Buscar

Algebra alguns exercícios

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 47 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 47 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 47 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

Álgebra Linear - Exercícios
(Espaços Vectoriais)
Índice
1 Espaços Vectoriais 3
1.1 Dependência e Independência Linear . . . . . . . . . . . . . . . . 3
1.2 Sistemas de Geradores e Bases . . . . . . . . . . . . . . . . . . . 10
1.3 Subespaços Vectoriais . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Miscelânea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2
1 Espaços Vectoriais
1 Espaços Vectoriais
1.1 Dependência e Independência Linear
Exercício 1 Sejam u e v dois vectores linearmente independentes de um espaço
vectorial real E. Determine o escalar α ∈ R para o qual os vectores αu+ 2v e
u− v são linearmente dependentes.
Solução
Os vectores serão linearmente independentes se a única combinação linear
nula destes se obtiver com os escalares nulos:
β1 (αu+ 2v) + β2 (u− v) = 0 =⇒
=⇒ (β1α+ β2)u+ (2β1 − β2) v = 0
Dado que u e v são linearmente independentes da expressão anterior resulta
que:
½
β1α+ β2 = 0
2β1 − β2 = 0
Temos portanto um sistema homogéneo de duas equações a duas incógnitas,
β1 e β2, cuja matriz do sistema é dada por A =
·
α 1
2 −1
¸
. Se o sistema
for determinado, a única solução será β1 = β2 = 0, pelo que os vectores da-
dos serão linearmente independentes. Pretende-se portanto que o sistema seja
indeterminado, isto é rA < 2.
Construímos a matriz ampliada do sistema e estudamos a respectiva carac-
terístca:
[A|B] =
·
α 1 0
2 −1 0
¸
L1 ←→ L2−−−−−−−→·
2 −1 0
α 1 0
¸
L2 ← L2 +
³
−α
2
´
L1
−−−−−−−−−−−−−−−→·
2 −1 0
0 α+22 0
¸
Tem-se claramente rA = rA|B, o que significa que o sistema é possível (como
já sabíamos por ser um sistema homogéneo). Se α 6= −2 tem-se rA = 2 o que
implica um sistema possível e determinado; se α = −2, tem-se rA = 1 < 2 pelo
que teremos um sistema possível e indeterminado. O escalar escolhido deverá
portanto ser α = −2.
3
1 Espaços Vectoriais
Exercício 2 Sejam u, v e w três vectores linearmente independentes de um
espaço vectorial real E. Determine o escalar α ∈ R para o qual os vectores
αu+ 2v + 2w e u+ αv − w são linearmente dependentes.
Solução
Os vectores serão linearmente independentes se a única combinação linear
nula destes se obtiver com os escalares nulos:
β1 (αu+ 2v + 2w) + β2 (u+ αv − w) = 0 =⇒
=⇒ (β1α+ β2)u+ (2β1 + β2α) v + (2β1 − β2)w = 0
Dado que u, v e w são linearmente independentes, da expressão anterior
resulta que:



β1α+ β2 = 0
2β1 + β2α = 0
2β1 − β2 = 0
Temos portanto um sistema homogéneo de três equações a duas incógnitas,
β1, β2 e β3, cuja matriz do sistema é dada por A =


α 1
2 α
2 −1

. Se o sistema
for determinado, a única solução será β1 = β2 = 0, pelo que os vectores da-
dos serão linearmente independentes. Pretende-se portanto que o sistema seja
indeterminado, isto é rA < 2.
Construímos a matriz ampliada do sistema e estudamos a respectiva carac-
terístca:
[A|B] =


α 1 0
2 α 0
2 −1 0

L1 ←→ L3−−−−−−−→


2 −1 0
2 α 0
α 1 0

 L2 ← L2 + (−1)L1
L3 ← L3 +
¡
−α2
¢
L1−−−−−−−−−−−−−−−−→

2 −1 0
0 α+ 1 0
0 α+22 0


Se α = −1 ou α = −2 tem-se claramente rA = rA|B = 2, o que significa
que o sistema é possível (como já sabíamos por ser um sistema homogéneo) e
determinando. No entanto, se α 6= −1 ∧ α 6= −2 também se obterá um sistema
possível e determinado. Concluimos assim que os vectores dados serão sempre
linearmente independentes, qualquer que seja α ∈ R.
4
1 Espaços Vectoriais
Exercício 3 Sejam u e v dois vectores linearmente independentes de um es-
paço vectorial real E. Mostre que os vectores u e u+ v são linearmente inde-
pendentes.
Solução
Construamos a combinação linear nula destes dois vectores e verifiquemos
que só é satisfeita com os escalares nulos:
β1 (u) + β2 (u+ v) = 0 =⇒
=⇒ (β1 + β2)u+ β2v = 0
Sabendo que u e v são linearmente independentes, teremos:
½
β1 + β2 = 0
β2 = 0
A solução deste sistema é claramente β1 = β2 = 0 pelo que se pode concluir
que os vectores u e u+ v são linearmente independentes.
Exercício 4 Considerem-se 3 vectores de um espaço vectorial: u, v e w. Prove
que u− v, v − w e w − u são sempre linearmente dependentes.
Solução
Construamos a combinação linear nula destes três vectores e verifiquemos
que não é só satisfeita com os escalares nulos:
β1 (u− v) + β2 (v − w) + β3 (w − u) = 0 =⇒
=⇒ (β1 − β3)u+ (−β1 + β2) v + (−β2 + β3)w = 0
Sabendo que u, v e w são linearmente independentes, teremos:



β1 − β3 = 0
−β1 + β2 = 0
−β2 + β3 = 0
Construímos agora a matriz ampliada do sistema e estudamos a respectiva
característca:
5
1 Espaços Vectoriais
[A|B] =


1 0 −1 0
−1 1 0 0
0 −1 1 0

L2 ← L2 + L1−−−−−−−−−−→


1 0 −1 0
0 1 −1 0
0 −1 1 0

L3 ← L3 + L2−−−−−−−−−−→


1 0 −1 0
0 1 −1 0
0 0 0 0


Dado que rA = rA|B = 2 < 3, o sistema é possível e indeterminado, tendo
outras soluções que não a solução β1 = β2 = β3 = 0, pelo que os vectores dados
serão linearmente dependentes.
Exercício 5 Sendo x, y e z vectores linearmente independentes de um espaço
vectorial E, mostre que os três vectores x+ y, x+ z e y+ z também são linear-
mente independentes
Solução
Construamos a combinação linear nula destes três vectores e verifiquemos
que não é só satisfeita com os escalares nulos:
β1 (x+ y) + β2 (x+ z) + β3 (y + z) = 0 =⇒
=⇒ (β1 + β2)x+ (β1 + β3) y + (β2 + β3) z = 0
Sabendo que x, y e z são linearmente independentes, teremos:



β1 + β2 = 0
β1 + β3 = 0
β2 + β3 = 0
Construímos agora a matriz ampliada do sistema e estudamos a respectiva
característca:
[A|B] =


1 1 0 0
1 0 1 0
0 1 1 0

L2 ← L2 + (−1)L1−−−−−−−−−−−−−−→


1 1 0 0
0 −1 1 0
0 1 1 0

L3 ← L3 + L2−−−−−−−−−−→


1 1 0 0
0 −1 1 0
0 0 2 0


6
1 Espaços Vectoriais
Dado que rA = rA|B = 2 = 3, o sistema é possível e determinado, tendo
apenas a solução β1 = β2 = β3 = 0, pelo que os vectores dados serão linearmente
independentes.
Exercício 6 Sejam v e w dois vectores linearmente independentes de um es-
paço vectorial E. Mostre que o sistema de vectores {v, w, v + w} é linearmente
dependente.
Solução
Construamos a combinação linear nula destes três vectores e verifiquemos
que não é só satisfeita com os escalares nulos:
β1v + β2w + β3 (v + w) = 0 =⇒
=⇒ (β1 + β3) v + (β2 + β3)w = 0
Sabendo que v e w são linearmente independentes, teremos:
½
β1 + β3 = 0
β2 + β3 = 0
Construímos agora a matriz ampliada do sistema e estudamos a respectiva
característca:
[A|B] =
·
1 0 1 0
0 1 1 0
¸
Dado que rA = rA|B = 2 < 3, o sistema é possível e indeterminado com
grau de indeterminação d = n − rA = 3 − 2 = 1. Existem portanto outras
soluções para o sistema que não a solução β1 = β2 = β3 = 0. Logo, os vectores
{v, w, v + w} são linearmente dependentes.
Exercício 7 Identifique as condições sobre a e b de modo a que os vectores,
(a, 2, b), (a+ 1, 2, 1) e (3, b, 1) sejam linearmente independentes.
Solução
Os vectores serão linearmente independentes se a única combinação linear
nula destes se obtiver com os escalares nulos:
β1 (a, 2, b) + β2 (a+ 1, 2, 1) + β3 (3, b, 1) = 0 =⇒
=⇒ (aβ1 + (a+ 1)β2 + 3β3, 2β1 + 2β2 + bβ3, bβ1 + β2 + β3) = 0
7
1 Espaços Vectoriais
Da expressão anterior resulta que:



aβ1 + (a+ 1)β2 + 3β3 = 0
2β1 + 2β2 + bβ3 = 0
bβ1 + β2 + β3 = 0
Temos portanto um sistema homogéneo de três equações a três incógnitas,
β1, β2 e β3, cuja matriz do sistema é dada por A =


a a+ 1 3
2 2 b
b 1 1

. Se
o sistema for determinado (possível é sempre, por ser homogéneo), a única
solução será β1 = β2 = β3 = 0, pelo que os vectores dados serão linearmente
independentes. Pretende-se portanto que o sistema seja determinado, isto é
rA = 3. Tal depende no entanto dos valores dos parâmetros a e b.
Construímos a matriz ampliada do sistema e estudamos a respectiva carac-
terístca:
[A|B] =


