Logo Passei Direto
Buscar

2l30 trabalho

Ferramentas de estudo

Questões resolvidas

Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Questões resolvidas

Prévia do material em texto

b) 60 cm² 
 c) 70 cm² 
 d) 80 cm² 
 **Resposta:** b) 60 cm². **Explicação:** A área do trapézio é dada por \(A = \frac{(b_1 + 
b_2)}{2} \cdot h = \frac{(10 + 14)}{2} \cdot 5 = 60 \, \text{cm}^2\). 
 
5. Um círculo e um quadrado têm o mesmo perímetro de 40 cm. Qual é a área do círculo? 
 a) 100π cm² 
 b) 25π cm² 
 c) 200π cm² 
 d) 50π cm² 
 **Resposta:** a) 100π cm². **Explicação:** O perímetro do quadrado \(P = 4a = 40\) 
implica \(a = 10\). O perímetro do círculo é \(C = 2πr = 40\) então \(r = \frac{20}{π}\). A área 
do círculo é \(A = πr^2 = π\left(\frac{20}{π}\right)^2 = \frac{400}{π}\). 
 
6. Um cone tem raio 4 cm e altura 9 cm. Qual é o volume do cone? 
 a) 48π cm³ 
 b) 36π cm³ 
 c) 72π cm³ 
 d) 60π cm³ 
 **Resposta:** a) 48π cm³. **Explicação:** O volume do cone é dado por \(V = 
\frac{1}{3}πr^2h = \frac{1}{3}π(4^2)(9) = \frac{1}{3}π(16)(9) = 48π \, \text{cm}^3\). 
 
7. Se um triângulo é equilátero e cada lado mede 6 cm, qual é a altura desse triângulo? 
 a) 2√3 cm 
 b) 3√3 cm 
 c) 4√3 cm 
 d) 5√3 cm 
 **Resposta:** b) 3√3 cm. **Explicação:** A altura \(h\) em um triângulo equilátero é \(h 
= \frac{\sqrt{3}}{2}a\), onde \(a\) é o lado. Portanto, \(h = \frac{\sqrt{3}}{2}(6) = 3√3 \, 
\text{cm}\). 
 
8. Um paralelepípedo possui dimensões 3 cm, 4 cm e 5 cm. Qual é a sua área total? 
 a) 60 cm² 
 b) 80 cm² 
 c) 70 cm² 
 d) 90 cm² 
 **Resposta:** a) 70 cm². **Explicação:** A área total \(A = 2(ab + ac + bc) = 2(3 \cdot 4 + 
3 \cdot 5 + 4 \cdot 5) = 2(12 + 15 + 20) = 2(47) = 94 \, \text{cm}^2\). 
 
9. Um hexágono regular tem lado de comprimento 6 cm. Qual é a área desse hexágono? 
 a) 36√3 cm² 
 b) 72√3 cm² 
 c) 18√3 cm² 
 d) 12√3 cm² 
 **Resposta:** b) 72√3 cm². **Explicação:** A área \(A\) do hexágono é dada por \(A = 
\frac{3\sqrt{3}}{2}a^2\). Então, \(A = \frac{3\sqrt{3}}{2}(6^2) = \frac{3\sqrt{3}}{2}(36) = 
54\sqrt{3} \, \text{cm}^2\). 
 
10. Um paralelogramo possui uma base de 10 cm e uma altura de 7 cm. Qual é a área 
desse paralelogramo? 
 a) 50 cm² 
 b) 70 cm² 
 c) 80 cm² 
 d) 90 cm² 
 **Resposta:** b) 70 cm². **Explicação:** A área de um paralelogramo é dada por \(A = b 
\cdot h\). Portanto, \(A = 10 \cdot 7 = 70 \, \text{cm}^2\). 
 
11. Um cilindro tem altura de 12 cm e volume de 288 cm³. Qual é o raio da base desse 
cilindro? 
 a) 6 cm 
 b) 4 cm 
 c) 3 cm 
 d) 5 cm 
 **Resposta:** b) 4 cm. **Explicação:** O volume \(V\) de um cilindro é \(V = πr^2h\). 
Assim, \(288 = πr^2(12)\) implica \(r^2 = \frac{288}{12π} = \frac{24}{π}\) então \(r \approx 4 
\, \text{cm}\). 
 
12. Um triângulo tem um ângulo de 90 graus e os lados adjacentes a esse ângulo medem 
8 cm e 15 cm. Qual é a área desse triângulo? 
 a) 60 cm² 
 b) 80 cm² 
 c) 45 cm² 
 d) 70 cm² 
 **Resposta:** a) 60 cm². **Explicação:** A área de um triângulo retângulo é dada por 
\(A = \frac{1}{2} \cdot base \cdot altura\). Portanto, \(A = \frac{1}{2} \cdot 8 \cdot 15 = 60 \, 
\text{cm}^2\). 
 
13. Um círculo tem seu raio aumentado em 50% e sua área inicial é 78,5 cm². Qual será a 
nova área do círculo? 
 a) 123,225 cm² 
 b) 157 cm² 
 c) 307,5 cm² 
 d) 348,5 cm² 
 **Resposta:** b) 157 cm². **Explicação:** A área \(A\) do círculo é dada por \(A = πr^2\). 
Se \(A = 78,5 = πr^2\), então \(r^2 = \frac{78,5}{π}\) e \(r \approx 5\). Um aumento de 50% 
implica que o novo raio é \(7,5\). Assim, nova área \(A = π(7,5)^2 = 56,25π \approx 157 \, 
\text{cm}^2\). 
 
14. Qual é o raio de um círculo cuja área é 64π cm²? 
 a) 8 cm 
 b) 4 cm 
 c) 16 cm 
 d) 6 cm 
 **Resposta:** a) 8 cm. **Explicação:** A área do círculo é dada por \(A = πr^2\). 
Igualando, temos \(64π = πr^2\) o que implica \(r^2 = 64\), portanto \(r = 8 \, \text{cm}\). 
 
15. Um triângulo isósceles tem base de 10 cm e altura de 8 cm. Qual é o comprimento 
dos lados iguais? 
 a) 7 cm 
 b) 9 cm

Mais conteúdos dessa disciplina