Buscar

calculo de massa

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 81 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 81 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 81 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

UNIVERSIDADE FEDERAL DE MINAS GERAIS 
PROGRAMA DE PÓS-GRADUAÇÃO EM 
ENGENHARIA MECÂNICA 
 
 
 
 
 
 
 
METODOLOGIA PARA O CÁLCULO DA MASSA DE FLUIDO 
REFRIGERANTE EM SISTEMAS DE REFRIGERAÇÃO POR 
COMPRESSÃO DE VAPOR 
 
 
 
 
 
 
AUTOR: MATHEUS PEREIRA PORTO 
 
 
 
 
 
 
Belo Horizonte, 18 de janeiro de 2010
 
 
 
Matheus Pereira Porto 
 
 
 
 
 
 
METODOLOGIA PARA O CÁLCULO DA MASSA DE FLUIDO 
REFRIGERANTE EM SISTEMAS DE REFRIGERAÇÃO POR 
COMPRESSÃO DE VAPOR 
 
 
Dissertação apresentada no programa de Pós-Graduação em Engenharia 
Mecânica da Universidade Federal de Minas Gerais, como requisito parcial à 
obtenção do título de Mestre em Engenharia Mecânica. 
Área de concentração: Calor e fluidos 
Orientador: Prof.Luiz Machado 
Universidade Federal de Minas Gerais 
Co-orientador: Prof. Ricardo Nicolau Nassar Koury 
Universidade Federal de Minas Gerais 
 
Belo Horizonte 
Escola de Engenharia da UFMG 
2010 
 
Universidade Federal de Minas Gerais 
Programa de Pós-Graduação em Engenharia Mecânica 
Av. Antônio Carlos, 6627 – Pampulha – 31.270-901 – Belo Horizonte – MG 
Tel.: =+55 34095145 – Fax.: +55 31 34433783 
www.demec.ufmg.br - - e-mail: cpgmec@demec.ufmg.br 
 
 
 
 
 
METODOLOGIA PARA O CÁLCULO DA MASSA DE FLUIDO 
REFRIGERANTE EM SISTEMAS DE REFRIGERAÇÃO POR 
COMPRESSÃO DE VAPOR 
 
 
Matheus Pereira Porto 
 
Dissertação defendida e aprovada em 18 de Janeiro, de 2010, pela Banca Examinadora designada pelo 
Colegiado de Programa de Pós Graduação em Engenharia Mecânica da Universidade Federal de Minas Gerais, 
como parte dos requisitos necessários à obtenção do título de “Mestre em Engenharia Mecânica”, na área de 
concentração de Calor e Fluidos. 
 
 
Prof. Dr.Luiz Machado – Universidade Federal de Minas Gerais – Orientador 
 
 
Prof. Dr.Ricardo Nicolau Nassar Koury – Universidade Federal de Minas Gerais – Co-orientador 
 
 
Prof. Dr. Antonio Augusto Torres Maia – Universidade Federal de Minas Gerais – Examinador 
 
 
Antonio Carlos Lopes da Costa – Centro de Desenvolvimento da Tecnologia Nuclear – Examinador 
 
 
 
 
 
Dedico este trabalho aos meus pais que têm estado sempre presente nos momentos 
de conquistas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AGRADECIMENTOS 
 
 
Agradeço ao Governo Federal que, por meio da Universidade Federal de Minas Gerais, cria 
oportunidades para realização de trabalhos científicos, e ao corpo de funcionários e docentes que 
fazem com que estes sejam bem orientados. 
Agradeço ao Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq pelo 
financiamento deste trabalho. 
Agradecimentos a todos os professores do Centro Pedagógico, do Colégio Técnico (COLTEC), 
do Departamento de Engenharia Mecânica, a Antonio Carlos Lopes da Costa, Antônio Augusto 
Torres Maia pelas boas sugestões para a revisão final do trabalho. Em especial, agradeço a Luiz 
Machado e a Ricardo Nicolau Nassar Koury, e aos funcionários do Programa de Pós-Graduação 
de Engenharia Mecânica. 
 
Meus agradecimentos sinceros. 
 
 
 
 
"Nada mais prático que uma boa teoria" 
 
Licínio Cesar Porto 
 
 
 
 
SUMÁRIO 
 
NOMENCLATURA................................................................................................................... 9 
LISTA DE FIGURAS .............................................................................................................. 12 
LISTA DE GRÁFICOS............................................................................................................ 14 
LISTA DE TABELAS.............................................................................................................. 15 
LISTA DE ABREVIATURAS E SÍMBOLOS ......................................................................... 16 
RESUMO................................................................................................................................. 17 
1. INTRODUÇÃO ........................................................................................................... 18 
2. EVAPORADORES E CONDENSADORES................................................................ 21 
2.1 INTRODUÇÃO ............................................................................................................21 
2.2 TIPOS DE EVAPORADORES E CONDENSADORES ...............................................21 
2.2.1 Evaporadores ............................................................................................................... 21 
2.2.2 Condensadores ............................................................................................................. 23 
2.3 ESCOAMENTO MONOFÁSICO.................................................................................24 
2.3.1 Transferência de calor no interior de tubos ................................................................... 24 
2.3.2 Transferência de calor no exterior de tubos .................................................................. 25 
2.3.3 Perda de pressão........................................................................................................... 32 
2.3.4 Cálculo da massa.......................................................................................................... 33 
2.4 ESCOAMENTO BIFÁSICO .........................................................................................34 
2.4.1 Transferência de calor .................................................................................................. 34 
2.4.2 Perda de pressão........................................................................................................... 37 
2.4.3 Cálculo da massa/Fração de vazio ................................................................................ 38 
3. MODELO DE CÁLCULO DO INVENTÁRIO............................................................ 41 
 
 
3.1 METODOLOGIA DE CÁLCULO DO PROGRAMA...................................................41 
4. APRESENTAÇÃO DO SOFTWARE .......................................................................... 45 
4.1 MASSA NO COMPRESSOR........................................................................................48 
4.2 MASSA NA LINHA DE VAPOR DE ALTA PRESSÃO..............................................49 
4.3 CONDENSADOR.........................................................................................................50 
4.4 MASSA NA LINHA DE LÍQUIDO DE ALTA PRESSÃO...........................................53 
4.5 MASSA NO DISPOSITIVO DE EXPANSÃO..............................................................54 
4.6 MASSA NA LINHA DE LÍQUIDO DE BAIXA PRESSÃO.........................................55 
4.7 MASSA NO EVAPORADOR.......................................................................................56 
4.8 MASSA NA LINHA DE VAPOR DE BAIXA PRESSÃO............................................59 
4.9 ARMAZENAMENTO DOS DADOS E RESULTADOS ..............................................60 
5. RESULTADOS E DISCUSSOES ................................................................................ 63 
5.1 METODOLOGIA DO EXPERIMENTO PARA VALIDAÇÃO DO PROGRAMA ......63 
5.2 RESULTADOS OBTIDOS ...........................................................................................66 
5.2.1 Análises No Evaporador............................................................................................... 67 
5.2.2 Análises No Condensador ............................................................................................ 71 
5.2.3 Comparação Dos Resultados Do Modelo De Fração De Vazio .....................................75 
5.2.4 Soma Das Massas Nos Componentes ........................................................................... 76 
5.2.5 Discussão..................................................................................................................... 77 
6. CONCLUSÃO ............................................................................................................. 78 
ABSTRACT............................................................................................................................. 79 
REFERÊNCIAS BIBLIOGRÁFICAS ...................................................................................... 80 
 
 
NOMENCLATURA 
 
Letras Latinas 
At Área superficial dos tubos de um condensador tubos-e-arames [m²] 
Aw Área superficial dos arames de um condensador tubos-e-arames [m²] 
cpl Calor específico do líquido saturado [J/kg.K] 
d Diâmetro interno de um tubo [m] 
dext Diâmetro externo de um tubo [m] 
dw Diâmetro de um arame [m] 
dz Comprimento de tubulação infinitesimal [m] 
f Coeficiente de atrito relacionado a perda de carga [Adimensional] 
F Fator de aumento do coeficiente de transferência de calor por ebulição 
convectiva [Adimensional] 
flo Fator de atrito de um escoamento líquido saturado [Adimensional] 
fvo Fator de atrito de um escoamento vapor saturado [Adimensional] 
G Fluxo mássico [kg/m².s] 
h Coeficiente convectivo de transferência de calor [W/m².K] 
hcond 
Coeficiente de transferência de calor de um fluido no interior de um tubo 
[W/m².K] 
hlv Diferença entre a entalpia do vapor saturado e do líquido saturado [kJ/kg] 
hr Coeficiente de transferência de calor por radiação [W/m².K] 
k Condutividade térmica [W/m.K] 
kar Condutividade térmica do ar [W/m.K] 
kH Parâmetro discreto para cálculo da fração de vazio [Adimensional] 
kl Condutividade térmica do líquido saturado [W/m.K] 
L Comprimento característico de um superfície [m] 
Lt Comprimento da tubulação [m] 
m Viscosidade [Pa.s] 
MEM Massa em escoamento monofásico [kg] 
Nu Número de Nusselt [Adimensional] 
Pcrit Pressão crítica do fluido refrigerante [Pa] 
Pr Número de Prandtl [Adimensional] 
Prl Número de Prandtl do líquido saturado [Adimensional] 
 
