Prévia do material em texto
CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA
Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru
CAPÍTULO 7
DISTÂNCIAS E ÂNGULOS
1 DISTÂNCIAS
Todos os conceitos vetoriais que são necessários para o cálculo de distâncias
e ângulos, de certa forma, já foram estudados nos capítulos anteriores. Apenas
vamos utilizá-los para desenvolver este capítulo. As fórmulas que serão
demonstradas são consequências da aplicação destes conceitos. Portanto,
acreditamos que a memorização de tais fórmulas não seja necessária, mas sim a
compreensão dos conceitos aplicados.
É importante lembrar que, considera-se como sendo a distância entre dois
objetos quaisquer a menor distância entre eles e, geometricamente, a menor
distância entre dois objetos é sempre a perpendicular.
1.1 Distância entre dois pontos
Sejam )z,y,x(Be)z,y,x(A 222111 dois pontos quaisquer do ℜ
3. A distância
ABd , entre os pontos A e B, coincide com o módulo do vetor AB , ou seja:
|AB|dAB = . Assim: )zz,yy,xx(ABAB 121212 −−−=−= . Portanto:
2
12
2
12
2
12AB )zz()yy()xx(|AB|d −+−+−==
1.2 Distância de um ponto a uma reta
Sejam P um ponto e vtAX:)r(
r
+= uma reta qualquer no ℜ3. A distância do
ponto P a reta (r) coincide com a altura relativa ao vértice P do triângulo
determinado pelos vetores AP e v
r
. Então hd )r(P = . Vamos determinar esta altura
h da seguinte forma. Da geometria plana a área do triângulo é dada por
2
h|v|
2
alturabase
AT
⋅
=
⋅
=
r
. Do cálculo vetorial a área do triângulo é dada por
2
|vAP|
AT
r
×
= ⇒
2
|vAP|
2
h|v|
rr
×
=
⋅
. Portanto:
|v|
|vAP|
d )r(P r
r
×
=
|AB|dAB =
B A
(r)
hd )r(P =
AP
v
r
P
A
CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA
Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru
1.3 Distância de um ponto a um plano
Sejam )z,y,x(P ooo um ponto não contido no plano 0dczbyax:)( =+++π ,
cujo vetor normal é )c,b,a(n =
r
. Pela figura abaixo, a distância do ponto P ao plano
(π), denotada por )(PD π , coincide com a distância entre os pontos P e Q, que é igual
ao módulo do vetor QP , onde Q é a projeção ortogonal do ponto P sobre o plano
(π) e, portanto, )(Q π∈ . Seja Q(x,y,z), então: )zz,yy,xx(QP ooo −−−= . Os
vetores neQP
r
são paralelos, logo o ângulo entre eles é 0o. Então:
o0cos|n||QP|nQP ⋅⋅=⋅
rr
⇒ 222)(Pooo cbaD)c,b,a()zz,yy,xx( ++⋅=⋅−−− π ⇒
222
ooo
)(P
cba
)czbyax(czbyax
D
++
++−++
=π (*). Da equação do plano vem que
dczbyax −=++ . Substituindo a expressão (*) e tomando seu módulo (distância
não pode ser negativa) tem-se:
222
ooo
)(P
cba
|dczbyax|
D
++
+++
=π
1.4 Distância entre duas retas
Sejam duas retas 11 vtAX:)r(
r
+= e 22 vtAX:)s(
r
+= . Se as retas forem
coincidentes, concorrentes ou perpendiculares a distância entre elas será adotada
com sendo igual a zero.
a) Reta Paralelas: A distância entre duas retas paralelas é constante e pode ser
determinada calculando-se a distância de um ponto qualquer de uma delas a outra,
como foi feito no item (1.2) para calcular a distância de um ponto a uma reta.
