10-13 mol L-1. 
10-1 > 10-13; ou seja [H+] > [OH-]  meio ácido. 
 
b) Solução aq. de NaOH de concentração 0,01 mol L-1 tem [OH-] = 10-2 mol L-1 e [H+] = 
10-12 mol L-1. 
10-2 > 10-12; ou seja [OH-] > [H+]  meio básico. 
 
c) Solução aquosa de NaCl com qualquer concentração tem [H+] = 10-7 mol L-1 e [OH-] 
= 10-7 mol L-1. 
10-7 = 10-7; ou seja [H+] = [OH-]  meio neutro. 
 
pH ou pOH: uma maneira mais prática e usual de lidar com [H+] e [OH-] em meio aquoso 
 
Por definição, pH = log 
][H
1

 = - log [H+] e pOH = log 
][OH
1
-
 = - log [OH-] 
Portanto: [H+] = 10-pH e [OH-] = 10-pOH 
 
Escala de pH: 
 
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
 
 
Indicadores ácido-base 
Os indicadores ácido-base são corantes orgânicos (ácidos ou bases muito fracos) que 
apresentam cores específicas numa dada faixa de pH. 
Para compreender como se dá a mudança de cor de um indicador quando este é 
adicionado a um meio, vamos supor um indicador ácido representado por HInd. 
Segundo a teoria de Ostwald, na forma molecular (HInd) o indicador apresenta uma 
cor e na forma iônica (Ind-) outra, o que pode ser representado assim: 
 
HInd  H+ + Ind- 
 Coloração A Coloração B 
 
meio ácido meio básico 
meio neutro 
40 
 
Se a reação representada acima se encontra em equilíbrio, conclui-se que as 
colorações A e B estão presentes. A olho nu, na forma molecular(HInd) prevalece a 
coloração A e na forma ionizada (Ind-), prevalece a coloração B. Ao se introduzir o indicador 
HInd a um meio ácido (H+) prevalecerá a coloração A pois o equilíbrio será deslocado para a 
esquerda devido ao incremento de H+. Já ao se introduzir o indicador HInd a um meio básico 
(OH-), prevalecerá a coloração B pois o equilíbrio será deslocado para a direita devido ao 
consumo de H+. Na faixa de pH em que as concentrações de HInd e Ind- estão muito 
próximas, a coloração do indicador será intermediária às cores A e B. 
 
 
 
 
Experiência 5: Equilíbrio ácido-base: Indicadores-ácido base 
Procedimento experimental 
 
Nessa experiência, será determinada a concentração de H+ em uma amostra de 
vinagre, em quantidade de matéria por volume de solução (mol L-1), por comparação com 
padrões de pH. Para tanto, deverão ser construídas escalas de cores preparadas com 
padrões de indicadores ácido -base. 
 
Etapa 1: Preparo de padrões de cores em meio ácido 
 Adicionar 5 mL de solução aquosa de HCl 10-1 mol L-1 em um tubo de ensaio 
(tubo A). 
 Em um tubo B, prepare uma solução aquosa de HCl 10-2 mol L-1, adicionando 
0,5 mL do tubo A e 4,5 mL de água destilada. Misture bem. 
 Em um tubo C, prepare uma solução aquosa de HCl 10-3 mol L-1, adicionando 
0,5 mL do tubo B e 4,5 mL de água destilada. Misture bem. 
 Em um tubo D, prepare uma solução aquosa de HCl 10-4 mol L-1, adicionando 
0,5 mL do tubo C e 4,5 mL de água destilada. Misture bem. 
 
Divida o conteúdo de cada tubo em dois outros tubos. A cada tubo da 1ª metade, 
adicione 3 gotas de indicador azul de timol (solução preparada pelo técnico), identificando 
cada tubo com o nome do indicador e as respectivas concentrações. A cada tubo da 2ª 
metade, adicione 1 gota de alaranjado de metila (solução preparada pelo técnico), 
identificando cada tubo com o nome do indicador e as respectivas concentrações. 
 
