Buscar

EFEITO DA FASE DE LAVES NA CORROSÃO AÇO INOXIDAVEL

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 9 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 9 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 9 páginas

Prévia do material em texto

EFEITO DA FASE DE LAVES NA CORROSÃO DE UM 
AÇO INOXIDÁVEL AUSTENO-FERRÍTICO 
André Itman F
o (1)
; Rosana Vilarim da Silva
 (1)
; Wandercleiton da Silva Cardoso
(2)
; Luiz Carlos Casteletti 
(3)
 
(1)
 Professores no Instituto Federal do Espírito Santo; 
 (2) 
Mestrando no Instituto Federal do Espírito Santo; 
(3) 
Professor na Escola de Engenharia de São Carlos, EESC/USP. 
 
RESUMO 
Os aços inoxidáveis austeno-ferríticos são utilizados nas indústrias químicas e petrolíferas devido 
ao ótimo compromisso entre propriedades mecânicas e resistência à corrosão. Conforme o 
processamento destes aços há a formação da fase sigma, que embora considerada prejudicial à 
tenacidade, apresenta dureza elevada que pode melhorar a resistência ao desgaste. Trabalhos 
anteriores envolvendo a adição de nióbio em um aço inoxidável austeno-ferrítico mostraram que o 
nióbio favoreceu a precipitação da fase de Laves. Considerando a perspectiva de desenvolver novos 
materiais para utilização na indústria petroquímica, o objetivo deste trabalho foi avaliar a influência 
do nióbio ao aço inoxidável austeno-ferrítico SEW 410 Nr. 14517 utilizado na fabricação de vários 
componentes industriais. Os aços foram elaborados em um forno de indução industrial. O metal 
líquido foi vazado em moldes de areia aglomerada com resina fenólica uretânica. Após o 
vazamento, amostras foram cortadas e solubilizados durante uma hora a 1100 C. Em seguida foram 
aquecidas durante 15, 30 e 60 minutos na temperatura de 850 
o
C e resfriadas ao ar. Estas amostras 
foram lixadas e polidas conforme metalografia convencional e imersas em reagente Behara para 
revelação da microestrutura. Foram feitas análises microestruturais, medidas da quantidade de fase, 
microdureza, ensaios de corrosão e abrasão. Os resultados mostram que a fase de Laves associada à 
fase sigma provoca um aumento significativo da dureza e da resistência ao desgaste do aço, embora 
com redução nos valores da resistência ao pite. Conclui-se que a adição do nióbio nos inoxidáveis 
austeno-ferríticos é interessante em situações onde a resistência ao desgaste é um fator importante a 
ser considerado. 
Palavras-chave: aço inoxidável duplex; aços inoxidáveis com nióbio; fase sigma; fase de Laves. 
 
EFFECT OF LAVES PHASE IN THE CORROSION OF 
AUSTENITIC-FERRITIC STAINLESS STEEL 
 
ABSTRACT 
The austenitic-ferritic stainless steels are used in the chemical and oil industries, due to the great 
compromise between mechanical properties and corrosion resistance. During the processing of 
these steels occurs the formation of sigma phase, which although considered harmful to toughness, 
presents high hardness that can improve the wear resistance. Previous work with austenitic-ferritic 
stainless steel containing niobium showed that the element favored the Laves phase precipitation. 
Regarding development of new materials for use in the petrochemical industry, the objective of this 
work was to evaluate the niobium influence in the austenitic-ferritic stainless steel SEW 410 N
o
. 
14517 used in manufacturing of different industrial components. The steels were prepared in an 
industrial induction furnace. The liquid metal was poured out in sand molds agglomerated with 
urethane phenolic resin. After pouring, samples were cut and annealed for one hour at 1100 
o
C. 
Subsequently, that samples were heated at 850 
o
C for 15, 30 and 60 minutes and cooled in air. The 
samples were grounded and polished as conventional metallographic preparation and immersed in 
reagent Behara for revealing the microstructure. Microstructural analyzes, measurements of the 
amount of phases, microhardness, corrosion and wearing tests were carried out. The results show 
that the Laves phase, associated with the sigma phase, promotes an increased of the hardness and 
wear resistance of the steels, although with a reduction in the values of pitting resistance. It is 
concluded that the austenitic-ferriticess stainless steels containing niobium are interesting where 
wear resistance is an important factor. 
Key words: duplex stainless steel; stainless steel containing niobium, sigma phase, Laves phase. 
 