 
Psat Pressão do escoamento bifásico [Pa] 
pt Passo, ou distância, entre dois tubos consecutivos [m] 
pw Passo, ou distância, entre dois arames consecutivos [m] 
Qmon. Capacidade de transferência de calor na região monofásica [W] 
Ra Número de Rayleigh [Adimensional] 
Re Número de Reynolds [Adimensional] 
Redp Número de Reynolds do escoamento em estado bifásico [Adimensional] 
Rel 
Número de Reynolds do escoamento em estado líquido saturado 
[Adimensional] 
S Fator de supressão ao coeficiente de transferência de calor por ebulição 
nucleada 
T∞ Temperatura ambiente [K] 
Tavg Temperatura média entre a superfície de um objeto e a ambiente [K] 
Tsup Temperatura superficial [K] 
Tv Temperatura de um fluido [K] 
ul Velocidade do escoamento no estado líquido [m/s] 
Umon. Coeficiente global de transferência de calor na região monofásica [W/m².K] 
V Velocidade [m/s] 
VEM Volume ocupado por um escoamento monofásico [m³] 
x Título de um fluido [Adimensional] 
z Parâmetro para cálculo da fração de vazio [Adimensional] 
Letras Gregas 
α Difusividade térmica [m²/s] 
αc Coeficiente de transferência de calor devido a ebulição convectiva [W/m².K] 
αdp Transferência de calor de fluidos em estado bifásico [W/m².K] 
αeb Coeficiente de transferência de calor devido a ebulição nucleada [W/m².K] 
αhom Fração de vazio do modelo homogênio [Adimensional] 
αvazio Fração de vazio [Adimensional] 
β Coeficiente de expansão térmica [K-1] 
χ Parâmetro de Martinelli [Adimensional] 
∆P Variação da pressão [Pa] 
∆PF Variação da pressão - perda de carga [Pa] 
∆PSAT Variação da pressão do vapor saturado [Pa] 
∆Tml Diferença de temperatura média logarítmica [K] 
∆ΤSAT Diferença entre a temperatura de saturação do fluido e a parede em contato com 
 
 
o fluido [K] 
φlo Fator multiplicador da perda de carga – líquido saturado [Adimensional] 
φlv Fator multiplicador da perda de carga – vapor saturado [Adimensional] 
µl Viscosidade do líquido saturado [Pa.s] 
µv Viscosidade do vapor saturado [Pa.s] 
ν Difusividade de momento [m²/s] 
ρ Massa específica [kg/m³] 
ρEM Massa específica do escoamento monofásico [kg/m³] 
ρl Massa específica do líquido saturado [kg/m³] 
ρl Massa específica do vapor saturado [kg/m³] 
ρv Massa específica do vapor saturado [kg/m³] 
ρv Massa específica do vapor saturado [kg/m³] 
σ Tensão superficial [N/m] 
υ Volume específico [m³/kg] 
υλ Volume específico do líquido saturado [kg/m³] 
υϖ Volume específico do vapor saturado [kg/m³] 
 
 
 
LISTA DE FIGURAS 
 
FIGURA 3.1– Fluxograma do algorítimo de cálculo do modelo................................................43 
FIGURA 4.1– Tela principal do software – Dados de entrada. ..................................................45 
FIGURA 4.2 – Tela principal do software – Ciclo termodinâmico . ..........................................46 
FIGURA 4.3 – Tela principal do software – Propriedades termodinâmicas. ..............................47 
FIGURA 4.4 – Tela principal do software – Elementos do sistema. ..........................................48 
FIGURA 4.5 – Cálculo da massa no compressor.......................................................................49 
FIGURA 4.6 – Cálculo da massa na linha de vapor de alta pressão...........................................50 
FIGURA 4.7 – Cálculo da massa no condensador ar-ar.............................................................51 
FIGURA 4.8 – Cálculo da massa no condensador do tipo tubos coaxiais. .................................52 
FIGURA 4.9 - Cálculo da massa no condensador do tipo tubos e arames. .................................53 
FIGURA 4.10 – Cálculo da massa na linha de líquido de alta pressão.......................................54 
FIGURA 4.11 – Cálculo da massa no dispositivo de expansão..................................................55 
FIGURA 4.12 – Cálculo da massa no trecho de líquido de baixa pressão..................................56 
FIGURA 4.13 – Cálculo da massa para o evaporador do tipo ar-ar ...........................................57 
FIGURA 4.14 – Cálculo da massa para o evaporador do tipo tubos coaxiais.............................58 
FIGURA 4.15 – Cálculo da massa para o evaporador de placas de um refrigerador 
doméstico............................................................................................................................59 
FIGURA 4.16 – Massa na linha de vapor de baixa pressão. ......................................................60 
FIGURA 4.17 – Apresentação do resumo dos resultados da somatória das massas. ..................61 
FIGURA 4.18 – Arquivamento dos dados de entrada a partir da ferramenta “Salvar”. ..............62 
FIGURA 5.2– Técnica de textura utilizada para determinação do comprimento da região do 
evaporador. .........................................................................................................................64 
FIGURA 5.3– Segmentação dos tubos e o resultado ilustrativo da fração de vazio....................67 
 
 
FIGURA 5.4 – Comprimento das regiões de fluido bifásico e monofásico no condensador 
com o aumento temperatura de condensação. ......................................................................74 
FIGURA 5.5 – Coeficiente de transferência de calor do fluido primário na região 
monofásica, variando a temperatura de condensação. ..........................................................75 
 
 
 
LISTA DE GRÁFICOS 
 
GRÁFICO 5.1 – Temperaturas, dados de entrada do software, o tempo de medição em 
minutos. ..............................................................................................................................66GRÁFICO 5.2 – Massa cálculada no evaporador versus o número de refinamento. ..................68 
GRÁFICO 5.3 – Fração de vazio versus título no evaporador, considerando 5 e 180 
unidades..............................................................................................................................69 
GRÁFICO 5.4 – Teste de sensibilidade da massa no evaporador com as temperaturas de 
entrada do software. ............................................................................................................70 
GRÁFICO 5.5 – Massa calculada no condensador versus número de refinamento. ...................72 
GRÁFICO 5.6 – Fração de vazio em função do título para o condensador. ...............................72 
GRÁFICO 5.7 – Teste de sensibilidade da massa no condensador com as temperaturas de 
entrada do software. ............................................................................................................73 
GRÁFICO 5.8 – Comparação do modelo da fração de vazio do programa e do proposto por 
Hermes (2001). ...................................................................................................................76 
 
 
 
 LISTA DE TABELAS 
TABELA 2.1 – Valores de n e a para cálculo do número de Nusselt em evaporadores de 
geladeira. ............................................................................................................................31 
TABELA 2.2 – Valores de C para as combinações de escoamento da fase líquida e vapor........37 
TABELA 2.3 – Valores de KH em função de z..........................................................................39 
TABELA 5.1– Propriedades gerais do refrigerador doméstico. .................................................65 
 
 
 
LISTA DE ABREVIATURAS E SÍMBOLOS 
DEMEC Departamento de Engenharia Mecânica 
PPGMEC Programa de Pós Graduação em Engenharia Mecânica 
UFMG Universidade Federal de Minas Gerais 
CNPq Conselho Nacional de Desenvolvimento Científico e 
 Tecnológico 
 
 
 
RESUMO 
 
O compressor é o componente mais sucetível a falhas em uma máquina de refrigeração por 
compressão de vapor. Para evitar a aspiração de líquido por este componente, certo grau de 
superaquecimento na saída do evaporador é recomendado. Freqüentemente, os instaladores optam por 
impor um superaquecimento acima do especificado, para garantir que não haverá aspiração de líquido 
pelo compressor. Então, uma menor quantidade de fluido refrigerante é colocada na máquina. De 
qualquer forma, se esse valor é muito pequeno, o superaquecimento pode ser excessivo, comprometendo 
drasticamente o tempo de vida útil do compressor. Desta maneira, a contabilização da massa de fluido 
frigorífico (inventário) em máquinas de refrigeração por compressão de vapor constitui um importante 
estágio para garantir o bom funcionamento do sistema. O objetivo deste trabalho é desenvolver um 
modelo numérico, com saída em Delphi, que permite calcular o inventário em máquinas de pequeno e 
médio porte com diversos tipos de trocadores de calor, tais como de tubos coaxiais, de superfície de 
placas, de tubos-e-arames e de expansão seca. Foi realizado um teste de malha, um estudo de 
sensibilidade aos dados de entrada e uma validação para um refrigerador doméstico onde foi obtido um 
erro de 1,5%. 
 
 
Palavras chave: Sistemas de refrigeração, Inventário, Fração de vazio. 
 
 
 
1. INTRODUÇÃO 
A máquina de refrigeração por compressão de vapor surgiu da invenção de Jacob Perkins, 
sendo patenteada em 1834. O objetivo final de sua descoberta era a produção de gelo, uma vez que este 
possuía grande valor comercial na época. Observou-se, poucas décadas depois, que a produção de gelo 
cresceria em larga escala. 
Com o advento dos motores elétricos em 1873, a utilização de máquinas de refrigeração por 
compressão de vapor tornou-se mais viável, assim como o desenvolvimento tecnológico dos 
compressores. A utilização da energia elétrica, a partir do século XX, conjugada ao emprego de fluidos 
frigoríficos, em especial o uso de CFC’s, fez com que a máquina de refrigeração por compressão de vapor 
fosse amplamente utilizada em sistemas frigoríficos industriais e domésticos. 
Uma pesquisa realizada em 2005 estimou que somente o mercado de condicionadores de ar 
compactos fabricaria 59 milhões de unidades no mundo durante este ano, sendo o mercado brasileiro 
responsável por um milhão (ABRAVA, 2005). Ainda se referindo ao ano de 2005, pesquisas indicaram 
que 87,4% das moradias no Brasil possuíam geladeira e 17,1% possuíam freezer. Isto significa que mais 
de 178 milhões de máquinas por compressão de vapor estão presentes nas residências e escritórios dos 
brasileiros (IBGE, 2005). Estima-se que o consumo de massa de fluido frigorífico anual supere 3500 
toneladas por ano para refrigeradores domésticos e veiculares no país (ABRAVA, 2005). 
A quantidade de carga frigorífica de uma máquina é denominada de inventário. Ela está 
diretamente relacionada à performance do equipamento (Revellin, 2009). Isto significa que existe uma 
quantidade ótima de fluido que irá gerar menor consumo de energia e, conseqüentemente, contribuir 
indiretamente para diminuição do efeito estufa. Além disto, a utilização de menos fluido refrigerante 
reflete em uma menor presença de HCFC’s e HFC’s na atmosfera, contribuindo assim para a diminuição 
do efeito estufa diretamente. A utilização de uma carga de fluido maior ou menor em relação ao valor 
ideal, pode comprometer seriamente o compressor. O uso controlado de fluido refrigerante em grandes 
sistemas de refrigeracao também é importante quando o refrigerante é um hidrocarboneto (fluido natural) 
devido à periculosidade envolvida. 
 