41 
 
Etapa 2: Preparo de padrões de cores em meio básico 
 Adicionar 5 mL de solução aquosa de NaOH 10-1 mol L-1 em um tubo de 
ensaio (tubo A). 
 Em um tubo B, prepare uma solução aquosa de NaOH 10-2 mol L-1, 
adicionando 0,5 mL do tubo A e 4,5 mL de água destilada. Misture bem. 
 Em um tubo C, prepare uma solução aquosa de NaOH 10-3 mol L-1, 
adicionando 0,5 mL do tubo B e 4,5 mL de água destilada. Misture bem. 
 Em um tubo D, prepare uma solução aquosa de NaOH 10-4 mol L-1, 
adicionando 0,5 mL do tubo C e 4,5 mL de água destilada. Misture bem. 
Divida o conteúdo de cada tubo em dois outros tubos. A cada tubo da 1ª metade, 
adicione 2 gotas de indicador Índigo carmin (solução preparada pelo técnico). A cada tubo 
da 2ª metade, adicione 2 gotas de alizarina (solução preparada pelo técnico), identificando 
cada tubo com o nome do indicador e as respectivas concentrações. 
 
Etapa 3: Determinação da concentração de H+ a partir dos padrões acima 
a) Utilize dois novos tubos e adicione 2,5 mL da amostra de solução ácida de 
concentração desconhecida em cada um dos tubos (amostras 1 e 2). Ao 1º tubo, adicione 3 
gotas de azul de timol e ao 2º tubo adicione 1 gota de alaranjado de metila. Anote as cores 
observadas. Compare as cores com as dos padrões ácidos, e determine a [H+] de cada 
amostra desconhecida. 
b) Utilize dois novos tubos e adicione 2,5 mL da amostra de solução alcalina de 
concentração desconhecida em cada um dos tubos (amostras 3 e 4). Ao 1º tubo, adicione 3 
gotas de Índigo carmin e ao 2º tubo adicione 2 gotas de alizarina. Anote as cores 
observadas. Compare as cores com as dos padrões alcalinos e determine a [H+] de cada 
amostra desconhecida. 
 
Etapa 4: Estimativa da concentração de H+ no ácido acético (ácido fraco) 
a) Utilize dois novos tubos e adicione 2,5 mL da amostra de solução de HC2H3O2 1,0 
mol L-1 em cada um dos tubos (amostras 1 e 2). Ao 1º tubo, adicione 3 gotas de azul de 
timol e ao 2º tubo adicione 1 gota de alaranjado de metila. Anote as cores observadas. 
b) Compare as cores com as dos padrões ácidos, estime o pH e a [H+] da solução. 
c) Calcule o valor da constante de equilíbrio do ácido acético levando em conta que 
no equilíbrio podemos considerar: 
 [H+] = [C2H3O2
-] 
 [HC2H3O2] = 1,0 mol L
-1 
42 
 
 
Relatório 5: Equilíbrio ácido-base e Indicadores ácido-base 
 
Objetivo (use o verso da folha): 
 
Etapa 1: 
Tubo [HCl] pH Cor observada - Azul de timol Cor observada - Alaranjado de metila 
A 10-1 mol L-1 
B 10-2 mol L-1 
C 10-3 mol L-1 
D 10-4 mol L-1 
 
Etapa 2: 
Tubo [NaOH] pH Cor observada - Índigo carmin Cor observada - Alizarina 
A 10-1 mol L-1 
B 10-2 mol L-1 
C 10-3 mol L-1 
D 10-4 mol L-1 
 
Etapa 3: 
Tubo Indicador Cor observada pH [H+] 
A Azul de timol 
B Alaranjado de metila 
C Índigo carmin 
D Alizarina 
 
Etapa 4: 
Tubo Indicador Cor observada pH [H+] 
A Azul de timol 
B Alaranjado de metila 
 
Escreva a expressão para a constante de equilíbrio do HC2H3O2 (Ka) e calcule seu 
valor. 
 
