Apostila Matematica ColFundamental - 6_8
21 pág.

Apostila Matematica ColFundamental - 6_8


DisciplinaMatemática Básica3.684 materiais51.929 seguidores
Pré-visualização10 páginas
\ufffdPAGE \ufffd
www.ResumosConcursos.hpg.com.br
Apostila: Matemática Básica vol. VI \u2013 por Prof. Paulo Cesar Pfaltzgraff Ferreira
Apostila de Matemática Básica
Assunto: 
MATEMÁTICA BÁSICA
Coleção Fundamental - volume 6/8
Autor:
Prof. Paulo Cesar Pfaltzgraff Ferreira
26. a) \u2013 0,366 + j1,366
1,366 + j0,366
1,366 \u2013 j0,366
\u2013 0,366 \u2013 j1,366
\u2013 0,5 + j0,866
j2
2 \u2013 j
a)1,414; b) 4,472; c) 0,849; d) 6,325; e) 8
j
16
\u2013 1024
n = 3
\u2013 2
\u2013 j
17
a) 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
\ufffd\ufffdEMBED Equation.3; 
; 
; 
; 
; 
; 
;
; 
; 
a) 
;
{2; \u2013 2; j2; \u2013j2}
a) 	
( circunferência centrada em 
 e raio 3.
( disco fechado centrado em 
 e raio 2.
( coroa fechada centrada em 
, raio interno 2 e raio externo 4.
x = 1 ( reta que passa pelo ponto (1, 0) e é paralela ao eixo y.
( circunferência centrada em (1, 0) e raio 1.
( reta que passa pelo ponto 
 e é paralela ao eixo x.
 ( semiplano situado acima da reta y = 2 e incluindo a mesma.
( região delimitada pela hipérbole equilátera xy = 1 conforme aparece na figura a seguir
( região entre os ramos da hipérbole 
 incluindo tais ramos.
\ufffd
( região entre as retas 
 e y = x no 1.º e 4.º quadrantes.
( região exterior à circunferência 
.
Reta bissetriz do 1.º e 3.º quadrantes.
( circunferência de centro 
 e raio 
.
\ufffd
( circunferência de centro 
 e raio 
.
y = 0 ( eixos dos x.
x = 0 ( eixos dos y.
( que inclui o semiplano e a reta(r) assinalados na figura.
( que inclui o semiplano e a reta r assinalados na figura.
\ufffd
( que representa o semiplano assinalado.
( disco aberto de centro 
 e raio 
.
( elipse centrada na origem, com eixo maior = 3, eixo menor = 
, e distância focal = 2.
As equações que definem o lugar geométrico são y < 0 e 
. Logo temos o todo semiplano a esquerda do eixo y = 0 a menos da parte do disco fechado de centro 
 e raio 
 situada nesta região.
( elipse centrada na origem, com eixo maior = 10, eixo menor = 6, e distância focal = 8.
( que é uma hipérbole equilátera, centrada na origem, cujo eixo real = 2, e eixo imaginário = 2, e a distância focal = 
.
( sendo 
, representa o segmento que une os pontos determinados por 
 e 
.
\ufffdPAGE \ufffd
\ufffdPAGE \ufffd99\ufffd
_1060580856.unknown
_1090155988.doc
\ufffdEMBED Equation.3\ufffd\ufffd\ufffd
\ufffdEMBED Equation.3\ufffd\ufffd\ufffd
\ufffdEMBED Equation.3\ufffd\ufffd\ufffd
\ufffd EMBED Equation.3 \ufffd\ufffd\ufffd
\ufffd EMBED Equation.3 \ufffd\ufffd\ufffd
\ufffd EMBED Equation.3 \ufffd\ufffd\ufffd
\ufffd EMBED Equation.3 \ufffd\ufffd\ufffd
\ufffd EMBED Equation.3 \ufffd\ufffd\ufffd
_1062245440.unknown
_1062245900.unknown
_1062246690.unknown
_1062332934.unknown
_1062333111.unknown
_1062334065.unknown
_1062334085.unknown
_1067148676.unknown
_1062334073.unknown
_1062334013.unknown
_1062333024.unknown
_1062333025.unknown
_1062332946.unknown
_1062332733.unknown
_1062332780.unknown
_1062332825.unknown
_1062332763.unknown
_1062332696.unknown
_1062332720.unknown
_1062246691.unknown
_1062246570.unknown
_1062246631.unknown
_1062246688.unknown
_1062246610.unknown
_1062246435.unknown
_1062246537.unknown
_1062245904.unknown
_1062245554.unknown
_1062245696.unknown