 
INTRODUÇÃO 
 
 Nos aços inoxidáveis austeno-ferríticos ou duplex a microestrutura é determinada 
basicamente pelos teores de cromo e níquel, que atuam como estabilizadores das fases ferrítica ou 
austenítica. Atualmente, os aços inoxidáveis austeno-ferríticos estão sendo utilizados em 
substituição aos inoxidáveis austeníticos nas aplicações industriais, onde as exigências para 
resistência à corrosão e mecânica são maiores (SENATORE, 2007). Equipamentos como vasos de 
pressão, reatores e tanques de armazenamento para uso em altas temperaturas ou em meio aquoso 
com cloretos, são fabricados com os aços austeno-ferríticos. Na indústria petrolífera estes aços são 
utilizados em plataformas fixas, plataformas flutuantes e na fabricação de bombas que injetam água 
salgada para expulsar o gás e o óleo (TUTHILL, 2002; IMOA, 2009). As propriedades destes aços 
são conseguidas com o controle da microestrutura, composição química e dos tratamentos termo-
mecânicos. Outro fator importante é que nos aços austeno-ferríticos o nitrogênio substitui 
parcialmente o níquel com melhora das propriedades mecânicas e redução do custo (SPEIDEL, 
2006). Nestes aços a solidificação tem início em torno de 1450 
o
C com a formação da ferrita ( ) 
que dá origem a austenita ( ) próxima a 1300 
o
C. Os carbonetos M7C3 precipitam em temperaturas 
na faixa de 950 a 1050 
o
C nos contornos de grão baixo de 950 
o
C formam-se os carbonetos 
M23C6 (LEVEY, 1995). A fase , com estrutura cristalina tetragonal, nucleia preferencialmente na 
interface incoerente com a matriz na faixa de 600 a 950 
o
C, apresenta dureza na faixa de 900 a 
1000 Vickers, não é magnética na temperatura ambiente e prejudica a tenacidade das peças fundidas 
(MAEHARA, 1983; CHRISTIAN, 2002; CALLIARI, 2006). A fase sigma é termodinamicamente 
metaestável em uma ampla faixa de temperatura e pode aumentar a velocidade da corrosão em até 
oito vezes nos aços inoxidáveis austeno-ferríticos. A transformação pode ocorrer por meio de uma 
reação eutetóide formando sigma mais austenita com teores menores de cromo e molibdênio (LI, 
1994). Em ambientes agressivos o ataque preferencial da matriz empobrecida em cromo e 
molibdênio, nas regiões próximas às partículas de fase sigma, é uma das explicações mais comuns 
para a diminuição da resistência à corrosão destes aços. A fase sigma reduz drasticamente o 
alongamento e a tenacidade embora aumente a dureza da matriz, o limite de escoamento e o limite 
de resistência à tração. A precipitação de 1% desta fase diminuiu em 50% o valor inicial da energia 
absorvida no ensaio Charpy (NORSTRÖN, 1981; ELMER, 2007). Embora seja considerada 
prejudicial à tenacidade, a dureza elevada da fase sigma pode melhorar a resistência superficial ao 
desgaste e representar uma importante aplicação do aço austeno-ferrítico em componentes 
utilizados em meios levemente agressivos e sem efeito de solicitações mecânicas. Outro precipitado 
que se forma nos aços inoxidáveis duplex com alto teor de nióbio é a fase de Laves (Fe2Nb), onde o 
ferro pode ser substituído pelo cromo. Esta fase precipita-se na forma de ripas e está associada à 
fragilização da liga (PICKERING, 1978). Quanto à adição do nióbio, é conhecido na literatura o 
efeito deste elemento no refino de grão e na transformação de fases do aço inxidável austeno-
ferrítico (LYAKISHEV, 1984; ROSSITTI, 2000). 
 Considerando o interesse em desenvolver materiais para utilizar na indústria petroquímica, 
a proposta deste estudo foi avaliar o efeito do nióbio na microestrutura,dureza e transformação de 
fase no aço inoxidável austeno-ferrítico SEW 410 Nr.14517. Nos aços estudados foram feitas 
análises microestruturais associadas às medidas da quantidade de fase, microdureza, ensaios de 
corrosão e abrasão, após o aquecimento de amostras na temperatura de 850 
o
C durante 15, 30 e 60 
minutos. Os resultados deste trabalho são importantes para o desenvolvimento de novos aços 
inoxidáveis austeno-ferríticos como material alternativo na fabricação de componentes para 
indústria petroquímica. Outra finalidade é a utilização do nióbio com interesse comercial para o 
Brasil, que detém 70% das reservas mundiais do elemento. 
 