 
19 
O compressor é o componente mais suscetível à falhas em um sistema de refrigeração com 
evaporadores de expansão seca. Muitas vezes recomenda-se um determinado valor de superaquecimento 
do fluido frigorífico na saída do evaporador. Com certa freqüência, os instaladores optam por impor um 
superaquecimento acima do especificado, a fim de garantir a não aspiração de líquido pelo compressor. 
Todavia, se esse valor é demasiadamente baixo, o superaquecimento pode ser muito alto, comprometendo 
o compressor e reduzindo drasticamente o seu tempo de vida útil. Em máquinas frigoríficas ocorre a 
presença de escoamento bifásico. Este escoamento exige uma análise mais complexa que a do 
escoamento monofásico, no que se refere a determinação da massa especifica do fluido. 
Conseqüentemente, é dispendiosa a tarefa de obter a massa de fluido total. 
É comum a prática empírica de determinação da massa necessária. Estimativas são realizadas 
baseadas na geometria do equipamento. Fazem-se posteriores ajustes, até chegar às temperaturas 
desejadas. O ônus desta prática está ligado ao tempo para obtenção do regime permanente. Outra solução 
é o desenvolvimento de um modelo de transferência de calor capaz de determinar os comprimentos 
bifásicos e monofásicos juntamente a uma correlação para determinação da massa específica do fluido. 
O objetivo deste trabalho é o desenvolvimento de um modelo de cálculo para obtenção do 
inventário de máquinas de compressão de vapor. 
Além desta introdução, esta dissertação contém 4 capítulos: Evaporadores e Condensadores, 
Modelo de Cálculo do Inventário, Resultados e Discussões e Conclusão. 
O capítulo 2, Evaporadores e Condensadores, apresenta os tipos de trocadores de calor 
usualmente utilizados e uma ampla discussão sobre os coeficientes de transferência de calor para os 
escoamentos bifásicos e monofásicos. Também estão em destaque as metodologias para cálculo da fração 
de vazio do escoamento bifásico. 
O capítulo 3, Modelo de Cálculo do Inventário, trata do algorítimo de cálculo para a 
determinação do inventário em máquinas de compressãode vapor, assim como fornece as intruções para 
utilização do modelo na versão de Visual em Delphi. 
O capítulo 4, Apresentação do software, apresenta o software e as funcionalidades 
relacionadas a este. 
O capítulo 5, Resultados e discussões, apresenta os resultados e discussões do presente 
trabalho. 
 
 
20 
O capítulo 6, Conclusão, apresenta as conclusões realizadas para os principais resultados 
obtidos. Por último são apresentados os próximos passos para continuidade do trabalho. 
 
 
2. EVAPORADORES E CONDENSADORES 
2.1 Introdução 
Para realização do modelo de um sistema de compressão de vapor é fundamental que se 
conheça bem os fenômenos de transferência de calor envolvidos. Sabe-se que os coeficientes de 
transferência de calor dependem das propriedades termodinâmicas, de transporte, dos parâmetros 
geométricos e do estado de conservação do equipamento. Durante os cálculos, considera-se que todos os 
equipamentos funcionam corretamente e apresentam estado de conservação semelhante ao de um 
equipamento novo. Assim, não se busca quantificar alterações no coeficiente de transferência de calor em 
um trocador de calor devido por exemplo.à corrosão ocorrida no equipamento. 
2.2 Tipos de evaporadores e condensadores 
Existem diversos tipos de evaporadores e condensadores. O objetivo deste subitem é 
classificar e descrever sucintamente os principais tipos utilizados. 
2.2.1 Evaporadores 
Evaporadores de expansão seca 
Evaporadores de expansão seca (ou direta) são aqueles em que a quantidade de fluido 
refrigerante é limitada para que este se torne vapor superaquecido em seu interior, de modo que o 
compressor tenha contato, somente, com a fase vapor do refrigerante. 
Para assegurar a evaporação completa de refrigerante permite-se um superaquecimento de 
5,5ºC, o que siginifica em torno de 10 a 20% da área superficial do evaporador (Dossat, 2004). O controle 
de fluxo empregado é geralmente do tipo válvula termostática ou tubo capilar. 
 
 
 
22 
Os evaporadores de expansão são, em geral, mais simples que o tipo inundado ou de 
sobrealimentação líquida. São também menos dispendiosos no custo inicial, são mais compactos e requerem 
recarga em menor freqüência. Dentre os evaporadores de expansão seca, pode-se ainda classificá-los em: 
evaporador de tubo liso, evaporador de tubos aletados, evaporador de superfície de placas e evaporadores de 
tubos coaxiais. 
Evaporadores de inundação 
Os evaporadores de inundação operam com fluido refrigerante em fase líquida em toda 
tubulação, garantindo coeficiente de transferência de calor alto em toda a sua superfície de troca. O 
evaporador inundado é composto basicamente por um coletor, que separa o fluido refrigerante nas fases 
líquidas e vapor, e pela superfície de troca. O fluido na fase de vapor é levado pela parte superior do coletor 
ao compressor. Ao contrário do que ocorre com o evaporador de expansão seca, não é necessário que o 
fluido se torne vapor superaquecido, uma vez que o líquido é impedido de entrar em contato com o 
compressor devido à força exercida pela gravidade. 
Evaporadores de sobrealimentação 
O evaporador de sobrealimentação líquida possui como característica principal o fato de 
possuir grande quantidade de fluido refrigerante na fase líquida em comparação a quantidade de vapor. 
O evaporador de sobrealimentação líquida é composto por um coletor, assim como o 
evaporador inundado. Define-se como taxa de recirculação a razão entre a quantidade de fluido total em 
massa e a quantidade de fluido no estado de vapor saturado em massa. Assim, uma taxa de recirculação de 7 
significa que existem seis partes de fluido no estado líquido e uma parte no estado vapor. Observa-se que a 
taxa de recirculação pode ser igual a 7 para fluidos como, por exemplo, a amônia e 2 para fluidos como o 
R12 e R22. 
Os evaporadores de sobrealimentação são comuns em sistemas de evaporadores múltiplos. 
 
 
23 
2.2.2 Condensadores 
Condensadores a ar 
Este tipo de condensador emprega o ar como fluido secundário no processo de transferência de 
calor. Condensadores a ar são utilizados em pequenas e médias aplicações e onde não houver 
disponibilidade de água. A faixa de capacidade mais comum está entre 7 kW e 352 kW, sem considerar as 
montagens em paralelo. 
A temperatura de condensação deve estar entre 11ºC e 15ºC superior a temperatura de bulbo 
seco do ar que entra no condensador. A temperatura do ar que deixa o condensador deve estar entre 3,5ºC e 
5,5ºC inferior a temperatura de condensação. Deve-se evitar que a temperatura de condensação supere 55ºC, 
sendo recomendado 48ºC para temperatura de evaporação de 0ºC e 43 ºC para temperaturas de evaporação 
inferiores a 0ºC. 
Condensadores a água 
Este tipo de condensador emprega a água como fluido secundário. Dentre os mais utilizados, 
destaca-se o condensador duplo tubo, condensador carcaça e serpentina, condensador carcaça e tubos e o 
condensador de placas. O condensador duplo tubo é composto de tubos coaxiais, onde a água circula no 
tubo interior e o refrigerante no tubo envelope em contracorrente. O condensador carcaça e serpentina é 
constituído de tubos enrolados em forma de serpentina mntados em uma carcaça fechada. A água circula por 
dentro dos tubos enquanto o fluido refrigerante se condensa na carcaça. 
O condensador de carcaça e tubos é constituído de uma carcaça cilíndrica, onde o fluido 
refrigerante circula e de tubos paralelos no interior da carcaça, onde a água circula. O condensador de placas 
é constituído em geral de placas de aço inoxidável montadas paralelamente com um pequeno afastamento. 
A água de resfriamento e o fluido frigorífico circulam alternadamente entre as placas. 
Condensadores evaporativos 
Este tipo de condensador emprega a água e o ar com o fluido secundário. A montagem deste 
condensador é semelhante ao de uma torre de resfriamento, existindo, em seu interior, uma série de tubos 
por onde circula o fluido frigorífico. 
 
 
24 
Estes condensadores são dotados de bicos injetores que pulverizam a água que, por sua vez, 
escoa em contracorrente com o ar. O fluxo da água e do ar ocasiona a condensação do fluido refrigerante no 
interior da tubulação. 
A água escoa, em decorrência de seu peso, para a parte inferior do condensador, onde é 
depositada em um recipiente, sendo ali bombeada para novamente ser pulverizada. 
2.3 Escoamento Monofásico 
2.3.1 Transferência de calor no interior de tubos 
Em escoamentos completamente desenvolvidos de fluidos monofásicos em um tubo circular, 
deve-se calcular o coeficiente de transferência de calor de acordo com a natureza do escoamento: laminar ou 
turbulenta. Para determinação da natureza do escoamento, utiliza-se o número de Reynolds (Re) como 
referencia, conforme equação 2.1. 
 
µ
dG
Re
×
= 2.1 
Onde, G é o fluxo mássico (kg/m².s), d é o diâmetro hidráulico (m) e µ é a viscosidade do 
fluido (Pa.s). 
Para ambos os escoamentos, tem-se que o coeficiente convectivo de transeferência de calor h 
pode ser calculado conforme equação 2.2. 
 d
k
Nuh ×= 2.2 
Onde, k é a condutividade térmica do fluido e d o diâmetro hidráulico da tubulação. 
Assim, para realização do cálculo do coeficiente convectivo, falta apenas determinar o número 
de Nusselt (Nu). A obtenção do número de Nusselt para o escoamento laminar e turbulento serão abordadas 
a seguir. 
 