Conclusão (use o verso da folha): 
Data da prática: _____ / _____ / _____ Turma: __________ Nota: __________ 
Professor:_______________________________________________________________ 
Aluno(s):________________________________________________________________
________________________________________________________________________
________________________________________________________________________ 
43 
 
 
Experiência 6: Equilíbrio ácido-base: determinação da concentração de 
ácido acético no vinagre 
 
Nessa experiência, serão estudados os princípios da análise volumétrica, com ênfase 
na volumetria de neutralização. 
 
Princípio da análise volumétrica 
A análise volumétrica tem por base a medida do volume de uma solução 
padrão de concentração conhecida necessária para reagir (chamamos aqui de 
ponto estequiométrico, PE) com uma substância presente numa amostra, em 
solução. 
Titulação é o termo que utilizamos para a operação no laboratório que 
consiste em escoar de uma bureta, a solução padrão para o erlenmeyer contendo a 
amostra a ser analisada até se atingir o ponto estequiométrico (PE). A figura 6.1 
mostra uma titulação. 
 
Figura 6.1: Desenho dos equipamentos usado em uma titulação. 
 
 
O volume de solução gasto quando a titulação se encerra (observada visualmente 
pela mudança de cor do indicador) corresponde ao ponto final de titulação (PF). A diferença 
entre o PF e o PE corresponde ao erro de titulação. 
 
PF – PE = Erro 
 
Características das reações que podem servir de base para uma análise volumétrica 
1) Transformação única e simples, sem reações secundárias; 
 
2) Reação instantânea; 
 
44 
 
3) No ponto estequiométrico deve haver uma variação brusca de qualquer 
propriedade; 
4) Deve haver um meio de indicação que mostre quando a reação se completa; um 
indicador ácido-base, por exemplo (tabela 6.1). A escolha do indicador é feita em função da 
curva de titulação, variação do pH a cada volume de base adicionado (figura 6.2). Na reação 
do ácido acético (ácido fraco) com hidróxido de sódio (base forte), a fenolftaleína é a 
escolhida em função da inflexão da curva nas mediações do ponto estequiométrico. O 
alaranjado de metila não serviria. Discuta com o seu professor o motivo. 
 
Tabela 6.1: Intervalos de pH e respectivas cores para os indicadores alaranjado 
de metila e fenoftaleína. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 6.1: Representação de uma curva de titulação. 
Volume (mL) de NaOH(aq) adicionado 
45 
 
 
Experiência 6: Equilíbrio ácido-base: determinação da concentração de 
ác. acético no vinagre 
Procedimento experimental 
 
Etapa 1: Preparo da amostra 
Pipete 10,00 mL de vinagre (densidade = 1 g mL-1) para um balão volumétrico de 
100,00 mL e acrescente água deionizada até a marca. Só depois decompletado o volume, 
agite o balão para homogeneizar a solução. Dessa solução, pipete alíquotas de 20,00 mL 
para 3 frascos erlenmeyers, adicionando 3 gotas de fenolftaleína a cada um. 
 
 
Etapa 2: Preparo da solução padrão 
a) Com um pouco da solução padrão de NaOH, lave as paredes internas da bureta; 
b) Coloque a solução padrão de NaOH na bureta até acima do traço de referência e, a 
seguir, escoe até a indicação de zero (menisco inferior), tomando cuidado para que a parte 
abaixo da torneira esteja totalmente cheia com a solução (sem bolha de ar). 
 
 
Etapa 3: Titulação 
a) Com a solução padrão de NaOH na bureta e a alíquota de amostra no erlenmeyer, 
inicie a titulação até o primeiro aparecimento de coloração rosa claro permanente. Abaixo 
segue a representação da reação: 
 
CH3COOH(aq) + NaOH(aq)  H2O(l) + CH3COO
-Na+(aq) 
 
b) Anote o volume escoado e calcule a porcentagem em massa de ácido acético no 
vinagre (g de CH3COOH em 100,00 g de vinagre). A densidade do ácido acético também é 
1,00 g mL-1, como a da água. 
c) Compare o resultado encontrado experimentalmente com aquele indicado no rótulo 
do vinagre. 
d) Compare o resultado encontrado experimentalmente com aquele encontrado na 
prática 5, com indicadores ácido-base. 
 