 MATERIAIS E MÉTODOS 
 
 As ligas SEW 410 Nr. 14517 e SEW 410 Nr. 14517 modificadas com 0,2 e 0,5% foram 
elaboradas em um forno elétrico de indução e sistema para desgaseificação à vácuo com capacidade 
nominal de 1000 kg. O metal líquido foi vazado em moldes de areia aglomerada com resina 
fenólica uretânica na forma de blocos tipo quilha (Norma ASTM A781/781M). As análises 
químicas foram realizadas em um espectrômetro de emissão ótica e representam a média de dois 
resultados por amostra (Tabela 1). Os blocos foram solubilizados a 1050 
o
C durante uma hora e 
posteriormente usinados para retirada de amostras na forma de discos com 12 mm de diâmetro e 4 
mm de espessura. Considerando as informações dos diagramas de transformação de fases dos 
inoxidáveis austeno-ferríticos, as amostras foram aquecidas na temperatura de 850 
o
C durante 15, 
30 e 60 minutos, resfriadas ao ar e posteriormente preparadas conforme métodos metalográficos 
convencionais. As microestruturas dos aços, na condição solubilizada e após tratamentos térmicos, 
foram observadas após ataque químico por imersão em reagente Behara (125 ml H2O, 25 ml HCl, 
3g bifluoreto de amônia e 0,2 g metabissulfito de potássio). A quantidade da fase austenítica foi 
determinada por meio de microscopia ótica, a fase ferrítica com o uso de um ferritoscópio modelo 
FMP-30 da Helmut Fischer e a fase sigma por meio de cálculo seguindo os preceitos da norma 
ASTM A800/A800M-01. Para determinar a microdureza Vickers foram feitas cinco medidas em 
cada amostra com carga de 100g, antes e após tratamentos térmicos. Os resultados das médias 
destas medidas estão apresentados nas Tabelas 2, 3 e 4. Posteriormente foram obtidos os valores do 
potencial de pite dos aços em solução com 3,5% NaCl em água. Na montagem da célula 
eletroquímica foi utilizado o aço inoxidável austeno-ferrítico como eletrodo de trabalho, calomelano 
saturado como eletrodo de referência e eletrodo auxiliar de platina. As medidas foram determinadas 
em um potenciostato-galvanostato modelo Ivium com software acoplado a um computador para 
aquisição e tratamento dos dados. Os resultados apresentados na Tabela 5 significam a média de 
três ensaios em cada amostra. 
 
 
 RESULTADOS 
 
 Na Tabela 1 estão apresentadas as composições químicas dos aços austeno-ferríticos SEW 
410 Nr. 14517 elaborados para este estudo . 
 
Tabela 1. Composição química nominal do aço inoxidável austeno-ferrítico SEW 410 Nr. 
14517 e dos modificados com nióbio (% em peso). 
 Cmax Cr Ni Mo Cu Mnmax Simax N Pmax Smax Nb 
SEW 
Padrão 
0.03 
 
24.0 
26.5 
5.0 
7.0 
2.5 
3.5 
2.8 
3.5 
2.0 1.0 0.12 
0.25 
0.03 0.02 - 
SEW 0,0Nb 0.03 26.0 6.4 3.2 3.0 1.5 0.8 0.22 0.03 0.01 - 
SEW 0,2Nb 0.03 26.0 6.5 3.2 2.9 1.3 0.7 0.21 0.03 0.01 0.20 
SEW 0.5Nb 0.03 26.0 6.3 3.2 3.0 1.4 0.8 0.21 0.03 0.01 0.55 
 