a a+ 1 3 0
2 2 b 0
b 1 1 0

L1 ←→ L2−−−−−−−→


2 2 b 0
a a+ 1 3 0
b 1 1 0

L1 ←→
1
2
L1
−−−−−−−−→


1 1 b2 0
a a+ 1 3 0
b 1 1 0

 L2 ← L2 + (−a)L1
L3 ← L3 + (−b)L1−−−−−−−−−−−−−−−→


1 1 b2 0
0 1 6−ab2 0
0 1− b 2−b22 0

L3 ← L3 + (b− 1)L2−−−−−−−−−−−−−−−→


1 1 b2 0
0 1 6−ab2 0
0 02−b
2
2 + (b− 1)
6−ab
2 0


Para que, como se pretende, rA = rA|B = 3, é necessário que 2−b
2
2 +
(b− 1) 6−ab2 6= 0. Vejamos então qual a relação entre a e b de modo a que esta
condição seja satisfeita. Note-se que 2−b
2
2 + (b− 1)
6−ab
2 = 0 é uma equação na
variável a. É simples verificar que a = −4−b
2+6b
(b−1)b . Assim, concluímos que:
• b = 0 ∨ b = 1
Não existe solução para a, logo rA = rA|B = 3, o sistema é possível e
determinado e, por consequência os três vectores dados são linearmente
independentes.
8
1 Espaços Vectoriais
• b 6= 0 ∧ b 6= 1
→ Se a = −4−b2+6b(b−1)b , teremos rA = rA|B < 3, o sistema é possível e inde-
terminado e, por consequência os três vectores dados são linearmente
dependentes.
→ Se a 6= −4−b2+6b(b−1)b , teremos rA = rA|B = 3, o sistema é possível e de-
terminado e, por consequência os três vectores dados são linearmente
independentes.
Exercício 8 Verifique se os seguintes vectores de R4 são linearmente indepen-
dentes?
x1 = (1, 0, 1, 2) ; x2 = (0, 1, 1, 2) ; x3 = (1, 1, 1, 3)
Solução
Os vectores serão linearmente independentes se a única combinação linear
nula destes se obtiver com os escalares nulos:
βx1 + βx2 + βx3 = 0 =⇒
=⇒ β1 (1, 0, 1, 2) + β2 (0, 1, 1, 2) + β3 (1, 1, 1, 3) = 0 =⇒
=⇒ (β1 + β3,β2 + β3,β1 + β2 + β3, 2β1 + 2β2 + 3β3) = 0
Da expressão anterior resulta que:



β1 + β3 = 0
β2 + β3 = 0
β1 + β2 + β3 = 0
2β1 + 2β2 + 3β3 = 0
Temos portanto um sistema homogéneo de quatro equações a quatro incóg-
nitas, β1, β2, β3 e β4, cuja matriz do sistema é dada por A =


1 0 1
0 1 1
1 1 1

.
Se o sistema for determinado (possível é sempre, por ser homogéneo), a única
solução será β1 = β2 = β3 = 0, pelo que os vectores dados serão linearmente
independentes. Pretende-se portanto que o sistema seja determinado, isto é
rA = 3. Tal depende no entanto dos valores dos parâmetros a e b.
Construímos a matriz ampliada do sistema e estudamos a respectiva carac-
terístca:
9
1 Espaços Vectoriais
[A|B] =


a a+ 1 3 0
2 2 b 0
b 1 1 0

L1 ←→ L2−−−−−−−→


2 2 b 0
a a+ 1 3 0
b 1 1 0

L1 ←→
1
2
L1
−−−−−−−−→


1 1 b2 0
a a+ 1 3 0
b 1 1 0

 L2 ← L2 + (−a)L1
L3 ← L3 + (−b)L1−−−−−−−−−−−−−−−→


1 1 b2 0
0 1 6−ab2 0
0 1− b 2−b22 0

L3 ← L3 + (b− 1)L2−−−−−−−−−−−−−−−→


1 1 b2 0
0 1 6−ab2 0
0 0 2−b
2
2 + (b− 1)
6−ab
2 0


Para que, como se pretende, rA = rA|B = 3, é necessário que 2−b
2
2 +
(b− 1) 6−ab2 6= 0. Vejamos então qual a relação entre a e b de modo a que esta
condição seja satisfeita. Note-se que 2−b
2
2 + (b− 1)
6−ab
2 = 0 é uma equação na
variável a. É simples verificar que a = −4−b
2+6b
(b−1)b . Assim, concluímos que:
1.2 Sistemas de Geradores e Bases
Exercício 9 Considere os vectores:
u1 = (1, 1, a) ; u2 = (0, 1, 1) ; u3 = (1, 0, b)
com ui ∈ R3, i = 1, 2, 3.
Que condições devem verificar a e b para {u1, u2, u3} constituírem uma base
de R3.
Solução
Sabemos que dim
¡
R3
¢
= 3. Como o conjunto {u1, u2, u3} é constituído por
três vectores de R3 sabemos que {u1, u2, u3} serão geradores de R3 se consti-
tuirem uma base de R3. Mas {u1, u2, u3} só constituirá uma base de R3 se
os seus vectores forem linearmente independentes. Os vectores de {u1, u2, u3}
serão linearmente independentes se a única combinação linear nula destes se
obtiver com os escalares nulos:
10
1 Espaços Vectoriais
β1u1 + β2u2 + β3u3 = 0 =⇒
=⇒ β1 (1, 1, a) + β2 (0, 1, 1) + β3 (1, 0, b) = 0⇒
⇒ (β1 + β3,β1 + β2,β1a+ β2 + β3b) = 0
Da expressão anterior resulta que:



β1 + β3 = 0
β1 + β2 = 0
aβ1 + β2 + bβ3 = 0
Temos portanto um sistema homogéneo de três equações a três incógnitas,
β1, β2 e β3, cuja matriz do sistema é dada por A =


1 0 1
1 1 0
a 1 b

. Se o sistema
for determinado (possível é sempre, por ser homogéneo), a única solução será
β1 = β2 = β3 = 0, pelo que os vectores dados serão linearmente independentes
e portanto uma base de R3, como pretendemos. Tal depende no entanto do
valor dos parâmetros a e b.
Construamos a matriz ampliada do sistema e estudamos a respectiva carac-
terístca:
[A|B] =


1 0 1 0
1 1 0 0
a 1 b 0

 L2 ← L2 + (−1)L1
L3 ← L3 + (−a)L1−−−−−−−−−−−−−−−→

1 0 1 0
0 1 −1 0
0 1 b− a 0

L3 ← L3 + (−1)L2−−−−−−−−−−−−−−→


1 0 1 0
0 1 −1 0
0 0 b− a+ 1 0


Para que, como se pretende, rA = rA|B = 3, é necessário que b−a+1 6= 0, o
que implica b 6= a−1. Nestas circunstâncias, o sistema é possível e determinado
e os vectores dados são linearmente dependentes, constituindo uma base de R3.
Exercício 10 Sejam v1 = (7, 4,−7) e v2 = (8, 7, 8) dois vectores de R3. Deter-
mine o valor de t de modo a que o vector v = (−2, t, 8) pertença ao subespaço
de R3 gerado por v1 e v2.
Solução
11
1 Espaços Vectoriais
O subespaço gerado pelos vectores v1 e v2 são os vectores da forma: α1v1 +
α2v2. Assim, o vector v pertencerá ao subespaço gerado por v1 e v2 se existirem
escalares α1 e α2 tais que α1v1 + α2v2 = v.
α1v1 + α2v2 = v ⇐⇒
⇐⇒ α1 (7, 4,−7) + α2 (8, 7, 8) = (−2, t, 8)⇐⇒
⇐⇒



7α1 + 8α2 = −2
4α1 + 7α2 = t
−7α1 + 8α2 = 8
Vejamos quais as condições para que o sistema seja possível. Para isso,
estudamos o sistema através da sua matriz ampliada:


7 8 −2
4 7 t
−7 8 8

 L2 ← L2 +
¡
−47
¢
L1
L3 ← L3 + L1−−−−−−−−−−−−−−−−→

7 8 −2
0 177
8+7t
7
0 16 6

L2 ←
7
17
L2
−−−−−−−−→


7 8 −2
0 1 136 + 119t
0 16 6

L3 ← L3 + (−16)L2−−−−−−−−−−−−−−→


7 8 −2
0 1 136 + 119t
0 0 −2170− 1904t


O sistema será possível se −2170 − 1904t = 0. Logo, v poderá ser escrito
como combinação linear de v1 e v2 se t = −155136 .
Exercício 11 Verifique se o conjunto de vectores {(6, 3, 9) , (5, 2, 8) , (4, 1, 7)}
constitui uma base de R3.
Solução
Exercício 12 Seja v = (1, 2) ∈ R2.
a) Dê um exemplo de um vector, diferente de v e do vector nulo, que pertença
ao subespaço gerado por v.
b) Dê um exemplo de um vector que não pertença ao subespaço gerado por
v.
12
1 Espaços Vectoriais
Solução
a) O subespaço gerado por v é dado por:
©
w ∈ R2 : w = α · v,∀α∈R2
ª
O subespaço gerado por v são protanto todos os ”múltiplos” do vector
v. Escolhendo α = −1, obtém-se w = (−1) v = (−1) (1, 2) = (−1,−2).
conclui-se portanto que (−1,−2) pertence ao subespaço gerado por v.
b) Em contraponto com a) serão todos os vectores que não sejam múltiplos
de v, por exemplo (1, 1). Podemos confirmar este resultado, mostrando
que a equação (1, 1) = α (1, 2) é impossível:
α (1, 2) = (1, 1)⇐⇒
⇐⇒ (α, 2α) = (1, 1)
Esta expressão é equivalente, matricialmente, ao seguinte sistema de equações:
·
1
2
¸ £
α
¤
=
·
1
1
¸
O sistema é obviamente impossível. Estudemos a sua matriz ampliada:
[A|B] =
·
1 1
2 1
¸
L2 ← L2 + (−2)L1−−−−−−−−−−−−−−→·
1 1
0 −1
¸
Dado que rA 6= rA|B o sistema é impossível, pelo que não existe nenhum
escalar α ∈ R que satisfaça (1, 1) = α (1, 2). Logo, (1, 1) não pertence ao
subespaço gerado por (1, 2).
Exercício 13 Considere o espaço vectorial R3 e o conjunto de vectores M =
{(4, 5, 6) , (r, 5, 1) , (4, 3, 2)}. Determine r de modo a que o conjunto gerado pelos
vectores de M não seja R3.
Solução
Sabemos que dim
¡
R3
¢
= 3. Como o conjunto M é constituído por três
vectores de R3 sabemos que M serão geradores de R3 se constituirem uma
base de R3. Mas M só constituirá uma base de R3 se os seus vectores forem
13
1 Espaços Vectoriais
linearmente independentes. Os vectores de M serão linearmente independentes
se a única combinação linear nula destes se obtiver com os escalares nulos:
β1 (4, 5, 6) + β2 (r, 5, 1) + β3 (4, 3, 2) = 0 =⇒
=⇒ (4β1 + rβ2 + 4β3, 5β1 + 5β2 + 3β3, 6β1 + β2 + 2β3) = 0
Da expressão anterior resulta que:



4β1 + rβ2 + 4β3 = 0
5β1 + 5β2 + 3β3 = 0
6β1 + β2 + 2β3 = 0
Temos portanto um sistema homogéneo de três equações a três incógnitas,
β1, β2 e β3, cuja matriz do sistema é dada por A =


4 r 4
5 5 3
6 1 2

. Se o sistema
for determinado (possível é sempre, por ser homogéneo), a única solução será
β1 = β2 = β3 = 0, pelo que os vectores dados serão linearmente independentes
e portanto uma base de R3, o que contraria o que nóspretendemos. Pretende-
se portanto que o sistema seja indeterminado, isto é rA < 3. Tal depende no
entanto do valor do parâmetro r.
Construamos a matriz ampliada do sistema e estudamos a respectiva carac-
terístca:
[A|B] =


4 r 4 0
5 5 3 0
6 1 2 0

L1 ←
1
4
L1
−−−−−−−→


1 r4 1 0
5 5 3 0
6 1 2 0

 L2 ← L2 + (−5)L1
L3 ← L3 + (−6)L1−−−−−−−−−−−−−−−→

1 r4 1 0
0 20−r4 −2 0
0 24−r4 −4 0

L2 ←
4
20− rL2−−−−−−−−−−−→
Para prosseguir a condensação temos de assumir que r 6= 20. Adiante estu-
daremos o caso em que r = 20.