 
25 
Escoamento Laminar 
O Escoamento laminar ocorre para valores de Reynolds inferiores a 2300. Para um tubo 
circular, caracterizado por fluxo térmico superficial uniforme, o número de Nusselt tem valor igual a 4,36. 
Considerando a temperatura superficial constante, obtém-se o valor de 3,66 para o número de Nusselt. 
Sempre se optará pelo coeficiente que irá gerar amenor massa frigorífica no sistema, de forma a privilegiar 
a minimização de carga aderida ao mesmo. 
O vapor superaquecido está presente na saída do evaporador e na entrada do condensador. 
Sabendo-se que o vapor possui baixa massa específica, será escolhido o menor número de Nusselt (Nu = 
3,66), para que este estado perdure pelo maior trecho possível. Isto se deve ao fato da fase bifásica, que 
possui maior massa específica, ser obtida pela subtração entre o trecho total e o trecho monofásico. 
O mesmo raciocínio se aplica ao trecho com líquido comprimido, que ocorre somente no 
condensador. Será escolhido o maior número de Nusselt (Nu = 4,36), para que este estado perdure o menor 
trecho possível. Assim, o trecho bifásico, com menor massa específica, irá possuir a maior importância. 
Escoamento turbulento 
Considera-se que o escoamento turbulento tem início com o valor de Reynolds de 2300, apesar 
de serem necessários valores superiores a 10000 para se obter um escoamento totalmente turbulento. A 
equação 2.3 apresenta a expressão para obtenção do número de Nusselt para escoamentos turbulentos. 
 
n8,0 PrRe023,0Nu ××= 2.3 
Onde, Re é o número de Reynolds e Pr é o número de Prandtl. Sabe-se que n = 0,4 quando a 
parede está a uma temperatura superior a do fluido e n = 0,3 quando a parede está a uma temperatura 
inferior a do fluido. 
2.3.2 Transferência de calor no exterior de tubos 
Para o cálculo do coeficiente de transferência de calor no exterior de tubos deve-se utilizar 
metodologia específica para cada tipo de evaporador e condensador. Uma vez que este trabalho trata de 
evaporadores de expansão seca, será somente apresentada a metodologia de cálculo para os evaporadores de 
 
 
26 
tubos aletados, de tubos coaxiais e de superfícies de placas. No caso de evaporadores de tubos coaxiais, 
deve utilizar o método discutido na seção 2.3.1. No caso de evaporadores de tubos aletados e de superfícies 
de placas utiliza-se metodologia conforme descrito em Incropera (1998). 
Evaporador e condensador ar-ar com tubos aletados 
Para realizar o cálculo do coeficiente de transferência de calor por convecção do lado externo a 
tubulação utiliza-se a equação 2.5 (Incropera, 1998). 
 
ext
arm
máx,D12 d
k
ReCCh ×××= 
2000 < ReD,máx < 40000 
Pr = 0,7 
2.4 
Onde, C2 é um fator dependente do número de fileiras de tubos calculado pela equação 2.5 
(Incropera, 1998), C1 é obtido pelas equações 2.6 e 2.8, m é obtido pelas equações 2.7 e 2.9, ReD,máx é obtido 
pela equação 2.10, kar é a condutividade térmica e dext o diâmetro externo da tubulação. 
 
 
27 
 
 
2C =1 
ENLD2NLC3LB4NLA2C +×+××+×= 
NL > 10 
NL < 10 
2.5 
Tubos alinhados: Tubos desalinhados: 
 
A = 0,000107808857809033 
B = -0,00184472934472169 
C = 0,00408993783990397 
D = 0,0777091427091641 
E = 0,597777777776571 
A = -0,000457459207458211 
B = 0,0109252784252529 
C = -0,0944764957263269 
D = 0,369140766640362 
E = 0,356111111110204 
Onde, NL é o número de fileiras de tubos. 
A equação 2.6 (Incropera, 1998) apresenta as expressões para o cálculo do coeficiente C1 para 
tubos alinhados. 
 
 
28 
 
 C
d
SB
d
SAC
ext
T
ext
T +





×+





×=
2
1 
2.6 
 
3 ≥ ST ≥ 1,25 
3 ≥ SL ≥ 1,25 
 
χβα +





×+





×=
ext
L
ext
L
d
S
d
SA
2
 χβα +





×+





×=
ext
L
ext
L
d
S
d
SB
2
 
χβα +





×+





×=
ext
L
ext
L
d
S
d
SC
2
 
α = -0,12422726326743 
β = 0,363405730142214 
χ = - 0,091458036767257 
α = 0,551761859174473 
β = - 1,54965872493931 
χ = 0,182740951786342 
α = -0,585629219562955 
β = 1,72228073673257 
χ = -0,0344660332986388 
A equação 2.7 apresenta as expressões para o cálculo do coeficiente m para tubos alinhados 
(Incropera, 1998). 
 
 
29 
 
 C
d
S
B
d
S
Am
ext
T
2
ext
T +×+×= 2.7 
 
3 ≥ ST ≥ 1,25 
3 ≥ SL ≥ 1,25 
 
χd
S
βd
S
αA
ext
L
2
ext
L +×+×= χd
S
βd
S
αB
ext
L
2
ext
L +×+×= χd
S
βd
S
αC
ext
L
2
ext
L
+×+×= 
α = 0,0318168574401683 
β = - 0,0844495317377802 
χ = - 0,000765175164752628 
α = -0,117516198404446 
β = 0,227040846340642 
χ = 0,244295782171325 
α = 0,118322996878258 
β = - 0,233299916753411 
χ = 0,34830433923 
A equação 2.8 apresenta as expressões para o cálculo do coeficiente C1 para tubos 
desalinhados. 
2
TLS∆F
2
extd
LS
TLS∆E
extd
LS2
TLS∆D
extd
LS
TLS∆C
2
TLS∆BTLS∆A1C ×+××+××+××+×+×=
=
extd
LS
extd
TS
TLS∆ 
3 ≥ ST ≥ 1,25 
3 ≥ SL ≥ 1,25 
2.8 
A = -2.97612654937345 
B =0.54231345009466 
C = 3.10098689277830 
D = -0.28698334490106 
E = -0.78739632088714 
F = -0.01657551622101 
 
A equação 2.9 apresenta as expressões para o cálculo do coeficiente m para tubos desalinhados. 
 
 
30 
d
2
TLS∆F
2
extd
LS
TLS∆E
extd
LS2
TLS∆D
extd
LS
TLS∆C
2
TLS∆BTLS∆Am ××+××+××+××+×+×=
=
extd
LS
extd
TS
TLS∆ 
3 ≥ ST ≥ 1,25 
3 ≥ SL ≥ 1,25 
2.9 
A = 0.26065545 
B =-0.0284035 
C = -0.285688192 
D = 0.011485778 
E = 0.076533304 
F = 0.00566688 
 
A equação 2.10 apresenta a expressão para o cálculo do número de Reynolds ReD,máx. 
 
µ
dVρ
Re extmáxmáx,D
××
= 40000 ≥ ReD,máx ≥ 2000 2.10 
Onde, ρ é a massa específica do ar, Vmáx é a velocidade máxima do ar, dext o diâmetro externo 
da tubulação e µ a viscosidade do ar. 
Considerando uma tubulação de diâmetro externo igual a 10mm, com a massa específica do ar 
igual a 1,22kg/m³ e viscosidade de 18.10-6 Pa.s, observa-se que a equação 2.10 é valida para uma faixa de 
velocidades entre 0,3m/s a 6m/s. 
Evaporador de superfícies de placas 
As correlações para determinação do coeficiente de transferência de calor em placas verticais, 
sujeito a convecção livre, é utilizado em evaporadores de superfície de placas, em refrigeradores 
domésticos, para cálculo do coeficiente global de transferência de calor. A metodologia de cálculo destas é 
descrita em Incropera (1998). 
Para determinação do número de Nusselt, a mesma formulação da equação2.11 é utilizada para 
todas as configurações de placas do freezer. 
 
nRa.auN = 2.11 
 
 
31 
Onde Ra é o número de Rayleigh, definido como: 
 
να
L).TT.(β.g
Ra
3
sup ∞
= 
2.12 
Onde, β é coeficiente de expansão térmica, Tsup é a temperatura da superfície, T∞ a temperatura 
ambiente, L é o comprimento característico da superfície, ν e α apresentam as difusividades de momento e 
térmica. 
Os fatores a e n da equação 2.11 são apresentados conforme seu estado ser laminar ou 
turbulento e conforme a superfície for de placa horizontal ou vertical, conforme TABELA 2.1. 
TABELA 2.1 – Valores de n e a para cálculo do número de Nusselt em evaporadores de geladeira. 
Condição necessária Tipo de placa a n 
104 ≤ RaL ≤ 107 0,54 0,25 
107 ≤ RaL ≤ 1011 
Superfície superior 
0,15 0,33 
105 ≤ RaL ≤ 1010 Superfície inferior 0,27 0,25 
Regime Laminar 0,59 0,25 
Regime turbulento 
Superfície vertical 
0,10 0,33 
Condensador de tubos e arames 
A correlação utilizada para cálculo do coeficiente de transferência de calor em um condensador 
de tubos e arames foi proposta por Hermes (2007). 
 
08,0
4
49,0
3
28,0
2
6,0
10 π.π.π.π.68,5π = 2.13 
Onde os grupos de admensionais estão dispostos na Equação2.14: 
 
 
 
 
32 
 
rr0 h/)hh(π = 
)AA/(Aπ wtw1 += 
extextt2 d/)dp(π = 
extww3 d/)dp(π = 
avgsup4 T/)TT(π ∞= 
2.14Onde h é o coeficiente de transferência de calor convectivo, hr o coeficiente de transferência de 
calor por radiação, Aw a área dos arames, At a área dos tubos, pt o passo entre tubos, pw o passo entre 
arames, dext o diâmetro dos tubos, dw o diâmetro dos arames, Tsup é a temperatura média do condensador, T∞ 
a temperatura do ar e Tavg a temperatura média entre a superfície do condensador e da temperatura do ar. 
2.3.3 Perda de pressão 
Embora o modelo para o cálculo de inventários em sistemas de refrigeração desenvolvido neste 
trabalho não tenha levado em conta a perda de pressão nos trocadores de calor, é possível, futuramente, 
alterar a rotina de cálculo nesse sentido, a fim de aumentar a precisão na determinação da carga de 
refrigerante dos sistemas. Por isso, opta-se em apresentar um compêndio também sobre esse tema. 
Para o fluido em um escoamento completamente desenvolvido em um tubo, a perda de carga 
pode ser obtida pela equação 2.15. 
 
2t
F Gυd
Lf
2
1
P∆ ××××= 2.15 
Onde, L é o comprimento da tubulação, d o diâmetro interno da tubulação , υ o volume 
específico do fluido e G o fluxo mássico do escoamento . O coeficiente de perda de carga f é obtido de 
acordo com a natureza do escoamento: laminar, de transição ou turbulenta. 
Para o escoamento laminar, o coeficiente de perda de carga pode ser obtido pela equação 2.16. 
 
 
33 
 
Re
64f = 3103,2Re ×≤ 2.16 
Para o escoamento em regime de transição, o coeficiente de perda de carga pode ser obtido pela 
equação 2.16. 
 25,0Re
316,0f = 43 102Re103,2 ×≤≤× 2.17 
Para o escoamento em regime turbulento, o coeficiente de perda de carga pode ser obtido pela 
equação 2.18. 
 