 
 Na Tabela 2 estão apresentados os valores porcentuais das fases e medidas de microdureza, 
antes e após aquecimento a 850 
o
C das amostras do aço austeno-ferrítico SEW 410 Nr.14517 sem 
nióbio. As quantidades da fase ferrítica magnética foram medidas no ferritoscópio, enquanto os 
valores de sigma foram determinados por meio da equação: 
 
% Fase Sigma = 100 – (% fase austenítica + % fase ferrítica) (Eq. 1) 
 
 
 
Tabela 2. Porcentagem das fases e medidas de microdureza Vickers (média de cinco medidas 
em cada amostra) do aço SEW 410 sem nióbio após tratamento térmico a 850 
o
C. 
Tempo 
(min) 
Ferrita 
(%) 
Austenita 
 (%) 
Sigma 
(%) 
Ferrita+ 
Vickers 
Austenita 
Vickers 
 0* 46 2 54 2 0,00 290 10 255 08 
15 23 2 52 2 25 ± 2 520 20 264 12 
30 09 1 51 2 40 2 563 15 263 07 
60 1 0,1 53 3 46 3 650 12 258 10 
 *Medidas realizadas em uma amostra solubilizada. 
 
 
 Na Tabela 3 estão apresentados os valores porcentuais das fases e medidas de microdureza, 
antes e após aquecimento a 850 
o
C das amostras do aço SEW 410 Nr.14517 com 0,2% de nióbio.
 
Tabela 3. Porcentagem das fases e medidas de microdureza Vickers (média de cinco medidas 
em cada amostra) do aço SEW 410 com 0.2 nióbio após tratamento térmico a 850 
o
C. 
Tempo 
(min) 
Ferrita 
(%) 
Austenita 
 (%) 
Sigma 
(%) 
Ferrita+ 
Vickers 
Austenita 
Vickers 
 0* 45 2 55 3 0,00 305 10 260 03 
15 32 2 53 3 15 3 340 20 262 05 
30 16 3 55 4 29 4 576 15 283 04 
60 07 1 52 4 41 4 692 12 292 03 
 *Medidas realizadas em uma amostra solubilizada. 
 
 
 Na Tabela 4 estão apresentados os valores porcentuais das fases e medidas de microdureza, 
antes e após aquecimento a 850 
o
C das amostras do aço austeno-ferrítico SEW 410 Nr.14517 com 
0,5% de nióbio. 
 
Tabela 4. Porcentagem das fases e medidas de microdureza Vickers (média de cinco medidas 
em cada amostra) do aço SEW 410 com 0.5 nióbio após tratamento térmico a 850 
o
C. 
Tempo 
(min) 
Ferrita 
(%) 
Austenita 
 (%) 
Sigma 
(%) 
Ferrita+ 
Vickers 
Austenita 
Vickers 
 0* 47 2 52 2 0,00 314 15 263 05 
15 29 1 53 3 18 3 450 20 276 06 
30 05 1 52 3 43 5 576 15 290 04 
60 01 0,1 54 5 45 5 699 12 292 04 
 *Medidas realizadas em uma amostra solubilizada. 
 
 Nas Figuras 1, 2 e 3 de (a) a (d) são mostradas as regiões representativas dos aços 
inoxidáveis austeno-ferrítico sem nióbio e modificados, após solubilização a 1100 
o
C durante uma 
hora e tratamento térmico de envelhecimento na temperatura de 850 
o
C com diferentes tempos. 
 
 Figuras 1(a), 1(b), 1(c) e 1(d) - Microestruturas do aço sem nióbio solubilizado e 
envelhecido a 850°C durante 15, 30 e 60 minutos. 
 
 
 
 
Figuras 2(a), 2(b), 2(c) e 2(d) - Microestruturas do aço com 0,2 % de nióbio 
solubilizado e envelhecido a 850°C durante 15, 30 e 60 minutos. 
 
 
 
Figuras 3(a), 3(b), 3(c) e 3(d) - Microestruturas do aço com 0,5 % de nióbio solubilizado e 
envelhecido a 850°C durante 15, 30 e 60 minutos. 
 