 
46 
 
 
 
Relatório 6: Equilíbrio ácido-base: determinação da concentração de ác. 
acético no vinagre 
 
 
Objetivo (use o verso da folha, se necessário): 
 
Dados: 
Massa molar do ác. acético: 60,05 g mol-1 
Concentração da solução padrão de NaOH = ________ mol L-1 
 
Resultados das titulações (mostre os cálculos no verso da folha): 
 Aluno I Aluno II Aluno III Média  s 
Volume de solução padrão 
de NaOH escoado (mL) 
 
% em massa de CH3COOH 
no vinagre 
///////////////// ///////////////// ///////////////// 
 
Indicado no rótulo do vinagre: ______ 
 
Calcule o erro absoluto e o erro relativo (%) do valor médio encontrado em relação ao valor 
informado no rótulo do vinagre. 
 
O alaranjado de metila não serviria como indicador. Por quê? O indicador usado na 
experiência 5 foi adequado para a determinação da [H+] no vinagre? Compare os 2 métodos. 
 
 
Conclusões (Proponha possíveis causas de erro, use o verso da folha): 
Data da prática: _____ / _____ / _____ Turma: __________ Nota: __________ 
Professor:_______________________________________________________________ 
Aluno(s):________________________________________________________________
________________________________________________________________________
________________________________________________________________________ 
47 
 
 
Experiência 7: Equilíbrio de precipitação: Reações com formação de 
compostos pouco solúveis 
 
Nessa experiência, serão realizadas reações com formação de compostos pouco 
solúveis. Serão identificadas as substâncias pouco solúveis, as substâncias solúveis, os íons 
espectadores e as reações envolvidas. 
 
Reações com formação de compostos coloridos, muito pouco solúveis no meio 
 
Sais dissolvidos em água geram íons, ocorrendo o que se chama de dissociação 
iônica. Alguns exemplos: 
NaCl(s)  OH2 Na
+
(aq) + Cl
-
(aq) 
 
AgNO3(s)  OH2 Ag
+
(aq) + NO3
-
(aq) 
 
Quando misturamos duas soluções de sais a fim de provocar uma reação química, 
nem sempre todos os íons presentes no meio participam da reação. Aqueles que apenas 
“assistem”, ou seja, entram e saem da reação da mesma forma, denominam-se “íons 
espectadores”. Segue um exemplo: 
 
Representação convencional da reação: 
NaCl(aq) + AgNO3(aq)  AgCl(s) + NaNO3(aq) 
 
 
Representação da reação iônica completa: 
Na+(aq) + Cl
-
(aq) + Ag
+
(aq) + NO3
-
(aq)  AgCl(s) + Na
+
(aq) + NO3
-
(aq) 
 
Na+ e NO3
- entram e saem da reação da mesma forma. São chamados de íons 
espectadores. 
 
 
Representação da reação iônica simplificada: 
Ag+(aq) + Cl
-
(aq)  AgCl(s) 
 
48 
 
Experiência 7: Equilíbrio de precipitação: Reações com formação de 
compostos pouco solúveis 
Procedimento experimental 
 
Soluções a serem usadas na experiência: cloreto mercúrico, nitrato de chumbo, 
cloreto de bário, cloreto de cúprico, carbonato de sódio, iodeto de potássio e sulfato de 
sódio. 
Numere tubos de ensaio de 1 a 5 (figura 7.1) e adicione a cada tubo, com um conta-
gotas, cerca de 3 mL do reagente 1 e adicione ± 3 mL do reagente 2, conforme a Tabela 7.1. 
 
Figura 7.1: Serão utilizados 5 tubos de ensaio identificados. 
 
Tabela 7.1: Soluções a serem adicionadas a cada tubo de ensaio numerado. 
Tubo Reagente 1 Reagente 2 
1 HgCl2(aq) 
 
+ 
Na2CO3(aq) 
2 Pb(NO3)2(aq) KI(aq) 
3 HgCl2(aq) KI(aq) 
4 BaCl2(aq) Na2SO4(aq) 
5 CuCl2(aq) Na2CO3(aq) 
 
Anote as observações no relatório e confira com os dados informados na tabela 7.2. 
 