[ ] 264,1log(Re)82,1f ×= 410Re ≥ 2.18 
2.3.4 Cálculo da massa 
O cálculo da massa em um escoamento monofásico (MEM) depende volume ocupado e da 
massa específica envolvida. 
Assim, a massa é obtida conforme equação 2.19: 
 EMEMEM VρM ×= 2.19 
 
Onde, ρEM é a massa específica do fluido e VEM é o volume ocupado por este. A carga de 
refrigerante está ligada ao desempenho do sistema. Revellin (2009) afirma que existe um valor máximo do 
coeficiente de performance para um certo valor de massa de fluido refrigerante. 
Revellin (2009) discute a respeito das consequências de se ter falta ou excesso de massa 
refrigerante no comportamento do sistema. Pouca carga causa drenagem de fluido do condensador para o 
evaporador que inicialmente tem como conseqüência uma redução do grau de subresfriamento e uma 
 
 
34 
alimentação bifásica deficiente no evaporador. O excesso de carga refrigerante somente influencia o 
condensador, reduzindo a área para condensação. 
2.4 Escoamento Bifásico 
2.4.1 Transferência de calor 
Ebulição 
Addoms (1956) apresentou um estudo referente aos mecanismos de transferência de calor por 
ebulição em tubos verticais, indicando que o coeficiente de transferência poderia ser calculado pela equação 
2.20. A equação de Addoms faz uso do parâmetro do Martinelli, determinado pela equação 2.21 
 
l
n
dp α.χ.Cα = 2.20 
 
125,0
υ
l
5,0
l
υ
875,0
µ
µ
ρ
ρ
x
x1
χ = 2.21 
Onde C e n tem valor de 3,5 e 0,5 respectivamente, x é o título, ρl e ρv é a massa específica do 
líquido e do vapor saturado, µl e µv é a viscosidade do líquido e do vapor saturado. O coeficiente αl é 
calculado a partir da equação de Dittus-Boelter, considerando que o fluido está na fase líquida saturada e 
utilizando o número de Prandtl igual a 0,3. Chadock (1966) obteve os valores de C = 3,0 e n = 0,67 para 
tubos horizontais com R12. 
Chen (1966) equacionou o coeficiente de transferência de calor por ebulição no interior de 
tubos verticais, conforme pode ser observado na equação 2.22. 
 
ebcdp SF ααα ×+×= 
1001,0 ≤≤ χ 
54 104,3Re104,1 ×≤≤× dp 
2.22 
 
 
35 
Onde, αc representa a contribuição da ebulição convectiva e αeb a parcela referente a ebulição 
nucleada. O aumento do coeficiente de transferência de calor αc devido a ebulição convectiva é dado pelo 
fator F. A supressão do coeficiente de ebulição nucleada αeb é o fator S. 
O coeficiente αc é calculado com o número de Reynolds do fluido no estado líquido pela 
equação 2.23. 
 
l
l µ
d)x1(G
Re
××
= 2.23 
O coeficiente αeb é calculado pela equação 2.24, de Forster e Zuber (1974). 
 
75,0
SAT
24,0
SAT24,0
v
24,0
lv
29,0
l
5,0
49,0
l
45,0
pl
79,0
l
eb P∆T∆
ρhµσ
ρck
00122,0α ××
×××
××
×=
 
2.24 
Onde, kl é a condutividade térmica, cpl é o calor específico, ρl a massa específica, µl é a 
viscosidade do fluido no estado líquido saturado; hlv é a diferença entre a entalpia do vapor saturado e do 
líquido saturado; ρv é a massa específica do fluido no estado vapor saturado; ∆Tsat é a diferença entre a 
temperatura de saturação do fluido e a temperatura da parede e ∆Psat é a diferença da pressão do vapor 
saturado correspondente a estas temperaturas. 
A equação 2.25 apresenta as equações propostas para o cálculo do coeficiente F. 
 1=F 
736,0
213,0
χ
1
35,2F +×= 
1,01 <
χ
 
1,0
χ
1 ≥ 
2.25 
A equação 2.26 apresenta as equações propostas para o cálculo do coeficiente S 
 
 
36 
 
( ) 12,125,1l6 FRe1053,21
1
S
×××+
= 
 
2.26 
Hsieh e Wen (1995) realizaram estudos com R114 em tubos horizontais e propuseram 
expressões para obtenção dos fatores F e S. 
 
8,0
χ
1
81,11F ×+= 
02,1
dp
5 Re102,11
1
S
××+
= 
 
2.27 
Condensação 
Chato (1962) propôs uma correlação para cálculo do coeficiente médio de transferência de 
calor por condensação de um fluido no interior de um tubo. 
 ( )( )×× ×××××= supvl
3
llvvll
cond TTdµ
khgρρρ
5553,0h
 
35000
µ
Gd
v
vint <
×
 
2.28 
Onde, Tv é a temperatura do fluido e Tsup a temperatura da parede. 
Shah apresentou a correlação para cálculo do coeficiente de transferência de calor por 
condensação no interior de tubos horizontais, verticais e inclinados. 
( ) ( )××+×××××= 38,0
crit
sat
04,076,0
8,04,0
l
8,0
l
l
cond
P
P
x1x8,3
x1Pr
µ
dG
d
k
023,0h 2.29 
 
 
37 
Onde, Pcrit é a pressão crítica do fluido refrigerante. 
2.4.2 Perda de pressão 
O modelo de fases separadas de Lockhart e Martinelli (1949) indica que a perda de pressão 
pode ser calculada por alguma das expressões abaixo: 
d2
φ)x1(Gυf
z∆
P∆ 2lo
22
llo
×
××××
=
 
d2
φxGυf
z∆
P∆ 2vo
22
vlv
×
××××
=
 
2.30 
Assim, os parâmetros φlo2 e φvo2 são obtidos pela equação 2.31 
2
2
lo
χ
1
χ
C
1φ ++= 
22
lo χχC1φ +×+= 
2.31 
Os valores de C dependem da natureza do escoamento da parte líquida e da parte vapor, 
podendo ser obtido pela TABELA 2.2. 
TABELA 2.2 – Valores de C para as combinações de escoamento da fase líquida e vapor. 
Regime de escoamento da fase líquida Regime de escoamento da fase líquida C 
Turbulento Turbulento 20 
Laminar Turbulento 12 
Turbulento Laminar 10 
Laminar Laminar 5 
 
 
 
38 
Revellin (2009) realizou estudo comparativo entre as metodologias de cálculo de perda de 
pressão para fluidos bifásicos, concluindo que o modelo de Moreno Quibén e Thome (2007) foi o que mais 
se aproximou dos dados experimentais. 
A expressão utilizada por Revellin está apresentada na equação 2.32. 
2
vaziov
22
αρD
xfG2
dz
dP
××
×××
=
 
2.32 
Esta equação considera que o escoamento, quando bifásico, tem comportamento anular. 
Moreno Quibén e Thome (2007) descrevem vários tipos de escoamento bifásico e o seu equacionamento 
para perda de pressão, porém, a descrição destes desvia-se do objetivo deste trabalho. A letra α faz menção 
a fração de vaziodo escoamento, que será discutida na seção 2.4.3. O fator f é obtido pela equação 2.33. 
( ) ( ) 034,02ll08,0
l
v
4,0
vl
2
vazio
22,1
vazio
σ
duρ
µ
µ
σ16
ρρα1dg
4
α1
67,0f ××
×
×××
×= 2.33 
Onde, ul é a velocidade do escoamento no estado líquido. 
2.4.3 Cálculo da massa/Fração de vazio 
Para o cálculo da massa de um fluido em estado bifásico no interior de um tubo de seção 
circular, utiliza-se a equação 2.34. 
( )[ ]∫ ××+×××= L
0
vaziolvaziov
2
dzα1ραρ4
d
πM 2.34 
Onde α a é a fração de vazio no trecho de tubulação infinitesimal dz. A massa específica do 
vapor saturado (ρv) e do líquido saturado (ρl) é bem conhecida. Assim, faz-se apenas necessário o 
desenvolvimento de uma metodologia para cálculo da fração de vazio. 
 
 
39 
Hermes (2001) avaliou diversas correlações para cálculo da fração de vazio, classificando-as 
entre: 
• Modelos homogêneos e modelos baseados na taxa de deslizamento (Rigot 1973, Zivi 
1964 e Smith 1969); 
• Modelos baseados no parâmetro de Lockhart-Martinelli (Domanski & Didion 1983); 
• Modelos baseados no fluxo de massa (Tandon et al. 1985, Premoli et al. 1971, 
Hughmark 1962); 
Hermes concluiu que a correlação de Hughmark concedia os melhores resultados. Revellin 
(2009) indicou ser a correlação de Hughmark uma das melhores correlações existentes, sendo a mais 
utilizada. 
A correlação de Hughmark para a determinação da fração de vazio foi descrita por Machado 
(1998) como sendo: 
 
homH
l
v
H
vazio α).z(K
ρ
ρ
.
x
x1
1
)z(K
α =
+
= 
8/12
homhomvint
6/1
lvl
int
)α1.(α.ρ
x.G
.d.g
1
.)µµ.(αµ
Gd
z
+
= 
2.35 
Onde KH é uma função discretizada dependente de z. Observa-se que o cálculo se torna 
iterativo, uma vez que a função z é dependente da fração de vazio calculada. 
TABELA 2.3 – Valores de KH em função de z. 
z 1,3 1,5 2,0 3,0 4,0 5,0 6,0 7,0 10,0 15,0 20,0 40,0 70,0 130,0 
KH 0,185 0,225 0,325 0,49 0,605 0,675 0,72 0,767 0,78 0,808 0,83 0,88 0,93 0,98 
A correlação de Zivi também foi utilizada neste trabalho, para a determinação da fração de 
vazio. Esta pode ser calculada conforme Equação2.36: 
 
 
40 
3
v
l
l
v
vazio
ρ
ρ
.
ρ
ρ
.
x
x1
1
1
α
+
=
 
2.36 
Hermes (2001) conclui que apesar da maioria dos trabalhos utilizarem a correlação de Zivi para 
a simulação de refrigeradores, a correlação de Hughmark é a mais indicada para determinação do inventário 
e o modelo homogêneo para perda de carga. 
O modelo homogêneo, para determinação da fração de vazio, está equacionado na Equação2.37 
l
v
ρ
ρ
.
x
x1
1
1
α
+
=
 2.37 
 