 
 
Na Figura 4 (a) e (b) são mostradas as regiões representativas do aço modificado com 0,5% 
de nióbio após tratamento térmico a 1050 
o
C durante uma hora e posteriormente submetido ao 
tratamento térmico de envelhecimento a 850°C durante 60 minutos. 
 
 
 
Figura 4 – Microestrutura do aço modificado com 0,5% nióbio: (a) após tratamento térmico a 
1050 
o
C durante uma hora e (b) após tratamento térmico de 1050 
o
C durante uma hora 
seguido de envelhecimento a 850°C durante 60 minutos. 
 
 
 Na Tabela 5 estão apresentados os valores de potencial de pite das amostras do aço SEW 
410 Nr.14517 sem nióbio e modificado com 0,2 e 0,5% do elemento. 
 
 
Tabela 5- Valores médios dos potenciais de pite obtidas para as amostras solubilizadas a 
1050ºC/60min e envelhecidas a 850 ºC. 
 Solubilizada 
(V) 
15 min 
(V) 
30 min 
(V) 
60 min 
(V) 
SEW sem Nb 1,23 ± 0,11 1,16 ± 0,03 1,11 ± 0,011,09 ± 0,01 
SEW 0.2 Nb 1,15 ± 0,03 1,07 ± 0,03 1,03 ± 0,01 1,01 ± 0,01 
SEW 0.5 Nb 0,90 ± 0,03 0,77 ± 0,03 0,66 ± 0,01 0,60 ± 0,02 
 
 
Na Tabela 6 estão apresentados os valores dos coeficientes de desgaste das amostras do aço SEW 
410 Nr.14517 sem nióbio e modificado com 0,2 e 0,5% do elemento. 
 
 
Tabela 6- Valores dos coeficientes de desgaste (K) obtidos para as amostras solubilizadas a 
1050º C/60min e envelhecidas a 850 ºC durante 15, 30 e 60 minutos. 
 Solubilizada 
(m
2
/N) 
15 min 
(m
2
/N) 
30 min 
(m
2
/N) 
60 min 
(m
2
/N) 
SEW sem Nb 1,46 x 10
-12 
1,34 x 10
-12
 1,16 x 10
-12
 0,70 x 10
-12
 
SEW 0.2 Nb 1,32 x 10
-12
 1,21 x 10
-12
 0,94 x 10
-12
 0,38 x 10
-12
 
SEW 0.5 Nb 1,03 x 10
-12
 0,95 x 10
-12
 0,75 x 10
-12
 0,20 x 10
-12
 
 
 