1 r4 1 0
0 1 − 820−r 0
0 24−r4 −4 0

L3 ← L3 +
µ
−24− r
4
¶
L2
−−−−−−−−−−−−−−−−−−−→


1 r4 1 0
0 1 − 820−r 0
0 0 2r−3220−r 0


14
1 Espaços Vectoriais
Para que, como se pretende, rA = rA|B < 3, é necessário que 2r−3220−r = 0, o
que implica r = 16. Nestas circunstâncias, o sistema é possível e indeterminado
e os vectores dados são linearmente dependentes.
regressemos agora ao caso em que r = 20. Substituindo r na matriz após as
três primeiras operações elementares obtém-se:


1 204 1 0
0 20−204 −2 0
0 24−204 −4 0

 =


1 5 1 0
0 0 −2 0
0 1 −4 0


Prosseguindo a condensação, obter-se-á:


1 5 1 0
0 0 −2 0
0 1 −4 0

L2 ←→ L3−−−−−−−→


1 5 1 0
0 1 −4 0
0 0 −2 0


Tem-se, claramente, rA = rA|B = 3 pelo que o sistema é possível e deter-
minado. consequentemente, os vectores dados serão lineramente independentes.
O valor do parâmetro r que nos interessa é portantor = 16.
Exercício 14 O conjunto, P2 (R), dos polinómios de grau inferior ou igual a 2
constitui um espaço vectorial real.
a) Determine um polinómio b (x) de modo a que o conjunto
©
1, 1 + x2, b (x)
ª
constitua uma base de P2 (R).
b) Determine as coordenadas de 2x2 − 7x nessa base.
Solução
a) O polinómio b (x) deverá ser tal que o sistema de vectores
©
1, 1 + x2, b (x)
ª
seja linearmente independente. Construamos a combinação linear nula
destes três vectores e verifiquemos para que polinómios b (x) = ax2+bx+c
a equação é satisfeita apenas com os escalares nulos:
β1 · 1 + β2 ·
¡
1 + x2
¢
+ β3 · b (x) = 0 =⇒
=⇒ β1 · 1 + β2 ·
¡
1 + x2
¢
+ β3 ·
¡
ax2 + bx+ c
¢
= 0 =⇒
=⇒ (β1 + β2 + cβ3) + (bβ3) · x+ (β2 + aβ3) · x2 = 0
15
1 Espaços Vectoriais
Sabendo que um polinómio é nulo se os coeficientes dos termos de todos
os graus forem nulos, teremos:



β1 + β2 + cβ3 = 0
bβ3 = 0
β2 + aβ3 = 0
Temos portanto um sistema homogéneo de três equações a três incógnitas,
β1, β2 e β3, cuja matriz do sistema é dada por A =


1 1 c
0 0 b
0 1 a

. Se o
sistema for determinado (possível é sempre, por ser homogéneo), a única
solução será β1 = β2 = β3 = 0, pelo que os vectores dados serão linear-
mente independentes e portanto uma base de P2 (R), como se pretende.
Tal depende no entanto do valor dos parâmetros a, b e c.
Construamos a matriz ampliada do sistema e estudamos a respectiva car-
acterístca:
[A|B] =


1 1 c 0
0 0 b 0
0 1 a 0

L2 ←→ L3−−−−−−−→


1 1 c 0
0 1 a 0
0 0 b 0


Para que, como se pretende, rA = rA|B = 3, é necessário que b 6= 0. Nestas
circunstâncias, o sistema é possível e indeterminado, os vectores dados são
linearmente dependentes e portanto constituirão uma base de P2 (R).
Escolhemos a alternativa mais simples e escolhamos a = c = 0 e b = 1.
Neste caso b (x) = x. O conjunto de vectores
©
1, 1 + x2, x
ª
será portanto
uma base de P2 (R).
b) Pretende-se determinar os escalares β1, β2 e β3 tais que:
β1 · 1 + β2 ·
¡
1 + x2
¢
+ β3 · x = 2x2 − 7x⇔
⇔ β2 · x2 + β3 · x+ (β1 + β2) = 2x2 − 7x
Sabendo que dois polinómios são iguais se os coeficientes dos termos do
mesmo grau são iguais, a igualdade acima é equivalente ao seguinte sistema
de equações:
16
1 Espaços Vectoriais



β2 = 2
β3 = −7
β1 + β2 = 0
Facilmente se verifica que a solução será dada por β1 = −2, β2 = 2 e
β3 = −7. Assim, as coordenadas de 2x2− 7x na base
©
1, 1 + x2, x
ª
serão£
−2 2 −7
¤T
.
Exercício 15 Mostre que o conjunto M = {(1, 2, 3) , (2, 3, 4) , (3, 4, 5)} não é
uma base de R3.
Solução
Temos duas alternativas para mostrar este facto:
1a alternativa:
Notemos que dim
¡
R3
¢
= 3. Se os vectores dados não forem linearmente
independentes, então não podem constitur uma base de R3 uma vez que esta
deverá ter 3 elementos.
2a alternativa:
Podemos verificar se os vectores de M geram qualquer vector x ∈ R3. Se tal
não for verdade, então os vectores não podem constituir uma base de R3.
Exercício 16 Verifique se os seguintes vectores são geradores do espaço vecto-
rial R3.
a) x1 = (1, 1, 1) ; x2 = (1,−1,−1) ; x3 = (3, 1, 1)
b) x1 = (1, 1, 1) ; x2 = (1,−1,−1) ; x3 = (3, 1, 2)
Solução
1.3 Subespaços Vectoriais
Exercício 17 Quais dos seguintes subconjuntos de R2 são subespaços de R2?
i) W1 =
©
(x, y) ∈ R2 : x = 2y
ª
ii) W2 =
©
(x, y) ∈ R2 : x = 2y, 2x = y
ª
iii) W3 =
©
(x, y) ∈ R2 : x = 2y + 1
ª
iv) W4 =
©
(x, y) ∈ R2 : xy = 0
ª
17
1 Espaços Vectoriais
Solução
i) Vejamos se 0 ∈W1. Se x = 0 e y = 0, teremos x = 2y pelo que (0, 0) ∈W1.
Com efeito, 0 = x·0. Consideremos agora dois vectores (x, y) , (x0, y0) ∈W1
e dois escalares α,β ∈ R. Pretende-se verificar que α (x, y) + β (x0, y0) ∈
W1. Faça-se (a, b) = α (x, y) + β (x0, y0). Queremos mostrar que (a, b)
satisfaz a = 2b:
(a, b) = α (x, y) + β (x0, y0)
(Porque (x, y) , (x0, y0) ∈ W1)
= (2αy + 2βy0,αy + βy0)
= (2 (αy + βy0) ,αy + βy0)
Concluímos assim que (a, b) satisfaz a = 2b, logo, F2 é um espaço vectorial.
ii) O sistema x = 2y ∧ 2x = y tem como solução única o vector nulo, (0, 0).
Assim, como W2 = {(0, 0)} conclui-se que W2 é um subespaço.
iii) Vejamos se 0 ∈ W3. É fácil verificar que não: um vector de W3 tem a
forma (2y + 1, y) , y ∈ R. Este vector poderá ser escrito como:
(2y + 1, y) = y (2, 1) + (1, 0) , y ∈ R
Vejmos agora se existe algum escalar α tal que (2α+ 1,α) = 0:
(2α+ 1,α) = 0⇐⇒
⇔ α (2, 1) + (1, 0) = (0, 0)⇐⇒
⇐⇒ α (2, 1) = (−1, 0)⇐⇒½
2α = 1
α = 0
Este sistema é impossível pelo que 0 /∈ W3. Portanto, W3 não constitui
um subespaço vectorial.
iv) O conjunto W4 é constituído pelos vectores da forma (x, 0) , x ∈ R e
(0, y) , y ∈ R. É obvio que os vectores (1, 0) e (0, 1) pertencem ao sube-
spaço vectorial W4, mas a sua soma, (1, 0)+(0, 1) = (1, 1), não. Dado que
W4 não é fechado para a soma, então não pode ser espaço vectorial.
Exercício 18 Seja F o espaço vectorial real das funções reais de variável real,
diferenciáveis. Determine, entre os seguintes conjuntos, aqueles que são sube-
spaços de F.
18
1 Espaços Vectoriais
i) F1 =
n
f ∈ F : f (x) · f 0 (x) = 1,∀x∈R
o
ii) F2 =
n
f ∈ F : f (x) = x · f 0 (x) ,∀x∈R
o
Solução
i) Vejamos se 0 ∈ F1. Obviamente que não: se f (x) = 0 teremos f
0
(x) = 0,
pelo que f (x) ·f 0 (x) = 0 6= 1. Logo, 0 /∈ F1, portanto F1 não é subespaço.
ii) Vejamos se 0 ∈ F2. Se f (x) = 0 teremos f
0
(x) = 0, pelo que f (x) =
x · f 0 (x) é satisfeita. Com efeito, 0 = x · 0. Consideremos agora duas
funções f (x) , g (x) ∈ F2 e dois escalares α,β ∈ R. Pretende-se verificar
que αf (x) + βg (x) ∈ F2. Faça-se p (x) = αf (x) + βg (x). Queremos
mostrar que p (x) se pode escrever na forma x · p0 (x):
p (x) = αf (x) + βg (x)
(Porque f (x) , g (x) ∈ F2)
= αx · f 0 (x) + βx · g0 (x)
= x
³
αf
0
(x) + βg
0
(x)
´
= x · p0 (x)
Concluímos assim que F2 é um espaço vectorial.
Exercício 19 Considere o espaço vectorial S, sobre R, das sucessões reais.
Determine, entre os seguintes subconjuntos, aqueles que são subespaços de S:
i) O conjunto das progressões aritméticas, P.
ii) O conjunto das sucessões com um número infinito de termos nulos, Q.
Solução
i) As progressões aritméticas reais são sucessões reais do tipo un = n·r, r ∈ R.
Está claro que se r = 0, teremos un = 0, pelo que 0 ∈ P. Consideremos
agora duas progressões un, vn ∈ P e dois escalares α,β ∈ R. Pretende-se
verificar que αun+βvn ∈ P. Faça-se wn = αun+βvn. Queremos mostrar
que wn é uma progressão aritmética. Basta para o efeito determinar o seu
termo:
19
1 Espaços Vectoriais
wn = αun + βvn
(Porque un, vn ∈ P)
= αnr1 + βnr2
= n (αr1 + βr2)
Concluímos assim, que wn éuma progressão aritmética de termo (αr1 + βr2).
Exercício 20 Seja E o espaço vectorial real das funções reais de variável real
contínuas e diferenciáveis em R, munido das operações habituais de adição de
funções e da multiplicação de uma função por um escalar. Seja F o conjunto
das funções:
f (x) =