_1062245880.unknown
_1062245899.unknown
_1062245873.unknown
_1062245655.unknown
_1062245666.unknown
_1062245647.unknown
_1062245495.unknown
_1062245551.unknown
_1062245553.unknown
_1062245507.unknown
_1062245490.unknown
_1062245491.unknown
_1062245472.unknown
_1061907223.unknown
_1061907362.unknown
_1061907431.unknown
_1062245357.unknown
_1062245378.unknown
_1062245046.unknown
_1061907428.unknown
_1061907429.unknown
_1061907378.unknown
_1061907286.unknown
_1061907320.unknown
_1061907330.unknown
_1061907289.unknown
_1061907264.unknown
_1061907270.unknown
_1061907227.unknown
_1061812314.unknown
_1061818731.unknown
_1061818862.unknown
_1061819198.unknown
_1061818841.unknown
_1061818660.unknown
_1061818693.unknown
_1061818597.unknown
_1061811037.unknown
_1061811042.unknown
_1061812271.unknown
_1061811039.unknown
_1061811032.unknown
_1061811035.unknown
_1061811029.unknown
_1090193644.unknown
_1090193844.unknown
_1090193990.unknown
_1090194082.unknown
_1090194144.unknown
_1090195310.doc
\ufffdEMBED Equation.3\ufffd\ufffd\ufffd
\ufffdEMBED Equation.3\ufffd\ufffd\ufffd
\ufffdEMBED Equation.3\ufffd\ufffd\ufffd
\ufffd EMBED Equation.3 \ufffd\ufffd\ufffd
\ufffd EMBED Equation.3 \ufffd\ufffd\ufffd
\ufffd EMBED Equation.3 \ufffd\ufffd\ufffd
\ufffd EMBED Equation.3 \ufffd\ufffd\ufffd
_1062245440.unknown
_1062245900.unknown
_1062246690.unknown
_1062332934.unknown
_1062333111.unknown
_1062334085.unknown
_1062335337.unknown
_1062335734.unknown
_1062335753.unknown
_1066019968.unknown
_1062335361.unknown
_1062335276.unknown
_1062335294.unknown
_1062334806.unknown
_1062334065.unknown
_1062334073.unknown
_1062334013.unknown
_1062333024.unknown
_1062333025.unknown
_1062332946.unknown
_1062332733.unknown
_1062332780.unknown
_1062332825.unknown
_1062332763.unknown
_1062332696.unknown
_1062332720.unknown
_1062246691.unknown
_1062246570.unknown
_1062246631.unknown
_1062246688.unknown
_1062246610.unknown
_1062246435.unknown
_1062246537.unknown
_1062245904.unknown
_1062245554.unknown
_1062245696.unknown
_1062245880.unknown
_1062245899.unknown
_1062245873.unknown
_1062245655.unknown
_1062245666.unknown
_1062245647.unknown
_1062245495.unknown
_1062245551.unknown
_1062245553.unknown
_1062245507.unknown
_1062245490.unknown
_1062245491.unknown
_1062245472.unknown
_1061907223.unknown
_1061907362.unknown
_1061907431.unknown
_1062245357.unknown
_1062245378.unknown
_1062245046.unknown
_1061907428.unknown
_1061907429.unknown
_1061907378.unknown
_1061907286.unknown
_1061907320.unknown
_1061907330.unknown
_1061907289.unknown
_1061907264.unknown
_1061907270.unknown
_1061907227.unknown
_1061812314.unknown
_1061818731.unknown
_1061818862.unknown
_1061819198.unknown
_1061818841.unknown
_1061818660.unknown
_1061818693.unknown
_1061818597.unknown
_1061811037.unknown
_1061811042.unknown
_1061812271.unknown
_1061811039.unknown
_1061811032.unknown
_1061811035.unknown
_1061811029.unknown
_1090194162.unknown
_1090194112.unknown
_1090194020.unknown
_1090193878.unknown
_1090193963.doc
\ufffdEMBED Equation.3\ufffd\ufffd\ufffd
\ufffdEMBED Equation.3\ufffd\ufffd\ufffd
\ufffdEMBED Equation.3\ufffd\ufffd\ufffd
\ufffd EMBED Equation.3 \ufffd\ufffd\ufffd
\ufffd EMBED Equation.3 \ufffd\ufffd\ufffd
\ufffd EMBED Equation.3 \ufffd\ufffd\ufffd
\ufffd EMBED Equation.3 \ufffd\ufffd\ufffd
\ufffd EMBED Equation.3 \ufffd\ufffd\ufffd
\ufffd EMBED Equation.3 \ufffd\ufffd\ufffd
\ufffd EMBED Equation.3