 
 DISCUSSÃO 
 
 As composições químicas mostradas na Tabela 1 revelam que os valores atendem os 
especificados pela norma e os aços elaborados pertencem à família SEW 410 Nr.14517. Com 
relação às Tabelas 2, 3 e 4, os valores confirmam que após o aquecimento a 850 
o
C, a quantidade de 
ferrita no aço modificado com 0,2% de nióbio é maior comparando-se ao sem nióbio, efeito este 
que comprova a característica alfagênica do elemento quando em solução (LYAKISHEV, 1984). 
No aço com 0,5% de nióbio, porém, a quantidade de ferrita é menor que no modificado com 0,2% 
do elemento. A razão deste comportamento é a precipitação da fase de Laves na solidificação 
favorecida pelo teor de nióbio acima do limite de solubilidade na matriz. Esta fase, na forma de 
plaquetas mostradas nas Figuras 4 (a) e 4 (b), constituídas principalmente de ferro, nióbio e cromo, 
não solubiliza nas temperaturas usuais de tratamento térmico. Em conseqüência, a fase ferrítica é 
desestabilizada com a redução do cromo, fato este que favorece a transformação da fase sigma 
durante o aquecimento a 850 
o
C. Isto explica a maior quantidade de fase sigma no aço modificado 
com 0,5% em relação ao de 0,2% de nióbio. Observa-se também que há uma tendência da 
transformação total da ferrita em austenita eutetóide e sigma após o aumento do tempo de 
aquecimento a 850 
o
C (LI, 1994). Embora seja difícil quantificar estas fases, pois sigma pode 
precipitar na interface e no interior dos grãos austeníticos, é provável que a transformação ocorra 
pelo aumento do número de vacâncias com o tempo de aquecimento (WOODYATT, 1967). Com 
relação às Figuras 1 (a), 2 (a) e 3 (a), amostras solubilizadas, ficam evidentes a distribuição dos 
grãos alongados brancos da austenita envolvidos pela matriz ferrítica preta. Nas Figuras 1, 2 e 3 (b) 
(c) e (d), após o aquecimento na temperatura de 850 
o
C durante 15, 30 e 60 minutos, é possível 
observar a fase austenítica mais clara envolvida pelas fases ferrítica e sigma. Com o aumento do 
tempo observa-se o acréscimo da fase sigma com redução da matriz ferrítica. Finalmente com 60 
minutos na temperatura de 850 
o
C, a transformação da fase ferrítica é praticamente total. Com 
relação às quantidades médias das fases austeníticas nas amostras, a determinação foi feita por 
microscopia ótica, fato este que proporcionou uma relativa variação dos valores. As quantidades de 
fase ferrítica foram medidas no ferritoscópio, enquanto as de sigma, calculadas por meio da 
diferença porcentual entre as fases austenítica e ferrítica. O aumento da fase sigma transformada a 
partir da matriz ferrítica com o aquecimento promoveu um acréscimo da microdureza nas amostras, 
fato este comprovado com os resultados mostrados nas Tabelas (2), (3) e (4). Com relação às 
medidas de microdureza, a fase austenítica é de fácil visualização no microscópio ótico, diferente de 
sigma, que está associada à ferrita. Neste caso, as medidas de microdureza foram obtidas em regiões 
com presença da fase ferrítica associada à sigma. Quanto aos valores do potencial de pite em 
solução com 3,5% de NaCl em água, os valores na Tabela 5 mostram a diminuição dos mesmos 
com o aumento da quantidade de sigma. A formação de sigma, rica em cromo e molibdênio, ocorre 
preferencialmente na interface com a supressão da fase ferrítica. O crescimento para o interior 
da matriz ferrítica, com empobrecimento de cromo e molibdênio nas regiões adjacentes às 
partículas de sigma, é uma das explicações mais comuns para a diminuição da resistência à corrosão 
destes aços (GUNN, 2001). Observa-se também que o aumento do teor de nióbio provocou a 
diminuição do potencial de pite, principalmente no aço com 0,5% do elemento. Observa-se, porém, 
que o efeito do nióbio no potencial de pite, aparentemente é menor com o aumento do tempo de 
aquecimento. Por outro lado, os aumentos do teor de nióbio e da porcentagem volumétrica da fase 
sigma, são responsáveis pelo aumento da resistência ao desgaste dos aços. Observa-se na Tabela 6 
que o coeficiente de desgaste (K) diminui à medida que se aumenta o teor de nióbio e a 
porcentagem volumétrica de fase sigma. 
 Embora com uma diminuição da resistência à corrosão, o aumento da dureza com o teor de 
nióbio e da fase sigma pode favorecer a utilização destes aços em meios menos agressivos, onde o 
desgaste é um fator a ser minimizado. 
 
 
 CONCLUSÕES 
 
 Os resultados obtidos nesta pesquisa mostram que: 
• o aumento do tempo de aquecimento promove um incremento na quantidade de fase sigma; 
• a fase ferrítica transforma-se praticamente em sigma mais austenita secundária após 
aquecimento a 850 
o
C durante 60 minutos; 
• o aumento da fase sigma promove um acréscimo na dureza da matriz; 
• o aumento do teor de nióbio favorece a formação da fase de Laves com redução da 
resistência à corrosão; 
• a fase de Laves não é solubilizada a 1050 oC; 
• a fase de Laves desestabiliza a fase ferrítica; 
• o aumento do teor de nióbio promove um acréscimo na dureza dos aços; 
• o coeficiente de desgaste (K) diminui com o aumento do teor de nióbio e da porcentagem 
volumétrica da fase sigma; 
• a resistência ao desgaste aumenta à medida que a resistência à corrosão diminui. 
 