 
41 
3. MODELO DE CÁLCULO DO INVENTÁRIO 
Neste capítulo será apresentado, em linhas gerais, a metodologia de cálculo realizada. Este 
é composto de diversos algorítimos, que, em conjunto, podem ser usados para determinar a massa em 
todos os componentes de um sistema de refrigeração por compressão de vapor. 
Para desenvolvimento do programa utilizou-se de diversos recursos, tais como: 
• Banco de dados: contido na estrutura, contendo coeficientes e subrotinas para 
determinação das propriedades termodinâmicas; 
• Correlações de transferência de calor dispostas na literatura; 
• Algorítimo de processo iterativo: envolvendo a determinação da fração de vazio; 
• Algorítimo de segmentação dos tubos (malha): refinamento de malha para 
convergência dos resultados de massa no evaporador e condensador. 
O programa foi desenvolvido em Delphi e o banco de dados das propriedades 
termodinâmicas foi obtido do software EES. 
3.1 Metodologia de cálculo do Programa 
Para determinação da massa em componentes tais como compressores, mecanismos de 
expansão de linhas de líquido e vapor de baixa e alta pressão, utiliza-se das propriedades 
termodinâmicas e do volume correspondente a estas regiões. 
Para os trocadores de calor, como evaporadores e condensadores, o método de 
determinação da massa é diferenciado. O evaporador e o condensador de tubos aletados e de tubos 
coaxiais (duplo tubo) têm como base teórica os fundamentos descritos por Incropera (1998). Diferentes 
abordagens para o cálculo do coeficiente de transferência de calor em evaporadores de placas foram 
discutidas por Laguerre (2003). Melo (2009) discutiu a respeito do equacionamento para cálculo do 
coeficiente de transferência de calor em tubos-e-arames, propondo por fim uma nova correlação. 
 
 
42 
 A partir destes coeficientes pode-se obter o comprimento da região monofásica (Lmon), 
conforme Equação 3.1. 
extml.mon
.mon
mon d.π.T∆.U
Q
.L = 3.1 
Onde Qmon é a capacidade de troca de calor na região monofásica, ∆Tml é a diferença de 
temperatura média logarítimica e dext o diâmetro externo do tubo. 
Assim, tendo acesso ao comprimento da região monofásica, o comprimento da região 
bifásica é obtido pela subtração do comprimento total (que por sua vez é um dado de entrada). 
A massa dos trocadores de calor é obtida a partir dos comprimentos de tubo determinados, 
com o auxílio da correlação de Hughmark (para cálculo da fração de vazio) e das propriedades 
termodinâmicas anteriormente determinadas. 
A FIGURA 3.1 apresenta um fluxograma do algorítimo para determinação da massa. O 
fluxograma descreve a sequência do método superficialmente, uma vez que o algorítimo de cálculo é 
muito extenso. 
 
 
 
43 
D
ad
os
 
de
 
en
tra
da
s 
ge
ra
is
:
Te
m
pe
ra
tu
ra
 
am
bi
e
n
te
,
 
ca
pa
ci
da
de
 
de
 
tro
ca
 
n
o
 
e
va
po
ra
do
r,
 
Te
m
pe
ra
tu
ra
 
de
 
e
va
po
ra
çã
o
,
 
te
m
pe
ra
tu
ra
 
de
 
co
n
de
n
sa
çã
o
,
 
G
ra
u
 
de
 
su
pe
ra
qu
ec
im
e
n
to
 
e
 
e
 
gr
a
u
 
de
 
su
br
es
fri
a
m
en
to
.
 
D
et
e
rm
in
aç
ão
 
da
s 
pr
op
rie
da
de
s 
Te
rm
o
di
n
âm
ic
as
 
e
 
do
 
ci
cl
o
 
te
rm
od
in
âm
ic
o
Co
m
pr
es
so
r
Li
n
ha
 
de
 
va
po
r 
de
 
a
lta
 
pr
e
ss
ão
Co
n
de
n
sa
do
r
Li
n
ha
 
líq
u
id
o 
de
al
ta
 
pr
es
sã
o
M
ec
a
n
is
m
o
 
de
 
e
xp
a
n
sã
o
Li
n
ha
 
de
 
líq
u
id
o 
de
 
ba
ixa
 
pr
e
ss
ão
Ev
ap
o
ra
do
r
Li
n
ha
 
de
 
va
po
r 
de
 
ba
ixa
 
pr
es
sã
o
Pr
o
pr
ie
da
de
s 
ge
om
ét
ric
as
M
as
sa
Co
ef
ic
ie
n
te
 
de
 
tra
n
sf
e
n
ci
a
 
de
 
ca
lo
r 
in
te
rn
o 
da
 
re
gi
ão
 
m
o
n
o
fá
si
ca
 
e
 
e
xt
e
rn
o Co
m
pr
im
en
to
 
da
re
gi
ão
 
M
o
n
o
fá
si
ca
Pr
o
pr
ie
da
de
s 
ge
o
m
ét
ric
as
Co
m
pr
im
e
n
to
 
da
 
R
eg
iã
o 
bi
fá
si
ca
Co
rr
e
la
çã
o 
de
 
H
u
gh
m
ar
k
D
ad
os
 
de
 
en
tra
da
s 
ge
ra
is
:
Te
m
pe
ra
tu
ra
 
am
bi
e
n
te
,
 
ca
pa
ci
da
de
 
de
 
tro
ca
 
n
o
 
e
va
po
ra
do
r,
 
Te
m
pe
ra
tu
ra
 
de
 
e
va
po
ra
çã
o
,
 
te
m
pe
ra
tu
ra
 
de
 
co
n
de
n
sa
çã
o
,
 
G
ra
u
 
de
 
su
pe
ra
qu
ec
im
e
n
to
 
e
 
e
 
gr
a
u
 
de
 
su
br
es
fri
a
m
en
to
.
 
D
et
e
rm
in
aç
ão
 
das 
pr
op
rie
da
de
s 
Te
rm
o
di
n
âm
ic
as
 
e
 
do
 
ci
cl
o
 
te
rm
od
in
âm
ic
o
Co
m
pr
es
so
r
Li
n
ha
 
de
 
va
po
r 
de
 
a
lta
 
pr
e
ss
ão
Co
n
de
n
sa
do
r
Li
n
ha
 
líq
u
id
o 
de
al
ta
 
pr
es
sã
o
M
ec
a
n
is
m
o
 
de
 
e
xp
a
n
sã
o
Li
n
ha
 
de
 
líq
u
id
o 
de
 
ba
ixa
 
pr
e
ss
ão
Ev
ap
o
ra
do
r
Li
n
ha
 
de
 
va
po
r 
de
 
ba
ixa
 
pr
es
sã
o
Pr
o
pr
ie
da
de
s 
ge
om
ét
ric
as
M
as
sa
Co
ef
ic
ie
n
te
 
de
 
tra
n
sf
e
n
ci
a
 
de
 
ca
lo
r 
in
te
rn
o 
da
 
re
gi
ão
 
m
o
n
o
fá
si
ca
 
e
 
e
xt
e
rn
o Co
m
pr
im
en
to
 
da
re
gi
ão
 
M
o
n
o
fá
si
ca
Pr
o
pr
ie
da
de
s 
ge
o
m
ét
ric
as
Co
m
pr
im
e
n
to
 
da
 
R
eg
iã
o 
bi
fá
si
ca
Co
rr
e
la
çã
o 
de
 
H
u
gh
m
ar
k
 
FIGURA 3.1– Fluxograma do algorítimo de cálculo do modelo. 
 
 
 
44 
Considerou-se uma variação linear do título com o comprimento da tubulação, para 
realização da etapa Cálculo da fração de vazio. Conforme observado no ciclo termodinâmico o 
evaporador possui uma região monofásica (região de vapor superaquecido) e o condensador possui duas 
(região de desuperaquecimento e de líquido comprimido). Assim, o cálculo dos trocadores de calor 
(condensador e evaporador) diferem entre si tanto pelas equações para cálculo dos coeficientes de 
transferência de calor, quanto por singularidades existentes nas fases do fluxo mássico. 
 
 
 
 
45 
4. APRESENTAÇÃO DO SOFTWARE 
O software desenvolvido apresenta layout inicial conforme FIGURA 5.2. Observa-se que 
este possui as seguintes abas “Elementos do sistema”, “Dados de entrada”, “Ciclo Termodinâmico” e 
“Propriedades termodinâmicas”. Os “Dados de entrada” permitem que sejam atribuídos os dados de 
entrada iniciais, considerando o sistema em regime permanente. 
 
FIGURA 4.1– Tela principal do software – Dados de entrada. 
A partir do fornecimento dos “Dados de entrada” são determinadas as propriedades 
termodinâmicas dos pontos numerados de 1 a 8 – indicados na FIGURA 4.2. 
 
 
46 
 
1. Entrada do evaporador 5. Saída do compressor (η = 100%) 
2. Vapor saturado – Evaporador 6. Vapor saturado – Condensador 
3. Vapor superaquecido – Entrada do compressor 7. Líquido saturado – Condensador 
4. Saída do compressor (η = 70%) 8. Líquido comprimido - condensador 
FIGURA 4.2 – Tela principal do software – Ciclo termodinâmico . 
Todos os pontos (estados termodinâmicos) indicados na FIGURA 4.2 tem suas 
propriedades termodinâmicas explicitadas na aba “Propriedades termodinâmicas”. As propriedades 
termodinâmicas das substâncias R12, R134a e R22 foram retiradas do software EES (Engineering 
Equation Solver) e implementadas no programa conforme indicado por Cleland (1986). Cada 
propriedade possui uma subrotina contida em uma Function do Delphi. Assim, o programa é auto-
suficiente na obtenção destas propriedades. 
Através da FIGURA 4.3 observa-se que para os pontos nomeados de “Ponto 1” a “Ponto 
8”, encontram-se as propriedades Temperatura, Pressão, Entalpia, Entropia, Condutividade térmica, 
Viscosidade, Prandtl e Massa específica. A Entalpia e a entropia são iguais a zero para líquido saturado 
a -40ºC, conforme a ASHRAE. 
 