αx+ β, x < 0
ax2 + bx+ c, 0 ≤ x ≤ 1
γx+ δ, x > 1
(1)
Que condições devem verificar as constantes e α,β,γ, δ,a,b e c para que F
seja um subespaço de E?
Solução
• f tem de ser contínua
Apenas nos precisamos de preocupar com os pontos de abcissa x = 0 e
x = 1:
— x = 0
α · 0 + β = a · 02 + b · 0 + c⇐⇒ β = c
— x = 1
a · 12 + b · 1 + c = γ · 1 + δ ⇐⇒ a+ b+ c = γ + δ
• f tem de ser diferenciável
Apenas nos precisamos de preocupar com os pontos de abcissa x = 0 e
x = 1:
— dfdx
¯¯¯
x=0−
= dfdx
¯¯¯
x=0+
⇐⇒ α = 2 · a · x+ b|x=0+ ⇐⇒
⇔ α = b
— dfdx
¯¯¯
x=1−
= dfdx
¯¯¯
x=1+
⇐⇒ 2 · a · x+ b|x=1− = γ ⇐⇒
⇔ 2a+ b = γ
20
1 Espaços Vectoriais
As quatro condições anteriores podem ser colocadas em forma de sistema de
4 equações a 7 incógnitas, a saber:


0 1 0 0 0 0 −1
0 0 1 1 −1 −1 −1
1 0 0 0 0 −1 0
0 0 1 0 −2 −1 0




α
β
γ
δ
a
b
c


=


0
0
0
0


Resolvendo o sistema por condensação obtém-se:


0 1 0 0 0 0 −1 0
0 0 1 1 −1 −1 −1 0
1 0 0 0 0 −1 0 0
0 0 1 0 −2 −1 0 0

L1 ←→ L3−−−−−−−→


1 0 0 0 0 −1 0 0
0 0 1 1 −1 −1 −1 0
0 1 0 0 0 0 −1 0
0 0 1 0 −2 −1 0 0

L2 ←→ L3−−−−−−−→


1 0 0 0 0 −1 0 0
0 1 0 0 0 0 −1 0
0 0 1 1 −1 −1 −1 0
0 0 1 0 −2 −1 0 0

L4 ← L4 + (−1)L3−−−−−−−−−−−−−−→


1 0 0 0 0 −1 0 0
0 1 0 0 0 0 −1 0
0 0 1 1 −1 −1 −1 0
0 0 0 −1 −1 −1 1 0

L3 ← L3 + L4−−−−−−−−−−→


1 0 0 0 0 −1 0 0
0 1 0 0 0 0 −1 0
0 0 1 0 −2 −2 0 0
0 0 0 −1 −1 −1 1 0


Temos rA = rA|B = 4 < 7 pelo que o sistema é possível e indeterminado
com grau de indeterminação n− rA = 7− 4 = 3.
A solução geral do sistema será dada por:



α = b
β = c
γ = 2a+ 2b
δ = −a− b+ c
,∀a,b,c∈R
21
1 Espaços Vectoriais
Matricialmente, teremos:


α
β
γ
δ
a
b
c


=


b
c
2a+ 2b
−a− b+ c
a
b
c


= a


0
0
2
−1
1
0
0


+ b


1
0
2
−1
0
1
0


+ c


0
1
0
1
0
0
1


Relativamente às condições para o critério de suespaço:
• Está claro que 0 ∈ F . Basta fazer a = b = c = 0, para que α = β = γ =
δ = 0 e portanto se tenha a função f (x) = 0.
• Consideremos agora duas funções f (x) , g (x) ∈ F e dois escalares α,β ∈
R. Pretende-se verificar que αf (x)+βg (x) ∈ F . Faça-se p (x) = αf (x)+
βg (x). Queremos mostrar que p (x) se pode escrever na forma da equação
(1):
p (x) = f (x) + g (x) =
=



bx+ c, x < 0
ax2 + bx+ c, 0 ≤ x ≤ 1
(2a+ 2b)x+ (−a− b+ c) , x > 1
+



b0x+ c0, x < 0
a0x2 + b0x+ c0, 0 ≤ x ≤
(2a0 + 2b0)x+ (−a0 − b0 + c0) , x > 1
=



(b+ b0)x+ (c+ c0) , x < 0
(a+ a0)x2 + (b+ b0)x+ (c+ c0) , 0 ≤ x ≤ 1
(2 (a+ a0) + 2 (b+ b0))x+ (− (a+ a0)− (b+ b0) + (c+ c0)) , x > 1
Fazendo a00 = (a+ a0), b00 = (b+ b0) e c00 = (c+ c0), p (x) escrever-se-á na
forma:
p (x) =



b00x+ c00, x < 0
a00x2 + b00x+ c00, 0 ≤ x ≤ 1
(2a00 + 2b00)x+ (−a00 − b00 + c00) , x > 1
Adicionalmente, fazendo,



α00 = b00
β = c00
γ00 = 2a00 + 2b00
δ00 = −a00 − b00 + c00
... teremos,
22
1 Espaços Vectoriais
p (x) =