 
 AGRADECIMENTOS 
 
 Os autores agradecem ao Grupo Metal pelas amostras e à FAPES pelo apoio financeiro 
referente ao processo 45413860/2009. 
 
REFERÊNCIAS 
 
CALLIARI, I.; ZANESCO, M.; RAMOUS, E. Influence of isothermal aging on secondary phases 
precipitation and toughness of a duplex stainless steel SAF 2205. Journal of Materials Science. 
v.41, p.7643-7649, 2006. 
CHRISTIAN, J.W. The theory of transformations in metals and alloys: Part I. 3 ed. Oxford: 
Elsevier, 2002. 586p. 
ELMER, J. W.; PALMER, T. A.; SPECHT, E. D. Direct observations of sigma phase formation in 
duplex stainless steels using in-situ synchrotron X-Ray diffraction. Metallurgical and Materials 
Transactions A. v.38A(3), p. 464-475, 2007. 
GUNN, R. N, Duplex Stainless Steel: Microstructure, Properties and Applications. Abington 
Publishing, Cambridge. England, 1997. 205p. 
IMOA (International Association of Molybdenum) Practical Guidelines for the Fabrication of 
Duplex Stainless Steel, Second Edition, London UK, 2009. 64p. 
LEVEY, P. R. and BENNEKOM, A. V. A Mechanistic Study of the Effects of Nitrogen on the 
Corrosion Properties of Stainless Steels. NACE International, v. 51, p. 01-10, 1995. 
LI, J.; MU,T.; RIQUIER, Y. -phase precipitation and it’s effect on the mechanical properties of a 
duplex stainless steel. Materials Science and Engineering, v. 1, p.149-156, 1994. 
LYAKISHEV, N.P. et alii. Niobium in steels and alloys. Ed. Cia. Bras. Mineração e Metalurgia, 
Brasil, 1985. 334p. 
MAEHARA, Y. et alii. Effects of alloying elements on -phase precipitation in / duplex phase 
stainless steels. Metal Science, v. 17,p. 541-547, 1983. 
NORSTRÖN, L.A.; PETTERSSON, S.; NORDIN, S. -phase embrittlement in some ferritic-
austenitic stainless steels. Zeitsch Werkstofftech, v.12, p.229-234, 1981. 
PICKERING, F.B. Physical Metallurgy and the Design of Steels: Austenitic Stainless Steels. 
Applied Science Publishers Ltd., 1978. 356p. cap.11, p.227-268. 
ROSSITTI, S. M. Efeito do nióbio na microestrutura e nas propriedades mecânicas do aço 
inoxidável superduplex fundido SEW 410 W. Nr. 14517. Tese de Doutorado, EESC-USP, São 
Carlos-SP, 2000. 150p. 
SENATORE, M.; FINZETTO, L.; PEREA, E. Estudo comparativo entre os aços inoxidáveis duplex 
e os inoxidáveis AISI 304L e 316L. REM - Revista da Escola de Minas, v.60, p.175-181, 2007. 
SPEIDEL, M. O. Nitrogen Containing Austenitic Stainless Steels. Mat-Wiss. U Werkstoifteck. v. 
37, n
o
 10, p.875-880, 2006. 
TUTHILL, A. H. Stainless Steels and Specialty alloys for Modern Pulp and Paper Mills. Nickel 
Development Institute, USA, 2002. 148p. 
WOODYATT, L.R.; SIMS, C.T.; BEATTIE, H.J. Prediction of Sigma-Type Phase Ocurrence from 
Composition in Austenitic Superalloys. Transactions of the American Institute of Mining and 
Metallurgical Engineers. V.236, n
o
 4, p.519-527, 1967. 
 
 
AUTORES: 
 
André Itman Filho; Instituto Federal do Espírito Santo - andrei@ifes.edu.br 
Rosana Vilarim da Silva; Instituto Federal do Espírito Santo - rosanavilarim@yahoo.com.br 
Wandercleiton da Silva Cardoso; Instituto Federal do Espírito Santo - wcardoso@ifes.edu.br 
Luiz Carlos Casteletti; Escola de Engenharia de São Carlos – EESC/USP - casteletti@sc.usp.br

Outros materiais

Materiais relacionados

Perguntas relacionadas

Materiais recentes

Perguntas Recentes