 
47 
 
 
 
FIGURA 4.3 – Tela principal do software – Propriedades termodinâmicas. 
Conhecendo o ciclo termodinâmico, devem ser fornecidos os dados dos componentes em 
separado (dados de entrada especificos), como as características geométricas dos trocadores de calor 
(evaporador e condensador), compressor, válvula de expansão e linhas de líquido e vapor. 
A partir da FIGURA 4.4 nota-se que, para cada componente do ciclo termodinâmico – 
esquematizado na forma de um croqui e mumerados de 1 a 8 - existe um botão correspondente 
(localizado na região superior ao croqui) que irá atribuir os dados geométricos de cada componente, e 
que irá determinar sua massa. 
 
 
48 
 
FIGURA 4.4 – Tela principal do software – Elementos do sistema. 
A seguir serão apresentados os componentes do sistema, numerados de 1 a 8, separadamente. 
4.1 Massa no Compressor 
O compressor tem sua massa calculada a partir do fornecimento de sua cilindrada, somado 
a isto, as propriedades termodinâmicas prescritas pelos dados de entrada. A FIGURA 4.5 apresenta o 
layout utilizado na determinação da massa no compressor.` 
 
 
 
49 
 
FIGURA 4.5 – Cálculo da massa no compressor. 
4.2 Massa na linha de vapor de alta pressão 
O segundo passo é calcular a massa da linha de vapor de alta pressão, adicionando a este o 
valor do volume deste trecho e clicando em calcular. 
 
 
50 
 
FIGURA 4.6 – Cálculo da massa na linha de vapor de alta pressão. 
4.3 Condensador 
Dentre os modelos implementados para o cálculo do condensador pode-se citar: 
• Condensador ar-ar, conforme fundamentos descritos por Incropera (1998) – ver FIGURA 4.7. 
• Condensador de tubos coaxiais, conforme fundamentos descritos por Incropera (1998) – ver 
FIGURA 4.8. 
• Condensador do tipo tubos e arames, conforme correlação desenvolvida por Hermes (2009) – 
ver FIGURA 4.9. 
 
 
51 
 
FIGURA 4.7 – Cálculo da massa no condensador ar-ar. 
 
 
52 
 
FIGURA 4.8 – Cálculo da massa no condensador do tipo tubos coaxiais. 
 
 
53 
 
FIGURA 4.9 - Cálculo da massa no condensador do tipo tubos e arames. 
4.4 Massa na linha de líquido de alta pressão 
Para determinação da massa na linha de líquido de alta pressão utiliza-se das propriedades 
termodinâmicas pré-determinadas e do volume desta região. Esta pode ser muito representativa, uma 
vez que é composta de líquido comprimido. A FIGURA 4.10 apresenta que o fornecimento do volume 
desta região é suficiente para determinação da massa, quando utilizado o software. 
 
 
 
54 
 
FIGURA 4.10 – Cálculo da massa na linha de líquido de alta pressão. 
4.5 Massa no dispositivo de expansão 
Para determinação da massa no dispositivo de expansão utiliza-se das propriedades 
termodinâmicas médias entre o ponto de entrada e saída deste componente e de seu volume. Em geral 
esta massa é pouca representativa na somatória final das massas. A partir da FIGURA 4.11 pode-se 
observar que ao se fornecer o volume desta região obtém-se o valor da massa. 
 
 
 
55 
 
FIGURA 4.11 – Cálculo da massa no dispositivo de expansão. 
4.6 Massa na linha de líquido de baixa pressão 
Para determinação da massa nesta região utiliza-se do título de entrada do evaporador, 
obtido a partir do ciclo termodinâmico determinado. A FIGURA 4.12 apresenta que, a partir de algumas 
prorpriedades geométricas, obtém-se o valor da massa para este componente. 
 
 
 
 
56 
 
FIGURA 4.12 – Cálculo da massa no trecho de líquido de baixa pressão. 
4.7 Massa no Evaporador 
Dentre os modelos implementados para o cálculo da massa no evaporador pode-se citar: 
• Evaporador ar-ar, conforme fundamentos descritos por Incropera (1998) – ver FIGURA 4.13. 
• Evaporador de tubos coaxiais, conforme fundamentos descritos por Incropera (1998) – ver 
FIGURA 4.14. 
• Evaporador do tipo tubos e arames, conforme correlação desenvolvida por Laguerre (2004) – 
ver FIGURA 4.15. 
 
 
57 
 
FIGURA 4.13 – Cálculo da massa para o evaporador do tipo ar-ar 
 
 
58 
 
FIGURA 4.14 – Cálculo da massa parao evaporador do tipo tubos coaxiais. 
 
 
 
59 
 
FIGURA 4.15 – Cálculo da massa para o evaporador de placas de um refrigerador 
doméstico. 
4.8 Massa na linha de vapor de baixa pressão 
A linha de baixa pressão, na saída do evaporador, em geral costuma fornecer um valor 
pouco representativo na somatória das massas de um sistema de refrigeração por compressão de vapor. . 
A FIGURA 4.16 apresenta que a partir de algumas prorpriedades geométricas obtém-se o valor da 
massa para este componente 
 
 
 
60 
 
FIGURA 4.16 – Massa na linha de vapor de baixa pressão. 
4.9 Armazenamento dos dados e resultados 
Após a realização de todos os cálculos para os componentes em separado, o software 
permite que seja efetivada a soma das massas, seguindo o caminho: “Resultados” contido no Layout 
principal do software e posteriormente clica-se em “Resumo dos resultados”. A FIGURA 4.17 apresenta 
o Layout deste resumo. “Esta Janela permite que os arquivos sejam impressos ou salvos em extensão 
Acrobat Reader “.pdf”, para arquivamento em papel ou arquivamento eletrônico, respectivamente. 
 
 
61 
 
FIGURA 4.17 – Apresentação do resumo dos resultados da somatória das massas. 
Caso exista a necessidade de arquivamento eletrônico dos dados preenchidos no software, 
para alteração no futuro de algum dado de entrada, pode-se salvar o conteúdo já digitado. Esta 
ferramenta, ilustrada na FIGURA 4.18, permite-se uma economia de tempo para redigitação dos dados 
de entrada. 
 
 
62 
 
FIGURA 4.18 – Arquivamento dos dados de entrada a partir da ferramenta “Salvar”. 
 
 
5. RESULTADOS E DISCUSSOES 
5.1 Metodologia do experimento para validação do programa 
De forma a realizar a validação do software em um refrigerador, foi utilizado um 
refrigerador da marca Cônsul de modelo CRP38ABANA, com volume total de 360l, capacidade do 
freezer de 31l e volume do refrigerador de 312l, com fluido refrigerante R134a. 
É necessário analisar separadamente os componentes do equipamento. Estes foram divididos 
em: evaporador, condensador, compressor, mecanismo de expansão, linha de líquido de baixa pressão, 
linha de líquido de alta pressão (incluindo filtro secador), linha de vapor de baixa pressão. A linha de 
vapor de alta pressão foi incluída no modelo de cálculo da massa no condensador. 
Os dados de entrada necessários são: propriedades geométricas dos componentes, 
temperatura do ambiente refrigerado, temperatura de evaporação, temperatura de condensação, grau de 
superaquecimento, grau de subresfriamento e capacidade de transferência de calor do refrigerador. 
As propriedades geométricas foram determinadas utilizando uma trena, um paquímetro e 
dados fornecidos pelo fabricante. Para obter o comprimento do evaporador utilizou-se a técnica de textura 
com papel e giz de cera (ver FIGURA 5.1). 
 
 
 
 
FIGURA 5.1– Técnica de textura com giz de cëra utilizada para determinação do 
comprimento da região do evaporador. 
A capacidade de transferência de calor foi estimada conforme valores ensaiados pelo 
fabricante. As temperaturas necessárias foram obtidas a partir de um ensaio com o refrigerador em regime 
permanente. A Tab.1 apresenta os dados de entrada obtidos do refrigerador doméstico. 
 
 
65 
TABELA 5.1– Propriedades gerais do refrigerador doméstico. 
Propriedade Unidade Valor 
Temperatura ambiente do refrigerador ºC 0 
Capacidade de transferência de calor BTU/h 420 
Largura do condensador mm 545 
Altura do arame mm 965 
Altura da tubulação mm 965 
Passo entre tubos mm 60,3 
Diâmetro externo dos tubos do condensador mm 5,0 
Diâmetro da tubulação condensador mm 3,6 
Diâmetro dos arames mm 1,5 
Passo entre os arames mm 5,2 
Largura entre arames mm 465 
Comprimento compressor/condensador mm 1275 
Comprimento da tubulação na parede posterior mm 2915 
Comprimento da tubulação na parede inferior mm 2645 
Comprimento da tubulação na parede superior mm 2378 
Diâmetro externo do evaporador mm 7 
Diâmetro interno do evaporador mm 5.8 
Massa indicada pelo fabricante g 100 
 
O GRÁFICO 5.1 apresenta uma curva das temperaturas medidas versus a hora em que a 
medição foi realizada. Como se trata de uma análise em regime permanente utilizou-se os valores da 
temperatura após a estabilização das medições. 
 
 
66 
-11.7
40
37.8
-8
-20
-10
0
10
20
30
40
50
0 20 40 60 80 100 120
Minutos
Te
m
pe
ra
tu
ra
 
m
e
di
da
 
[ºC
] Evaporador 
Condensador 
Líquido Comprimido 
Vapor superaquecido 
 
GRÁFICO 5.1 – Temperaturas, dados de entrada do software, o tempo de medição em 
minutos. 
A temperatura de saída do evaporador foi observada como sendo, em média, 3,7ºC superior à 
temperatura de evaporação. A temperatura de entrada do filtro secador foi, em média, de 2,2ºC inferior à 
temperatura de condensação. A temperatura de evaporação foi de -11,7ºC e a temperatura de condensação 
de 40ºC. A vazão de R134a foi obtida a partir de um balanço de energia no evaporador. 
5.2 Resultados Obtidos 
Devido a importância que o evaporador e o condensador apresentam para a determinação da 
massa no sistema, estes serão analisados em detalhes. 
Análises de teste de malha (número de segmentos de tubos e número de iterações para 
determinação da fração de vazio) foram realizadas para verificar a convergência dos resultados. A 
FIGURA 5.2 apresenta uma ilustração indicando que a pequena divisão de segmentos irá gerar um 
resultado ruim para o valor médio da fração de vazio e para a massa no evaporador e condensador. 
 