α00x+ β00, x < 0
a00x2 + b00x+ c00, 0 ≤ x ≤ 1
γ00x+ δ00, x > 1
... o que mostra que p (x) ∈ F .
Exercício 21 Seja M2 (R) o espaço vectorial real das matrizes quadradas de
ordem 2 da forma
·
a b
c d
¸
. Verifique se os subconjuntos a seguir indicados são
subespaços de M2 (R). No caso afirmativo apresente um conjunto de geradores
linearmente independentes.
i) Conjunto das matrizes quadradas de ordem 2 que verificam a = b.
ii) Conjunto das matrizes quadradas de ordem 2 que verificam b = c+ 1.
Solução
i) SejaM o conjunto dado, cujas matrizes têm a forma genérica
·
a a
c d
¸
,∀a,c,d∈R.
Se a = c = d = 0 teremos a matriz nula de ordem, 02. Logo, 0 ∈M. Se-
jam agora A =
·
a a
c d
¸
, A0 =
·
a0 a0
c0 d0
¸
∈M e dois escalares α,β ∈ R.
Pretende-se verificar que αA+ βA0 ∈M. Faça-se A00 = αA+ βA0.
A00 = αA+ βA0
= α
·
a a
c d
¸
+ β
·
a0 a0
c0 d0
¸
=
·
αa+ βa0 αa+ βa0
αc+ βc0 αd+ βd0
¸
Note-se que, na matriz A00 se tem a
00
11 = a
00
12, o que implica que A
00 ∈M.
Concluímos assim que M é um subespaço vectorial.
Note-se que:
·
a a
c d
¸
= a
·
1 1
0 0
¸
+ c
·
0 0
1 0
¸
+ d
·
0 0
0 1
¸
Assim,
½·
1 1
0 0
¸
,
·
0 0
1 0
¸
,
·
0 0
0 1
¸¾
é uma base de M e portanto
um conjunto de geradores de M.
23
1 Espaços Vectoriais
ii) SejaM o conjunto dado, cujas matrizes têm a forma genérica
·
a c+ 1
c d
¸
,∀a,c,d∈R.
Note-se que 0 /∈M. Efectivamente, o sistema c = 0∧c+1 = 0 é impossível.
Conclui-se assim que M não é subespaço vectorial de M2 (R).
Exercício 22 Seja Mn (R) o espaço vectorial real das matrizes quadradas de
ordem n. Verifique se os subconjuntos a seguir indicados são subespaços de
Mn (R). No caso afirmativo apresente uma base e indique a dimensão.
i) Conjunto das matrizes diagonais.
ii) Conjunto das matrizes escalares.
Solução
i) SejaM o conjunto dado, cujas matrizes têm a forma genérica diag {d1, d2, · · · , dn} ,∀di∈R.
Se di = 0 teremos a matriz nula de ordem, 0n. Logo, 0 ∈ M. Sejam
agora D = diag {d1, d2, · · · , dn} ,D0 = diag {d01, d02, · · · , d0n} ∈ M e dois
escalares α,β ∈ R. Pretende-se verificar que αD + βD0 ∈ M. Faça-se
D00 = αD + βD0.
D00 = αD + βD0
= α · diag {d1, d2, · · · , dn}+ β · diag {d01, d02, · · · , d0n}
= diag {αd1 + βd01,αd2 + βd02, · · · ,αdn + βd0n}
A matriz D00 é obviamente diagonal, o que implica que D00 ∈ M. Con-
cluímos assim que M é um subespaço vectorial.
Note-se que:
diag {d1, d2, · · · , dn} =
= d1 · diag {1, 0, · · · , 0}+ · · ·+ dn · diag {0, 0, · · · , 1}
Assim, {diag {1, 0, · · · , 0} , · · · , diag {0, 0, · · · , 1}} é uma base deM. Como
é constituída por n vectores, M tem dimensão n.
ii) SejaM o conjunto dado, cujas matrizes têm a forma genérica diag {d, d, · · · , d} ,∀d∈R.
Se d = 0 teremos a matriz nula de ordem, 0n. Logo, 0 ∈ M. Sejam
agora D = diag {d, d, · · · , d} ,D0 = diag {d0, d0, · · · , d0} ∈ M e dois es-
calares α,β ∈ R. Pretende-se verificar que αD + βD0 ∈ M. Faça-se
D00 = αD + βD0.
24
1 Espaços Vectoriais
D00 = αD + βD0
= α · diag {d, d, · · · , d}+ β · diag {d0, d0, · · · , d0}
= diag {αd+ βd0,αd+ βd0, · · · ,αdn + βd0}
A matriz D00 é obviamente diagonal, o que implica que D00 ∈ M. Con-
cluímos assim que M é um subespaço vectorial.
Note-se que:
diag {d, d, · · · , d} =
= d · diag {1, 1, · · · , 1}
Assim, a matriz identidade de ordem n é uma base de M. Como é con-
stituída por 1 vector, M tem dimensão 1.
Exercício 23 Seja C o espaço vectorial real das funções reais de variável real,
com derivada contínua no intervalo [−a, a] , a > 0. Verifique se os seguintes
conjuntos são subespaços vectoriais de C.
i) V1 =
©
f ∈ C : f (−x) = f (x) ,∀x∈[−a,a]
ª
ii) V2 =
©
f ∈ C : f (−x) = −f (x) ,∀x∈[−a,a]
ª
Solução
i) Vejamos se 0 ∈ V1. Se f (x) = 0 teremos f (−x) = 0, pelo que f (x) =
f (−x) é satisfeita, logo 0 ∈ V1. Consideremos agora duas funções f (x) , g (x) ∈
V1 e dois escalares α,β ∈ R. Pretende-se verificar que αf (x)+βg (x) ∈ F2.
Faça-se p (x) = αf (x) + βg (x). Queremos mostrar que p (x) = p (−x):
p (x) = αf (x) + βg (x)
(Porque f (x) , g (x) ∈ F2)
= αf (−x) + βg (−x)
= p (−x)
Concluímos assim que V1 é um espaço vectorial.
25
1 Espaços Vectoriais
ii) Vejamos se 0 ∈ V2. Se f (x) = 0 teremos −f (x) = 0, pelo que f (x) = 0.
Logo f (−x) = 0 é satisfeita, pelo que 0 ∈ V2. Consideremos agora duas
funções f (x) , g (x) ∈ V2 e dois escalares α,β ∈ R. Pretende-se verificar
que αf (x) + βg (x) ∈ V2. Faça-se p (x) = αf (x) + βg (x). Queremos
mostrar que −p (x) = p (−x):
p (x) = αf (x) + βg (x)
(Porque f (x) , g (x) ∈ V2)
= α [−f (−x)] + β [−g (−x)]
= −αf (−x)− βg (−x)
= − (αf (−x) + βg (−x))
= −p (−x)
Logo, p (x) = −p (−x), pelo que p (−x) = −p (x). Concluímos assimque
V2 é um espaço vectorial.
Exercício 24 Seja (a1, a2, · · · , an) um vector fixo do espaço vectorial Rn. Ver-
ifique se o conjunto,
F =
(
(x1, x2, · · · , xn) ∈ Rn :
nX
i=1
aixi = 0
)
é um subespaço de Rn.
Solução
Vejamos se 0 ∈ F . Como o vector (x1, x2, · · · , xn) = (0, 0, · · · , 0) satisfaz
obviamente a equação
nP
i=1
aixi = 0, concluímos que 0 ∈ F . Consideremos agora
dois vectores x, y ∈ F e dois escalares α,β ∈ R. Pretende-se verificar que
αx+ βy ∈ F . Faça-se v = αx+ βy. Queremos mostrar que v = (v1, v2, · · · , vn)
satisfaz a equação
nP
i=1
aivi = 0:
v = αx+ βy ⇐⇒
⇐⇒ (v1, v2, · · · , vn) = α (x1, x2, · · · , xn) + β (y1, y2, · · · , yn)⇐⇒
⇐⇒ (v1, v2, · · · , vn) = (αx1,αx2, · · · ,αxn) + (βy1,βy2, · · · ,βyn)
Concluímos que vi = αxi + βyi, i = 1, · · · , n. Vejamos então se o vector,
(v1, v2, · · · , vn) = (αx1 + βy1, · · · ,αxn + βyn)
26
1 Espaços Vectoriais
satisfaz a equação
nP
i=1
aivi = 0:
nX
i=1
aivi =
nX
i=1
ai (αxi + βyi)
=
n
α
X
i=1
aixi +
n
β
X
i=1
aiyi
(Porque x, y ∈ F )
= α · 0 + β · 0 = 0
Concluímos assim que F é um espaço vectorial.
Exercício 25 Seja E um espaço vectorial real. Sabendo que E1 e E2 são sube-
spaços de E, verifique se o conjunto F = {x ∈ E : x = x1 − 3x2, x1 ∈ E1, x2 ∈ E2}
é um subespaço de E.
Solução
Vejamos se 0 ∈ F . Como 0 ∈ E1 e 0 ∈ E2 então 0−3·0 ∈ F . Mas 0−3·0 = 0 ,
pelo que 0−3 ·0 ∈ F . Consideremos agora dois vectores x, y ∈ F e dois escalares
α,β ∈ R. Pretende-se verificar que αx+βy ∈ F . Faça-se z = αx+βy. Queremos
mostrar que z se pode escrever na forma x = z1 − 3z2, z1 ∈ E1, z2 ∈ E2:
z = αx+ βy
(Porque x, y ∈ F , ∃x1,y1∈E1,x2,y2∈E2 tais que)
= α (x1 − 3x2) + β (y1 − 3y2)
= αx1 + βy1 − 3 (αx2 + βy2)µ
Mas E1 e E2 são subespaços vectoriais,
logo αx1 + βy1 ∈ E1 e αx2 + βy2 ∈ E2.
¶
= z1 − 3z2
... onde z1 = αx1 + βy1 ∈ E1 e z2 = αx2 + βy2 ∈ E2.Concluímos assim que
F é um espaço vectorial.
Exercício 26 Quais dos seguintes subconjuntos de R3 são subespaços de R3?
i) W1 =
©
(x, y, z) ∈ R3 : x+ y = 11
ª
ii) W2 =
©
(x, y, z) ∈ R3 : x2 = z2
ª
iii) W3 =
©
(x, y, z) ∈ R3 : x+ 2y + z = 0
ª
27
1 Espaços Vectoriais
Solução
i) Vejamos se 0 ∈ W1. Obviamente que não uma vez que 0 + 0 6= 11.
Concluímos assim que W1 não é um espaço vectorial.
ii) Vejamos se 0 ∈ W2. Dado que, se (x, y, z) = (0, 0, 0), então x2 − z2 =
02 − 02 = 0, pelo que a condição x2 = z2 é verificada e portanto 0 ∈ W2.
Consideremos agora dois vectores u = (u1, u2, u3) , v = (v1, v2, v3) ∈W2 e
dois escalares α,β ∈ R. Pretende-se verificar que αu+ βv ∈ W2. Faça-se
w = αu+ βv. Queremos mostrar que w21 = w
2
3:
w = αu+ βv
= α (u1, u2, u3) + β (v1, v2, v3)
= (αu1 + βv1,αu2 + βv2,αu3 + βv3)
w21 − w23 = (αu1 + βv1)
2 − (αu3 + βv3)2
= α2u21 + 2αβu1v1 + β
2v21 − α2u23 − 2αβu3v3 − β2v23
= α2
¡
u21 − u23
¢
+ β2
¡
v21 − v23
¢
+ 2αβ (u1v1 − u3v3)
(Porque u, v ∈W2)
= 2αβ (u1v1 − u3v3)
Logo, w21 − w23 6= 0, pelo que w21 6= w23. Concluímos assim que W2 não é
um espaço vectorial.
iii) Vejamos se 0 ∈W3. Dado que, se (x, y, z) = (0, 0, 0), então x+2y+z = 0+
2·00 = 0, pelo que a condição x+2y+z = 0 é verificada e portanto 0 ∈W3.
Consideremos agora dois vectores u = (u1, u2, u3) , v = (v1, v2, v3) ∈W3 e
dois escalares α,β ∈ R. Pretende-se verificar que αu+ βv ∈ W3. Faça-se
w = αu+ βv. Queremos mostrar que w1 + 2w2 + w3 = 0:
w = αu+ βv
= α (u1, u2, u3) + β (v1, v2, v3)
= (αu1 + βv1,αu2 + βv2,αu3 + βv3)
w1 + 2w2 + w3 = αu1 + βv1 + 2 (αu2 + βv2) + (αu3 + βv3)
= α (u1 + 2u2 + u3) + β (v1 + 2v2 + v3)
(Porque u, v ∈W2)
= α · 0 + β · 0 = 0
28
1 Espaços Vectoriais
Logo, w1+2w2+w3 = 0, pelo que concluímos ueW3 é um espaço vectorial.
1.4 Miscelânea
Exercício 27 Considere o espaço vectorial Pn sobre R dos polinómios em x
de grau não superior a n. Considere o conjunto P
0
n, subconjunto de Pn, dos
polinómios p (x) que verificam a seguinte condição: p (x) + p (−x) = 0.
a) Mostre que P
0
n é um subespaço de Pn.
b) Determine uma base e a dimensão de P
0
n.
Solução
a) De um modo geral, para mostrar que S é subespaço de um espaço vectorial
V temos de mostrar que:
i) 0 ∈ S.
ii) αu+ βv ∈ S,∀α,β∈K,∀u,v∈S
Se p (x) = 0 ter-se-á p (−x) = 0 pelo que p (x) + p (−x) = 0. Logo,
p (x) = 0 ∈ P 0n.
Consideremos agora dois polinómios p (x) , q (x) ∈ P 0n e dois escalares
α,β ∈ R. Pretende-se verificar que αp (x) + βq (x) ∈ P 0n. Como, por
hipótese p (x) = p (−x) e q (x) = q (−x), ter-se-á αp (x) = αp (−x) e
βq (x) = βq (−x). Consequentemente, αp (x)+βq (x) = αp (−x)+βq (−x),
o que mostra que αp (x) + βq (x) ∈ P 0n.
b) Estudemos os casos em que n é par ou ímpar:
n par Neste caso, os polinómios p (x) ∈ P 0n terão a forma:
p (x) = 0 + α1 · x+ 0x2 + α3x3 + · · ·+ αn−1xn−1 + 0xn
Uma base possível será
©
x, x3, x5, · · · , xn−1ª e a dimensão de P 0n será
n
2 .
n ímpar Neste caso, os polinómios p (x) ∈ P 0n terão a forma:
p (x) = 0 + α1 · x+ 0x2 + α3x3 + · · ·+ 0xn−1 + αnxn
Uma base possível será
©
x, x3, x5, · · · , xnª e a dimensão de P 0n será
n+1
2 .
29
1 Espaços Vectoriais
Exercício 28 Seja Pn o espaço vectorial sobre R dos polinómios em x de grau
não superior a n. Considere o conjunto F, dos polinómios dos polinómios p (x)
pertencentes a Pn que verificam a seguinte condição: p (0) = 0.
a) Mostre que F é um subespaço de Pn.
b) Determine uma base e a dimensão de F.
Solução
a) Vejamos se 0 ∈ F . Se p (x) = 0 teremos p(0) = 0, pelo que 0 ∈ F .
Consideremos agora dois polinómios p (x) , q (x) ∈ F e dois escalares α,β ∈
R. Pretende-se verificar que αp (x)+βq (x) ∈ F . Faça-se s (x) = αp (x)+
βq (x). Queremos mostrar que s (0) = 0:
s (0) = αp (0) + βq (0)
(Porque p (x) , q (x) ∈ F )
= α · 0 + β · 0
= 0
Logo, s (0) = 0. Concluímos assim que F é um espaço vectorial.
b) Consideremos um vector genérico de Pn, digamos p (x), com a seguinte
forma:
p (x) = anx
n + an−1x
n−1 + an−2x
n−2 + · · ·+ a1x+ a0
Para que se verifique p (0) = 0 é necessário que:
p (0) = 0⇐⇒
⇐⇒ an0n + an−10n−1 + an−20n−2 + · · ·+ a10 + a0 = 0⇐⇒
⇐⇒ a0 = 0
Assim, os polinómios p (x) que satisfazem p (0) = 0 terão de ter termo
independente nulo. Concluímos que, se p (x) ∈ F , então a forma de p (x)
será:
p (x) = anx
n + an−1x
n−1 + an−2x
n−2 + · · ·+ a1x
O subespaço F terá como base o conjunto
©
xn, xn−1, xn−2, · · · , xª e a sua
dimensão será n.
30
1 Espaços Vectoriais
Exercício 29 Considerem-se os seguintes subconjuntos de R3:
F1 =
©
x ∈ R3 : x = (x1, 0, 0) ,∀x1∈R
ª
F2 =
©
y ∈ R3 : y = (2y2 + y3, y2, y3) ,∀y2,y3∈R
ª
Mostre que F1 e F2 são subespaços de R3, indicando bases apropriadas e as
respectivas dimensões.
Solução
Exercício 30 Seja Mn (R) o espaço vectorial real das matrizes quadradas de
ordem n.
a) Mostre que o conjunto Hn=
©
A ∈Mn : A = −AT
ª
é um subespaço de Mn
e indique a sua dimensão.
b) Fazendo n = 3, determine uma base para o espaço H3.
c) Considere duas matrizes A e B de Hn. A matriz A · B é simétrica?
Justifique.
Solução
Exercício 31 Considere o espaço vectorial Rn e {u1, u2, · · · , un} uma base
desse espaço. Seja x = x1u1 + x2u2 + · · ·+ xnun um vector deRn.
a) Que condições devem verificar as coordenadas x1, x2, · · · , xn do vector x
para {x, u2, · · · , un} constituir uma nova base do espaço Rn?
b) Determine a matriz de mudança da antiga para a nova base.
Solução
a) Os vectores {x, u2, · · · , un} constituirão uma base de Rn se:
αx+ α2u2 + · · ·+ αnun = 0⇒ α = α2 = · · · = αn = 0
Substituamos x na hipótese e estudemos o resultado:
31
1 Espaços Vectoriais
αx+ α2u2 + · · ·+ αnun = 0⇔
⇔ α
nX
i=1
xiui +
nX
i=2
αiui = 0⇔
αx1u1 +
nX
i=2
(αxi + αi)ui = 0
Sabemos que a única combinação linear nula dos vectores {u1, u2, · · · , un}
é aquela que se obtém com os escalares todos nulos, uma vez que os vec-
tores {u1, u2, · · · , un} são linearmente independentes. Assim, deveremos
ter:



αx1 = 0
αx2 + α2 = 0
· · ·
αxn + αn = 0
O sistema acima, nas variáveis {α,α2, · · · ,αn} deverá ser possível e de-
terminado de modo a que os vectores {x, u2, · · · , un} sejam linearmente
independentes. Matricialmente, o sistema podeser escrito na forma:


x1 0 0 · · · 0
x2 1 0 · · · 0
x3 0 1 · · · 0
...
...
...
...
xn 0 0 · · · 1




α
α2
α3
...
αn


=


0
0
0
...
0


O sistemaa é sempre possível, por ser um sistem homogéneo. será deter-
minado se rA = n, isto é, se a matriz dos sistema for regular. Por seu
turno, a matriz do sistema será regular se o seu determinante for não nulo.
Aplicando o Teorema de Laplace à primeira linha obtém-se:
¯¯¯¯
¯¯¯¯
¯¯¯
x1 0 0 · · · 0
x2 1 0 · · · 0
x3 0 1 · · · 0
...
...
...
...
xn 0 0 · · · 1
¯¯¯¯
¯¯¯¯
¯¯¯ = x1
¯¯¯¯
¯¯¯¯
¯
1 0 · · · 0
0 1 · · · 0
...
...
...
0 0 · · · 1
¯¯¯¯
¯¯¯¯
¯ = x1
conlcuímos portanto que o determinante da matriz do sistema é não nulo,
se x1 6= 0 e portanto os vectores {x, u2, · · · , un} serão linearmente inde-
pendentes se x1 6= 0 ∧ xi ∈ R, i = 2, ..., n .
32
1 Espaços Vectoriais
b) Comecemos por escrever os vectores da nova base, {x, u2, · · · , un}, na base
anterior, {u1, u2, · · · , un}:



x = x1u1 + x2u2 + · · ·+ xnun
u2 = u2
· · ·
un = un
Assim, podemos escrever matricialmente:
£
x u2 · · · un
¤
=
£
u1 u2 · · · un
¤


x1 0 0 · · · 0
x2 1 0 · · · 0
x3 0 1 · · · 0
...
...
...
...
xn 0 0 · · · 1


Assim, a matriz
B =


x1 0 0 · · · 0
x2 1 0 · · · 0
x3 0 1 · · · 0
...
...
...
...
xn 0 0 · · · 1


... é a matriz de mudança de base da base {x, u2, · · · , un} para a base
{u1, u2, · · · , un}. Um vector v ∈ Rn de coordenadas
£
v1 v2 · · · vn
¤T
na base {u1, u2, · · · , un} terá, na base {x, u2, · · · , un} coordenadas
£
w1 w2 · · · wn
¤T
dadas por:


w1
w2
w3
...
wn


= B−1


v1
v2
v3
...
vn


Calculemos B−1 por condensação, não esquecendo que x1 6= 0:
33
1 Espaços Vectoriais


x1 0 0 · · · 0
x2 1 0 · · · 0
x3 0 1 · · · 0
...
...
...
...
xn 0 0 · · · 1
¯¯¯¯
¯¯¯¯
¯¯¯
1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
...
0 0 0 · · · 1


L1 ←
1
x1
L1
−−−−−−−−→


1 0 0 · · · 0
x2 1 0 · · · 0
x3 0 1 · · · 0
...
...
...
...
xn 0 0 · · · 1
¯¯¯¯
¯¯¯¯
¯¯¯
1
x1
0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
...
0 0 0 · · · 1


Li ← Li + (−xi)L1
(i = 2, · · ·n)−−−−−−−−−−−−−−−−→


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
...
0 0 0 · · · 1
¯¯¯¯
¯¯¯¯
¯¯¯
1
x1
0 0 · · · 0
−x2x1 1 0 · · · 0
−x3x1 0 1 · · · 0
...
...
...
...
−xnx1 0 0 · · · 1


Logo,
B−1 =


1
x1
0 0 · · · 0
−x2x1 1 0 · · · 0
−x3x1 0 1 · · · 0
...
...
...
...
−xnx1 0 0 · · · 1


Exercício 32 Seja V um espaço vectorial real de dimensão 3 e x1, x2, x3 e
x4 elementos distintos de V. Adicionalmente assuma que {x1, x2, x3, x4} é um
sistema de geradores de V satisfazendo a condição:
x1 + x2 + x3 + x4 = 0
a) Mostre que {x1, x2, x3} é uma base de V.
b) Um raciocínio semelhante permite mostrar que {x1, x3, x4} é uma base de
V. Denotando as duas bases por:
α = {x1, x2, x3} e β = {x1, x3, x4}
... determine a matriz de mudança de base da base α para a base β.
34
1 Espaços Vectoriais
Solução
a) Comecemos por mostrar que {x1, x2, x3} é um sistema de geradores de V .
Seja então v ∈ V . Sabemos que existem escalares α1,α2,α3,α4 ∈ R tais
que, uma vez que, por hipótese, {x1, x2, x3, x4} é um sistema de geradores
de V :
α1x1 + α2x2 + α3x3 + α4x4 = v
Dado que x1 + x2 + x3 + x4 = 0, então:
x4 = −x1 − x2 − x3
Substituindo na expressão de v, obtém-se:
α1x1 + α2x2 + α3x3 + α4x4 = v ⇐⇒
⇐⇒ α1x1 + α2x2 + α3x3 + α4 (−x1 − x2 − x3) = v ⇐⇒
⇐⇒ (α1 − α4)x1 + (α2 − α4)x2 + (α3 − α4)x3 = v ⇐⇒
Conclui-se assim que é possível escrever o vector v como combinação linear
dos vectores {x1, x2, x3}. Com v é um vector genérico de V , conclui-se
que {x1, x2, x3} é um sistema de geradores de V . Adicionalmente, como
dim (V ) = 3 e {x1, x2, x3} é um sistema de geradores, em número de 3,
conclui-se que {x1, x2, x3} tem de ser uma base de V .
b) Comecemos por escrever os vectores da nova base, β = {x1, x3, x4}, na
base anterior, α = {x1, x2, x3}:



x1 = 1 · x1 + 0 · x2 + 0 · x3
x3 = 0 · x1 + 0 · x2 + 1 · x3
x4 = (−1) · x1 + (−1) · x2 + (−1) · x3
Assim, podemos escrever matricialmente:
£
x1 x3 x4
¤
=
£
x1 x2 x3
¤ 1 0 −10 0 −1
0 1 −1