Tabela 7.2: Solubilidade das espécies em água à temperatura de 25 oC. 
 Cl- CO3
2- NO3
- I- SO4
2- 
Na+      
K+      
Hg+2  ■  ■  
Pb+2 ■ ■  ■ ■ 
Ba+2  ■   ■ 
Cu+2  ■  ■  
Legendas:  muito solúvel ■ pouco solúvel 
49 
 
 
Relatório 7 - Equilíbrio de precipitação: Reações com formação de 
compostos pouco solúveis 
 
Objetivos: 
 
 
 
 
 
 
Complete: 
a) Tubo 1 + tubo 6: 
Representação convencional da reação:__________________________________________ 
Representação da reação iônica completa:________________________________________ 
Representação da reação iônica simplificada:______________________________________ 
Íons espectadores:___________________________________________________________ 
Fórmula, nome e cor do sólido formado:__________________________________________ 
 
b) Tubo 2 + tubo 7: 
Representação convencional da reação:__________________________________________ 
Representação da reação iônica simplificada:______________________________________ 
Fórmula, nome e cor do sólido formado:__________________________________________ 
Data da prática: _____ / _____ / _____ Turma: __________ Nota: __________ 
Professor:_______________________________________________________________ 
Aluno(s):________________________________________________________________
________________________________________________________________________
________________________________________________________________________ 
50 
 
 
c) Tubo 3 + tubo 8: 
Representação da reação iônica completa:________________________________________ 
Íons espectadores:___________________________________________________________ 
Fórmula, nome e cor do sólido formado:__________________________________________ 
 
d) Tubo 4 + tubo 9: 
Representação convencional da reação:__________________________________________ 
Representação da reação iônica completa:________________________________________ 
Representação da reação iônica simplificada:______________________________________ 
Íons espectadores:___________________________________________________________ 
Fórmula, nome e cor do composto sólido formado:__________________________________ 
 
e) Tubo 5 + tubo 10: 
Representação convencional da reação:__________________________________________ 
Representação da reação iônica simplificada:______________________________________ 
Fórmula, nome e cor do composto sólido formado:__________________________________ 
 
Conclusões: 
 
 
 
 
 
 
 
 
 
 
 
 
51 
 
 
Experiência 8: Titulação de neutralização com indicador condutométrico 
 
Nessa experiência, será feita uma titulação de neutralização com formação de um sal 
pouco solúvel como produto. O ponto final da titulação, detectado com indicador ácido base, 
será comparado com aquele determinado pela medida da condução de corrente elétrica da 
solução, que é feita pelos íons em solução. 
 
Lembrando conceitos teóricos: 
Condutometria é um método de análise baseado na capacidade de conduzir corrente 
elétrica. De acordo coma Lei de Ohm: 
 V = R . i 
A intensidade de corrente (i) que passa por um condutor elétrico é inversamente 
proporcional a sua resistência (R). O inverso da resistência é a condutância: 
 G = 1/R 
Não confundir condutância e condutividade. A condutividade diz respeito ao material, 
também pode ser chamada de condutância específica. Já a condutância diz respeito ao 
corpo, seu tamanho e forma. 
Em soluções aquosas a corrente é conduzida pelos íons. Assim, a condutância de 
uma solução aumenta com a concentração de íons. 
 
Dados de um experimento simples 
A um copo de béquer contendo 100 mL de água, adicionam-se diferentes volumes de 
solução de HCl 0,1 mol L-1, conforme mostra a tabela 8.1 e a figura 8.1. 
 