 
67 
Fluido refrigerante em 
estado líquido
Tubo
 
FIGURA 5.2– Segmentação dos tubos e o resultado ilustrativo da fração de vazio. 
Nesta análise, o número de segmentos de tubos e o número de iterações para o cálculo da 
fração de vazio são realcionadas com um número chamado de número de refinamento (rn). 
25
1
×=
<
ns
n
m
rn
r
e
 
5.1 
Onde, em é o erro máximo no cálculo da fração de vazio e ns é o número de segmentos de 
tubos. 
Testes de sensibilidade aos dados de entrada foram realizados, de forma a verificar em que 
grau de importância as variáveis afetam o resultado final. 
5.2.1 Análises No Evaporador 
O GRÁFICO 5.2 indica que é necessário um mínimo de 180 unidades do número de 
refinamento para a convergência dos resultados de massa no evaporador. 
 
 
68 
 
GRÁFICO 5.2 – Massa cálculada no evaporador versus o número de refinamento. 
O valor de massa no evaporador varia significativamente quando se altera o número de 
refinamento, sendo igual a 28,3g para 5 unidades e 31,0g para 180 unidades (variação de 9,5%). 
Isto indica que o teste de refinamento de malha é importante para validação da massa no 
evaporador. 
Como observado no GRÁFICO 5.3, ambos os modelos homogêneo e de Zivi apresentam 
grande diferença quando comparado ao modelo de Hughmark. Isto se deve a grande diferença de volume 
específico do líquido e do vapor saturado, tendo em vista a temperatura de evaporação de 0ºC. Para o 
estudo do evaporador, o volume específico do vapor é 149 vezes maior que o volume específico do 
líquido. 
 
 
 
 
 
69 
 
 Número de refinamento = 5 
 
 Número de refinamento = 180 
 
GRÁFICO 5.3 – Fração de vazio versus título no evaporador, considerando 5 e 180 unidades. 
O GRÁFICO 5.3 indica que a curva Hughmark – Média para o número de refinamento igual 
a 5 tem valor igual a 0,873 e para 180 unidades do número de refinamento tem valor igual a 0,862, 
indicando que o aumento da massa calculada é diretamente relacionada a estes resultados. Este valor 
jusitfica a diferença existente entre as massas no evaporador para pequenase grandes unidades do número 
de refinamento. 
O GRÁFICO 5.4 apresenta o teste de sensibilidade da massa no evaporador para as 
temperaturas de entrada do programa. 
 
 
 
 
 
 
 
 
70 
 
(a) Massa Evaporador x Grau de subresfriamento (b) Massa Evaporador x Grau de superaquecimento 
 
(c) Massa Evaporador x Temperatura de condensação (d) Massa Evaporador x Temperatura de evaporação 
 
 (e) Massa Evaporador x Temperatura ambiente 
 
(f) Massa Evaporador x Variação global das temperaturas 
GRÁFICO 5.4 – Teste de sensibilidade da massa no evaporador com as temperaturas de entrada 
do software. 
Observa-se uma variação linear da massa calculada no que se refere ao grau de 
subresfriamento, superaquecimento e temperatura de condensação. O aumento do grau de 
subresfriamento diminui o título de entrada no evaporador, atribuindo maior quantidade de líquido no 
trecho bifásico, aumentando a massa calculada (ver GRÁFICO 5.4-a). O aumento do grau de 
superaquecimento aumenta o comprimento do trecho com vapor superaquecido, diminuindo o trecho com 
fluxo bifásico, acarretando em diminuição da massa no evaporador (ver GRÁFICO 5.4-b). O aumento da 
temperatura de condensação aumenta o título de entrada no evaporador, diminuindo a massa no mesmo 
(ver GRÁFICO 5.4-c). Por outro lado, a variação da massa tem comportamento parabólico quando se 
considera a variação da temperatura ambiente e de evaporação. O aumento da temperatura ambiente 
ocasiona aumento linear da diferença média logarítmica das temperaturas e do coeficiente global de 
transferência de calor da região monofásica, acarretando em diminuição quadrática do comprimento de 
 
 
71 
trecho superaquecido – uma vez que o produto Umon e ∆Tml são proporcionais a diferença da temperatura 
do ambiente refrigerado e a temperatura de evpaoração e inversamente proporcionais ao comprimento da 
região monofásica, aumentando a massa no evaporador da mesma forma. O aumento da temperatura de 
evaporação diminui linearmente a diferença de temperatura média logarítmica e o coeficiente de 
transferência de calor global na região monofásica, originando aumento quadrático do comprimento do 
trecho superaquecido, diminuindo a massa no evaporador igualmente. 
Considerando a faixa de temperaturas analisadas, o parâmetro que apresentou maior 
relevância foi o grau de superaquecimento (3,6g/ºC). 
A variação global das temperaturas foi o segundo parâmetro com maior importância 
(2,8g/ºC). Esta variação é inferior a do grau de superaquecimento devido as inclinações dos gráficos 
oscilarem valores positivos e negativos. A temperatura ambiente e a temperatura de evaporação também 
demonstraram variação relevante (média de 1,41g/ºC e 1,07g/ºC respectivamente). 
A temperatura de condensação e o grau de subresfriamento têm importância inferior aos 
demais parâmetros analisados (0,34g/ºC), no que se refere às análises no evaporador. 
5.2.2 Análises No Condensador 
O GRÁFICO 5.5 apresenta um gráfico da massa calculada no condensador pelo número de 
refinamento. 
 
 
72 
 
GRÁFICO 5.5 – Massa calculada no condensador versus número de refinamento. 
O GRÁFICO 5.5 indica que é necessário um número mínimo de 180 unidades do número de 
refinamento para a convergência dos valores de massa no condensador. Observa-se, também, que o valor 
de massa calculada varia pouco com o número de refinamento, sendo igual a 46,7g para 5 unidades e 
47,0g para 180 unidades (variação de 0,6%). Isto indica que o condensador não exige o mesmo nível de 
refinamento que o evaporador, no que se refere ao cálculo da massa. 
O GRÁFICO 5.6 apresenta dois gráficos da fração de vazio em função do título, para o 
condensador, considerando 5 e 180 unidades do número de refinamento. 
 
Número de refinamento = 5 
 
Número de refinamento = 180 
 
GRÁFICO 5.6 – Fração de vazio em função do título para o condensador. 
 
 
73 
Em comparação aos resultados obtidos no evaporador, observa-se pelo GRÁFICO 5.6 que os 
resultados para o condensador gerado pelo modelo homogêneo e de Hughmark apresentam um menor 
desvio. Esse comportamento é esperado, pois existe uma menor diferença entre o volume específico do 
líquido e do vapor saturado do refrigerante para as pressões mais elevadas que ocorrem no condensador. 
Dessa forma, o fenômeno de deslizamento que existe entre as velocidades das fases líquida e vapor fica 
atenuado, e as frações de vazio fornecidas por todas as correlações aproximam-se do modelo homogêneo. 
Foi realizado, também, um teste de sensibilidade da massa no condensador considerando 
uma variação nas temperaturas, conforme observado no GRÁFICO 5.7. 
 
(a) Massa Condensador x Grau de subresfriamento (b) Massa Condensador x Grau de superaquecimento 
 
(c) Massa Condensador x Temperatura de condensação (d) Massa Condensador x Temperatura de evaporação 
 
 (e) Massa Condensador x Temperatura ambiente 
 
(f) Massa Condensador x Variação global das temperaturas 
GRÁFICO 5.7 – Teste de sensibilidade da massa no condensador com as temperaturas de entrada 
do software. 
 
 
 
74 
Observa-se uma variação linear da massa calculada no que se refere ao grau de 
subresfriamento, superaquecimento e temperatura de evaporação. O aumento do grau de subresfriamento 
aumenta a região monofásica de líquido comprimido, aumentando a somatória da massa calculada (ver 
GRÁFICO 5.7-a). O aumento do grau de superaquecimento aumenta o comprimento do trecho com vapor 
superaquecido, diminuindo o trecho com fluxo bifásico, acarretando em diminuição da massa no 
condensador (ver GRÁFICO 5.7-b). O aumento da temperatura de evaporação diminui o trecho de 
desuperaquecimento, aumentando a massa no condensador (ver GRÁFICO 5.7-d). 
A variação da massa no condensador devido às variações na temperatura de condensação e 
da temperatura ambiente tem comportamento não linear. Conforme se pode observar na FIGURA 5.3 o 
comprimento da região de líquido comprimido e de vapor superaquecido é inferior a de fluido bifásico. 
Porém, para temperaturas inferiores a 40ºC (GRÁFICO 5.7-c) a massa na região monofásica de líquido 
comprimido é preponderante na soma final das massas no condensador. A medida que o coeficiente de 
transferência de calor na região monofásica aumenta (ver FIGURA 5.4) o comprimento da região 
monofásica diminui, fazendo com que a massa da região bifásica se torne preponderante. Assim a curva 
do GRÁFICO 5.7 (c) torna a ter comportamento ascendente. 
Co
m
pr
im
e
n
to
 
da
 
tu
bu
la
çã
o
 
[m
]
Temperatura de condensação [ºC]
Comprimento da região bifásica
Comprimento da região monofásica – líquido comprimido
Comprimento da região monofásica – vapor superaquecido
 
FIGURA 5.3 – Comprimento das regiões de fluido bifásico e monofásico no condensador 
com o aumento temperatura de condensação. 
 
 
75 
Co
m
pr
im
e
n
to
 
da
 
tu
bu
la
çã
o
 
[m
]
Temperatura de condensação [ºC]
Líquido comprimido
Vapor superaquecido
 
FIGURA 5.4 – Coeficiente de transferência de calor do fluido primário na região 
monofásica, variando a temperatura de condensação. 
O coeficiente de transferência de calor global e a diferença de temperatura média 
logarítimica aumentam com o aumento da temperatura (de condensação ou ambiente); devido a este fato, 
os trechos de líquido comprimido e de vapor superaquecido tendem a diminuir, acarretando em aumento 
da massa bifásica; o comportamento da curva do GRÁFICO 5.7-c e do GRÁFICO 5.7-e é tal que existe 
uma massa mínima para determinada temperatura de condensação e temperatura ambiente. 
Considerando a faixa de temperaturas analisadas, o parâmetro que apresentou maior 
relevância foi o grau de subresfriamento (5,6g/ºC).

Outros materiais