Assim, a matriz
35
1 Espaços Vectoriais
B =


1 0 −1
0 0 −1
0 1 −1


... é a matriz de mudança de base da base α = {x1, x2, x3} para a base
β = {x1, x3, x4}. Um vector v ∈ V de coordenadas
£
v1 v2 v3
¤T
na base α = {x1, x2, x3} terá, na base β = {x1, x3, x4} coordenadas£
w1 w2 w3
¤T
dadas por:


w1
w2
w3

 = B−1


v1
v2
v3


Calculemos B−1, com recurso à Teoria dos Determinantes:
|B| =
¯¯¯¯
¯¯ 1 0 −10 0 −1
0 1 −1
¯¯¯¯
¯¯ = 1.
Bˆ =


1 0 0
−1 −1 −1
0 1 0


T
=


1 −1 0
0 −1 1
−1 −1 0

.
Logo, B−1 = 1|B| Bˆ = Bˆ =


1 −1 0
0 −1 1
−1 −1 0

.
Exercício 33 Seja S um conjunto de vectores linearmente independentes do
espaço vectorial V sobre o corpo K e x um elemento de V não pertencente a S.
Mostre que S ∪ {x} é um conjunto de vectores linearmente dependentes se e só
se x pertence ao subespaço gerado pelo conjunto S.
Solução
Seja S = {e1, · · · , ep}.
(=⇒) Suponhamos que S ∪ {x} é um conjunto de vectores linearmente depen-
dentes. Pretende mostrar-se que x pertence ao subespaço gerado pelo
conjunto S.
Se S ∪ {x} é um conjunto de vectores linearmente dependentes então é
possível escrever uma combinação nula destes vectores com pelo menos
um escalar não nulo, isto é:
∃αi∈K : α1e1 + α2e2 + · · ·αpep + αp+1x = 0
36
1 Espaços Vectoriais
Suponhamos que αp+1 = 0. Então é possível escrever uma combinação
linear nula dos vectores de S com pelo menos um escalar não nulo. Con-
sequentemente, os vectores de S serão, por definição, linearmente depen-
dentes, o que é um absurdo. Logo, αp+1 6= 0. Sendo assim, poderemos
escrever:
α1e1 + α2e2 + · · ·αpep + αp+1x = 0⇐⇒
x = − α1
αp+1
e1 −
α2
αp+1
e2 − · · ·− αp
αp+1
ep
A expressão anterior mostra que x pode ser escrito como combinação linear
dos vectores de S, ou, por outras palavras, x pertence ao subespaço gerado
pelo conjunto S.
(⇐=) Suponhmos que x pertence ao subespaço gerado pelo conjunto S. Pretende
mostrar-se que S∪{x} é um conjunto de vectores linearmente dependentes.
Se x pertence ao subespaço gerado pelo conjunto S, então x pode ser
escrito como combinação linear dos vectores de S:
∃αi∈K : x = α1e1 + α2e2 + · · ·+ αpep
Reorganizando os termos da expressão anterior obtemos:
∃αi∈K : x− α1e1 − α2e2 − · · ·− αpep = 0
Obtivemos assim uma combinação linear nula dos vectores do conjunto
S ∪ {x} com pelo menos um escalar não nulo (precisamente o escalar do
vector x que é 1). Então os vectores do conjunto S ∪ {x} são linearmente
dependentes.
Exercício 34 Seja A uma matriz real de ordem n. Mostre que a dimensão do
subespaço gerado por
©
I,A,A2, A3, · · ·ª é inferior ou igual a n.
Solução
Exercício 35 SeV é um espaço vectorial real de dimensão finita e β = {x1, · · · , xm}
uma base de V, diga o que entende por coordenadas de um vector x ∈ V relati-
vamente à base β. Indique ainda por que razão estas coordenadas se encontram
definidas univocamente.
37
1 Espaços Vectoriais
Solução
Exercício 36 Verifique se o seguinte subconjunto de R4 é um subespaço de R4?
W =
©
(x, y, z, w) ∈ R4 : 3x+ y = 0, x+ y + z = w
ª
Solução
Exercício 37 Verifique se o seguinte subconjunto de R3 é um subespaço de R3?
W = {(r, r + 2, 0) : r ∈ R}
Solução
Exercício 38 Determine o escalar k de modo a que os vectores com as seguintes
coordenadas sejam linearmente independentes?
x1 =


1
0
0
1

 ; x2 =


0
1
−1
1

 ; x3 =


−1
0
−1
0

 ; x4 =


1
1
1
k


Solução
Exercício 39 Determine o escalar λ de modo a que os seguintes vectores sejam
linearmente independentes?
x1 = (λ,−1,−1) ; x2 = (−1,λ,−1) ; x3 = (−1,−1,λ)
38
1 Espaços Vectoriais
Solução
Pretende-se portanto determinar os valores de λ tais que:
α1x1 + α2x2 + α3x3 = 0⇒ α1 = α2 = α3 = 0
α1x1 + α2x2 + α3x3 = 0⇐⇒
⇐⇒ α1 (λ,−1,−1) + α2(−1,λ,−1) + α3 (−1,−1,λ) = 0⇐⇒
(α1λ− α2 − α3,−α1 + α2λ− α3,−α1 − α2 + α3λ) = 0
Esta expressão é equivalente, matricialmente, ao seguinte sistema de equações:


λ −1 −1
−1 λ −1
−1 −1 λ




α1
α2
α3

 = 0
Vejamos quais as condições sobre λ para que o sistema seja possível e de-
terminado. É esta a única solução que nos interessa, pois significa que α1 =
α2 = α3 = 0 é a única solução do sistema fazendo, consequentemente, com
que os vectores dados sejam linearmente independentes. O sistema é possível
se a caracterísitca da matriz do sistema é igual à ordem, isto é, se a matriz do
sistema é regular.
A regularidade da matriz pode ser determinada através do cálculo do seu
determinante:
¯¯¯¯
¯¯ λ −1 −1−1 λ −1
−1 −1 λ
¯¯¯¯
¯¯ = 0 = µ L1 ← L1 + λL3L2 ← L2 + (−1)L3
¶
¯¯¯¯
¯¯ 0 −1− λ −1 + λ
2
0 λ+ 1 −1− λ
−1 −1 λ
¯¯¯¯
¯¯ = (Teorema de Laplace à 1a coluna)
(−1) (−1)3+1
¯¯¯¯
−1− λ −1 + λ2
λ+ 1 −1− λ
¯¯¯¯
= (−1)
h
(1 + λ)
2 − (1 + λ)
¡
−1 + λ2
¢i
= (−1) (1 + λ)
£
1 + λ+ 1− λ2
¤
Concluímos assim que o determinante da matriz do sistema será nulo se (1 + λ)
£
1 + λ+ 1− λ2
¤
=
0. A solução é λ = 2 ∨ λ = −1. Deste modo, de modo a que o sistema tenha
solução determinada é necessário que λ 6= 2∧λ 6= −1. Esta é também a condição
sobre λ para que os vectores {x1, x2, x3}sejam linearmente independentes.
39
1 Espaços Vectoriais
Exercício 40 Seja W o subespaço de R4 gerado pelos vectores?
x1 = (1,−2, 0, 3) ; x2 = (2,−5,−3, 6) ; x3 = (2,−1, 4, 7)
Verifique se o vector v = (1,−2, 0, 3) pertence a W.
Solução
Pretende-se determinar, se existir, um conjunto de escalares {α1,α2,α3} tais
que α1x1 + α2x2 + α3x3 = v.
α1x1 + α2x2 + α3x3 = v ⇐⇒
⇐⇒ α1 (1,−2, 0, 3) + α2 (2,−5,−3, 6) + α3 (2,−1, 4, 7) = (1,−2, 0, 3)⇐⇒
(α1 + 2α2 + 2α3,−2α1 − 5α2 − α3,−3α2 + 4α3, 3α1 + 6α2 + 7α3) = (1,−2, 0, 3)
Esta expressão é equivalente, matricialmente, ao seguinte sistema de equações:


1 2 2
−2 −5 −1
0 −3 4
3 6 7




α1
α2
α3

 =


1
−2
0
3


Em geral, dever-se-á estudar o sistema de equações acima: se for possível,
conclui-se que v ∈ W , caso contrário v não pertence ao espaço gerado pelos
vectores dados.
Neste caso em particular, tem-se v = x1,pelo que, se fizermos α1 = 1 e
α2 = α3 = 0 teremos α1x1 + α2x2 + α3x3 = v e portanto v ∈W .
Exercício 41 Dê uma caracterização do subespaço W ⊂ E gerado pelos vec-
tores com as seguintes coordenadas:
x1 =


1
−3
2

 ; x2 =


2
−1
−1


Solução
Vamos construir uma matriz cujas linhas são os transpostos dos vectores
dados:
A =
·
1 −3 2
2 −1 −1
¸
40
1 Espaços Vectoriais
Por operações elementares sobre linhas podemos transformar a matriz A
numa matriz A0. Concluímos que as linhas de A0 se podem escrever como
combinação linear das linhas de A. Consequentemente, as linhas de A podem
ser escritas como combinação linear das linhas de A0 o que significa que os
vectores associados às linhas de A geram o mesmo subespaço que os vectores
associados às linhas de A0. condensemos então a matriz A:
·
1 −3 2
2 −1 −1
¸
L2 ← L2 + (−2)L1−−−−−−−−−−−−−−→·
1 −3 2
0 5 −7
¸
L2 ← L2 + (−2)L1−−−−−−−−−−−−−−→
Esta operação elementar é suficiente para verificar que W tem dimensão 2 e
tem como base os vectores x1 e x2 dados ou, de modo equivalente os vectores
obtidos por aplicação da operação elementar e que são dados por:
x01 =


1
−3
2

 ; x02 =


0
5
−7


Em resumo, v pertence ao subespaço gerado por {x1, x2} se e só pertence ao
subespaço gerado por {x01, x02}.
Exercício 42 Qual a dimensão do subespaço de R5 gerado pelos vectores:
x1 = (2,−1, 3, 5,−2) ; x2 = (2,−1, 3, 5,−2) ;
x3 = (5,−3, 8, 4, 1) ; x4 = (1, 0, 1, 11, 7)
Solução
Exercício 43 Determine uma base de R3 contendo os vectores {(1, 2, 5) , (0, 1, 2)}.
Solução
Necessitamos de encontrar um vector (a, b, c) tal que:
(a, b, c) 6= α1 (1, 2, 5) + α2 (0, 1, 2) ,∀α1,α2∈R
Porquê? Porque dim
¡
R3
¢
= 3 e os vectores {(1, 2, 5) , (0, 1, 2)} já são lin-
earmente independentes. Se encontrarmos um terceiro vector, (a, b, c), que não
41
1 Espaços Vectoriais
possa ser escrito como combinação linear dos vectores {(1, 2, 5) , (0, 1, 2)} deter-
minamos um sistema de vectores {(1, 2, 5) , (0, 1, 2) , (a, b, c)} linearmente inde-
pendentes. Como são em número de 3, constituem uma base de R3.
Consideremos então a equação:
α1 (1, 2, 5) + α2 (0, 1, 2) = (a, b, c)⇐⇒
⇐⇒ (α1, 2α1 + α2, 5α1 + 2α2) = (a, b, c)
Esta expressão é equivalente, matricialmente, ao seguinte sistema de equações:


1 0
2 1
5 2




α1
α2
α3

 =


a
b
c


Pretende-se obviamente, que o sistema seja impossível. Estudemos a sua
matriz ampliada:
[A|B] =


1 0 a
2 1 b
5 2 c

 L2 ← L2 + (−2)L1
L3 ← L3 + (−5)L1−−−−−−−−−−−−−−−→

1 0 a
0 1 b− 2a
0 2 c− 5a

L3 ← L3 + (−1)L2−−−−−−−−−−−−−−→


1 0 a
0 1 b− 2a
0 0 c− 2b− a


O sistema é impossível se rA 6= rA|B. Como rA = 2 pretende-se que rA|B = 3.
Para que tal aconteca é necessário que c− 2b− a 6= 0. Existem muitos vectores
(a, b, c) nestas circunstâncias, por exemplo, a = 1 e b = c = 0. O vector que
procuramos é portanto (a, b, c) = (1, 0, 0).
Exercício 44 Determine as coordenadas do vector (3, 2, 1) na base {(1, 0, 2) , (2, 1, 0) , (0, 3, 5)}
em R3.
Solução
Pretende-se determinar escalares β1,β2,β3 ∈ R tais que:
β1 (1, 0, 2) + β2 (2, 1, 0) + β3 (0, 3, 5) = (3, 2, 1)⇐⇒
⇐⇒ (β1 + 2β2,β2 + 3β3, 2β1 + 5β3) = (3, 2, 1)
42
1 Espaços Vectoriais
A última igualdade é equivalente ao seguinte sistema de 3 equações nas
variáveis β1,β2 e β3 em que a matriz do sistema é dada por


1 2 0
0 1 3
2 0 5

.



β1 + 2β2 = 3
β2 + 3β3 = 2
2β1 + 5β3 = 1
A solução deste sistema fornecerá as coordenadas pretendidas. Sabemos que
o sistema será possível e determinado uma vez que um vector se escreve de
forma unica numa certa base. Construamos a matriz ampliada do sistema e
resolvâ-mo-lo por condensação:
[A|B] =


1 2 0 3
0 1 3 2
2 3 5 1

L3 ← L3 + (−2)L1−−−−−−−−−−−−−−→


1 2 0 3
0 1 3 2
0 −1 5 −5

L3 ← L3 + L2−−−−−−−−−−→


1 2 0 3
0 1 3 2
0 0 8 −3

L3 ←
1
8
L3
−−−−−−−→


1 2 0 3
0 1 3 2
0 0 1 −38

L2 ← L2 + (−3)L3−−−−−−−−−−−−−−→


1 2 0 3
0 1 0 278
0 0 1 −38

L1 ← L1 + (−2)L2−−−−−−−−−−−−−−→


1 0 0 −154
0 1 0 278
0 0 1 − 38


A solução do sistema será portanto β1 = −154 , β2 =
27
8 e β3 = −
3
8 . Concluí-
mos assim que:
µ
−15
4
¶
(1, 0, 2) +
27
8
(2, 1, 0) +
µ
−3
8
¶
(0, 3, 5) = (3, 2, 1)
Exercício 45 Mostre que as soluções do sistema de equações lineares com co-
eficientes reais,
43
1 Espaços Vectoriais



3x+ 2y + 6z = 0
−x− y + 2z = 0
2x+ y + 8z = 0
... constituem um subespaço de R3. Indique uma base e a dimensão deste
subespaço.
Solução
Exercício 46 Determine, para cada valor do escalar m ∈ R, o subespaço de R3
que constitui solução do seguinte sistema de equações:



3x+ 2y +mz = 0
mx− y + 4z = 0
2x+ y + 3z = 0
Solução
Exercício 47 Considere o espaço vectorial R3, uma base α = {(1, 0, 1) , (0, 2, 0) , (1, 2, 3)}
e uma base α = {(1, 0, 0) , (2, 0, 1) , (0, 0, 3)}. As coordenadas de um vector
v ∈ R3 na base α são
£
x y z
¤T
, enquanto que na base β são dadas por£
x0 y0 z0
¤T
. Descreva matricialmente a relação entre estes dois sistemas
de coordenadas.
Solução
Exercício 48 Considere os vectores de R3:
a1 = (1, 5, 9) ; a2 = (2, 6, 10) e b = (4, 8, 12)
a) Verifique se b pertence ao espaço gerado pelos vectores {a1, a2}.
b) Verifique se {a1, a2} pode gerar o espaço R3.
c) Verifique se o conjunto de vectores {a1, a2, b} é linearmente independente.
Solução
44
1 Espaços Vectoriais
a) É necessário verificar se existem escalares β1,β2 ∈ R tais que:
β1a1 + β2a2 = b⇐⇒
⇐⇒ β1 (1, 5, 9) + β2 (2, 6, 10) = (4, 8, 12)⇐⇒
⇐⇒ (β1 + 2β2, 5β1 + 6β2, 9β1 + 10β2) = (4, 8, 12)
A última igualdade é equivalente ao seguinte sistema de 3 equações nas
variáveis β1 e β2 em que a matriz do sistema é dada por


1 2
5 6
9 10

.



β1 + 2β2 = 4
5β1 + 6β2 = 8
9β1 + 10β2 = 12
Se este sistema for possível, então b pertence ao espaço gerado pelos vec-
tores{a1, a2}, caso contrário, a resposta é negativa. Construamos a matriz
ampliada e reolvâ-mo-lo por condensação:
[A|B] =


1 2 4
5 6 8
9 10 12

 L2 ← L2 + (−5)L1
L3 ← L3 + (−9)L1−−−−−−−−−−−−−−−→

1 2 4
0 −4 −12
0 −8 −24

L3 ← L3 + (−2)L2−−−−−−−−−−−−−−→


1 2 4
0 −4 −12
0 0 0


Dado que rA = rA|B = 2, o sistema é possível e determinado, logo o vector
b pertence ao espaço gerado pelos vectores {a1, a2} uma vez que pode ser
escrito como combinação linear destes últimos.
b) A resposta é imediatamente negativa, uma vez que dim
¡
R3
¢
= 3. Tal
significa que um sistema de geradores de R3 deverá ter, no mínimo, 3
vectores, o que não é o caso. Poderemos no entanto recorrer à definição e
verificar que, dado um vector genérico de R3, digamos (x, y, z), ne sempre
é possível escrever (x, y, z) como combinação dos vectores {a1, a2}.
Verifiquemos assim, se existem escalares β1,β2 ∈ R tais que:
β1a1 + β2a2 = (x, y, z)⇐⇒
⇐⇒ β1 (1, 5, 9) + β2 (2, 6, 10) = (x, y, z)⇐⇒
⇐⇒ (β1 + 2β2, 5β1 + 6β2, 9β1 + 10β2) = (x, y, z)
45
1 Espaços Vectoriais
A última igualdade é equivalente ao seguinte sistema de 3 equações nas
variáveis β1 e β2 em que a matriz do sistema é dada por


1 2
5 6
9 10

.



β1 + 2β2 = x
5β1 + 6β2 = y
9β1 + 10β2 = z
Se este sistema for possível para qualquer (x, y, z) ∈ R3, então os vec-
tores {a1, a2} serão geradores de R3,caso contrário, a resposta é negativa.
Construamos a matriz ampliada e reolvâ-mo-lo por condensação:
[A|B] =


1 2 x
5 6 y
9 10 z

 L2 ← L2 + (−5)L1
L3 ← L3 + (−9)L1−−−−−−−−−−−−−−−→

1 2 x
0 −4 y − 5x
0 −8 z − 9x

L3 ← L3 + (−2)L2−−−−−−−−−−−−−−→


1 2 4
0 −4 −12
0 0 z − 2y + x


Assim, o sistema será possível se z-2y+x=0. Qualquer vector (x, y, z) ∈ R3
que não satisfaça esta condição não pode ser escrito como combinação
linear dos vectores {a1, a2}. Concluímos assim que {a1, a2} não são sufi-
cientes para gerar o espaço R3.
c) Tipicamente, construímos uma combinação linear nula destes vectores e
verificamos se é satisfeita apenas com os escalares nulos. Se a resposta for
afirmativa os vectores são linearmente independentes, caso contrário serão
lineramente dependentes.
β1a1 + β2a2 + β3b = 0⇐⇒
⇐⇒ β1 (1, 5, 9) + β2 (2, 6, 10) + β3 (4, 8, 12) = 0⇐⇒
⇐⇒ (β1 + 2β2 + 4β3, 5β1 + 6β2 + 8β3, 9β1 + 10β2 + 12β3) = (4, 8, 12)
A última igualdade é equivalente ao seguinte sistema de 3 equações nas var-
iáveis β1, β2 e β3 em que a matriz do sistema é dada por


1 2 4
5 6 8
9 10 12

.
46
1 Espaços Vectoriais



β1 + 2β2 + 4β3 = 0
5β1 + 6β2 + 8β3 = 0
9β1 + 10β2 + 12β3 = 0
Se o sistema for determinado (possível é sempre, por ser homogéneo),
a única solução será β1 = β2 = β3 = 0, pelo que os vectores dados
serão linearmente independentes. Pretende-se portanto que o sistema seja
determinado, isto é rA = 3.
Construamos a matriz ampliada do sistema e estudamos a respectiva car-
acterístca:
[A|B] =


1 2 4 0
5 6 8 0
9 10 12 0

 L2 ← L2 + (−5)L1
L3 ← L3 + (−9)L1−−−−−−−−−−−−−−−→

1 2 4 0
0 −4 −12 0
0 −8 −24 0

L3 ← L3 + (−2)L2−−−−−−−−−−−−−−→


1 2 4 0
0 −4 −12 0
0 0 0 0


Dado que rA = rA|B = 2 < 3, o sistema é possível e indeterminado com
grau de indeterminação d = n−rA = 3−2 = 1, o que significa que existem
outras soluções para o sistema que não a solução β1 = β2 = β3 = 0, pelo
que os vectores dados são linearmente dependentes.
47

Outros materiais

Materiais relacionados

Perguntas relacionadas

Perguntas Recentes