Tabela 8.1: Dados eletroquímicos de soluções com diferentes concentrações de HCl 
Concentração 
HCl (mol L-1) 
Voltagem 
(V) 
Corrente 
(mA) 
Resistência 
(Ohm) 
Condutância 
(Ohm-1) 
0,0048 35,2 85,5 0,41 2,43 
0,0091 22,9 112,9 0,20 4,93 
0,0130 18,6 121,5 0,15 6,53 
0,0167 15,3 128 0,12 8,37 
0,0200 13,3 132,3 0,10 9,95 
 
52 
 
 
Figura 8.1: Variação da condutância de soluções de HCl com concentrações 
crescentes. 
 
Titulação condutométrica 
Neste experimento, o condutivímetro será substituído por uma lâmpada ligada na 
tomada, com o fio passando através da solução. 
Na titulação de hidróxido de bário com ácido sulfúrico, ocorre a neutralização e 
formação de composto muito pouco solúvel. À medida que a reação se processa, a 
quantidade de íons em solução vai diminuindo e alcança um mínimo quando atinge o ponto 
de equivalência. Neste ponto, a condutividade é mínima e a lâmpada apresenta brilho mais 
fraco, podendo até apagar. Adicionando-se, a seguir, um excesso de ácido sulfúrico, 
aumenta novamente a quantidade de íons livres em solução e a lâmpada volta a brilhar mais 
intensamente. 
 
Experiência 8: Titulação de neutralização com indicador condutométrico 
Procedimento experimental 
Etapa 1: 
A um copo de béquer de 400 mL, adicione 200 mL de solução de hidróxido de bário, 
Ba(OH)2, 0,010 mol L
-1 e 3 gotas de fenolftaleína. 
 
Etapa 2: 
Encha uma bureta com a solução 0,200 mol L-1 de ácido sulfúrico, H2SO4, não 
esquecendo de encher o volume livre abaixo da torneira e zerá-la devidamente. 
 
Condutivímetro 
53 
 
Etapa 3: 
Monte o sistema mostrado na figura 8.2 com os dois eletrodos mergulhados na 
solução e a bureta posicionada de tal modo que, quando aberta, deixe o seu líquido escorrer 
diretamente sobre a solução contida no béquer. A seguir, conecte a tomada à rede elétrica e 
observe a intensidade de luz da lâmpada. 
Atenção: Para evitar choques elétricos, só ligue a tomada depois que o sistema estiver 
montado e os fios mergulhados na solução. Da mesma maneira, desligue a tomada da rede 
elétrica antes de desmontar o sistema! 
 
Reações envolvidas: 
 
 
 
 
 
 
 
 
Figura 8.2: Montagem do experimento. 
 
Etapa 4: 
Deixe escoar da bureta, lentamente, a solução 0,200 mol L-1 de H2SO4 no béquer 
contendo Ba(OH)2(aq), agitando o conteúdo com um bastão de vidro até que se observe a 
menor intensidade de luz da lâmpada (ou que a lâmpada apague). Anote o volume (1) gasto 
e a coloração da solução. 
 
2 H+ (aq) + SO4
2-
 (aq) + Ba
2+ (aq) + 2 OH-(aq)  BaSO4(s) + 2 H2O(l) 
 
Etapa 5: 
A seguir, adicione mais titulante até a mudança de cor e observe, também, alterações 
na intensidade de luz da lâmpada. Anote o volume (2) gasto. 
 
Etapa 6: 
Repita a titulação (etapas 1 a 5), substituindo a solução de hidróxido de bário por 
outra de igual concentração de hidróxido de estrôncio. Anote o volume de titulante gasto e 
as alterações na coloração da solução e na intensidade da luz. 
54 
 
 
Relatório 8: Titulação de neutralização com indicador condutométrico 
 
Objetivos (use o verso da folha): 
 
1) Na 1ª titulação, quais os principais íons responsáveis pela condução de corrente: 
a) Na primeira parte da titulação, ou seja, antes do ponto de condutância mínima. 
 
b) Após o ponto de condutância mínima, ao se adicionar o excesso de ácido sulfúrico. 
 
2) Por que a condutividade é mínima quando as quantidades de H2SO4 e Ba(OH)2 são 
equivalentes? 
 
3) Por que o ponto final sinalizado com a lâmpada é diferente do ponto final do indicador? 
 
4) Verifique com cálculos, utilizando o volume de ácido sulfúrico gasto até o ponto de 
equivalência, se a concentração do Ba(OH)2 corresponde à esperada (0,010 mol L
-1). 
 
5) Usando a tabela 8.2, explique por que os volumes de H2SO4 gastos até o ponto final 
foram diferentes nas 2 titulações, se as concentrações das soluções tituladas são iguais. 
Tabela 8.2: Constantes do Produto de Solubilidade a 250C. 
Fórmula Kps 
BaSO4 1,1x10
-10 
SrSO4 3,2x10
-7 
 
6) Em qual titulação a lâmpada brilhou menos no ponto de equivalência? Por quê? 
 
Conclusões (utilize o verso da folha): 
Data da prática: _____ / _____ / _____ Turma: __________ Nota: __________ 
Professor:_______________________________________________________________ 
Aluno(s):________________________________________________________________
________________________________________________________________________
________________________________________________________________________ 
55 
 
Reação exotérmica
Reação endotérmica
Energia 
liberada
Energia de 
ativação
Energia de 
ativação
Energia 
absorvida
 
Experiência 9: Termoquímica: reações com trocas de calor e Lei de Hess 
 
Nessa experiência, será aplicada a Lei de Hess para quantificar o calor envolvido em 
uma transformação química. A Lei de Hess será comprovada comparando-se os valores 
medidos com os valores tabelados. Alguns conceitos fundamentais de energias envolvidas 
em reações químicas são mostrados na figura 9.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 9.1: Gráficos de energias envolvidas em uma reação química exotérmica e em 
uma reação química endotérmica. 
56 
 
Experiência 9: Termoquímica: reações com trocas de calor e Lei de Hess 
Procedimento experimental 
 
Importante: Lave e seque o erlenmeyer sempre entre um experimento e outro. Considere o 
calor específico da solução resultante como igual ao da água = 1,00 cal g-1 oC-1. 
 
Etapa 1: Determinação do calor de dissolução do hidróxido de sódio sólido em água. 
1. Pese um frasco erlenmeyer de 250 mL e anote a sua massa. 
2. Acrescente 200 mL de água deionizada e pese novamente. Anote a massa de água. 
Com auxílio de termômetro, meça a temperatura (Ti). Coloque o frasco dentro do 
isopor para reduzir as perdas de calor para o ambiente. 
3. Em um copo de béquer, pese ± 2 g (anotando a massa com precisão de 0,001 g) de 
NaOH sólido e, rapidamente, transfira para o frasco erlenmeyer contendo água. 
4. Dissolva o NaOH(s) com 1 bastão de vidro e meça a temp. máxima atingida (Tf). 
5. Calcule o calor absorvido pelo vidro (Q1) e pela água (Q2), utilizando para cada um a 
expressão: 
 Q = m . c . T 
Onde: Q é a quantidade de calor transferida (cal), m é a massa (g), c é o calor específico 
do material (cal g-1 oC-1) e T é a variação de temperatura (oC). Some a massa do NaOH 
à massa de água para ter a massa da solução. 
 
O calor absorvido pelo vidro + água (Q1 + Q2) é o calor liberado na dissolução do NaOH: 
NaOH(s) 
água
 Na+(aq) + OH-(aq) + x1 cal 
 
Dados: 
Calor específico da água = 1,00 cal g-1 oC-1 
Calor específico do vidro = 0,200 cal g-1 oC-1 
1 cal = 4,184 J 
M (NaOH) = 40,0 g mol-1 
 
Etapa 2: Determinação do calor de neutralização do hidróxido de sódio em solução 
aquosa com o ácido clorídrico em solução aquosa 
1. Utilize o mesmo erlenmeyer de 250 mL e anote a sua massa (a mesma da etapa 1). 
2. Acrescente 100,0 mL de solução aquosa 0,50 mol L-1 de HCl ao erlenmeyer e, com 
auxílio de termômetro, meça a temperatura (Ti). Coloque o erlenmeyer no isopor e 
57 
 
acrescente 100,0 mL de solução

Outros materiais