|v|
|vAA|
d
2
212
rs r
r
×
=
n
r
P
Q )(π
)(PDQP π=
12AA rsd
2v
r
A2
A1 (r)
(s)
CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA
Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru
b) Reta Reversas ou Ortogonais: A distância entre as retas (r) e (s) reversas ou
ortogonais, coincide com a altura do paralelepípedo determinado pelos vetores
diretores 21 vev
rr
e pelo vetor 21AA . Na figura abaixo temos:
Da geometria espacial, o volume do paralelepípedo é igual a hAbVP ⋅= e do cálculo
vetorial: |]v,v,AA[|V 2121P
rr
= . A área da base Ab é a área de um paralelogramo
determinado pelos vetores 21 vev
rr
e a altura rsdh = . Então:
|]v,v,AA[|hAb 2121
rr
=⋅ ⇒ |]v,v,AA[|d|vv| 2121rs21
rrrr
=⋅× ⇒
|vv|
|]v,v,AA[|
d
21
2121
rs rr
rr
×
=
1.5 Distância entre dois planos
Sejam )( 1π e )( 1π dois planos de equações 0dzcybxa:)( 11111 =+++π e
0dzcybxa:)( 22222 =+++π . Se os planos forem coincidentes, concorrentes ou
perpendiculares a distância entre eles será adotada com sendo igual a zero. No
caso em que eles forem paralelos, a distância entre eles é a distância de qualquer
ponto de um deles ao outro. Assim:
222
ooo
cba
|dczbyax|
D
21
++
+++
=ππ
1.6 Distância entre uma reta e um plano
Sejam vtAX:)r(
r
+= uma reta e 0dczbyax:)( =+++π um plano. Caso
a reta esteja contida no plano, ou for concorrente ou perpendicular ao plano a
distância entre eles e adotada como sendo zero. No caso em que a reta é paralela
ao plano, a distância entre eles é a distância de qualquer ponto da reta (r) ao plano
(π ). Assim:
222
ooo
r
cba
|dczbyax|
d
++
+++
=π
21
D ππ
P
)( 1π
)( 2π
πrd
A
(r)
(π)
hdrs =
1v
r
1v
r
2v
r
1A
2A
(r)
(s)
⊡
CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA
Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru
Exemplo (1): Determine a distância do ponto P, interseção das retas
2
2z
3
1y
3x:)r(
−
−
=
+
=− e
1
1z
1y
3
1x
:)s(
−
−
=−=
−
, ao plano 03z2yx2:)( =−+−π .
Solução: Fazendo P=(r)∩(s), temos: de
+−=⇒
−
−
=−
−=⇒
+
=−
(**)8x2z
2
2z
3x
(*)10x3y
3
1y
3x
:)r( .
Substituindo (*) e (**) em (s), tem-se: 4x110x3
3
1x
=⇒−−=
−
. Portanto,
P(4,2,0). Usando a fórmula da distância de um ponto a um plano tem-se:
222
ooo
)(P
cba
|dczbyax|
D
++
+++
=π , onde o vetor normal )2,1,2()c,b,a(n −==
r
e o ponto
)0,2,4()z,y,x(P ooo = . Então:
9
|328|
2)1(2
|302242|
D
222
)(P
−−
=
+−+
−⋅+−⋅
=π ⇒ .c.u1D )(P =π
(u.c. = unidades de comprimento).
Exemplo (2): Determine a distância entre as retas
1
2z
2
1y
3
x
:)r(
−
+
=
−
= e
2
1z
4
y
6
1x
:)s(
+
=
−
=
−
−
.
Solução: Note que as retas (r) e (s) são paralelas e de
−=
−
)1,2,3(v
)2,1,0(A
:)r(
1
1
r e de
−−=
−
)2,4,6(v
)1,0,1(A
:)s(
2
2
r . Vamos calcular a distância do ponto A1 à reta (s) usando a
expressão
|v|
|vAA|
d
2
221
rs r
r
×
= . Então: k10j8i2
246
111
kji
vAA 221
rrr
rrr
r
++−=
−−
−−=× ⇒
422|AA| 12 = e 142|v| 2 =
r
. Voltando a expressão: .c.u3d
142
422
d rsrs =⇒=
2 ÂNGULOS
2.1 Ângulo entre dois vetores:
O ângulo entre dois vetores CDveABu ==
rr
, não nulos, é o ângulo
DPB)v,u(ang
)rr
==θ entre os segmentos orientados que representam os vetores,
com a restrição oo 1800 ≤θ≤ , quando os vetores são transportados para um
mesmo ponto de origem P.
CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA
Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru
Através da expressão do produto escalar entre dois vetores, podemos
determinar o ângulo θ entre eles em função do valor do cosθ. Assim, sempre
usaremos a expressão abaixo para determinar o ângulo entre dois vetores.
Portanto, θ⋅⋅=⋅ cos|v||u|vu
rrrr
⇒
|v||u|
vu
cos rr
rr
⋅
⋅
=θ . Como oo 1800 ≤θ≤ , neste
intervalo temos que )180cos(cos o θ−−=θ ⇒ |)180cos(||cos|cos o θ−=θ=θ .
2.2 Ângulo entre duas retas
Sejam duas retas 11 vtAX:)r(
r+= e 22 vtAX:)s(
r
+= . O ângulo α entre as
duas retas é sempre o menor ângulo formado por elas, donde podemos concluir
que oo 900 ≤α≤ .
Se as retas forem coincidentes ou paralelas o ângulo entre elas é adotado
com sendo 0o. Se as retas forem perpendiculares ou ortogonais, por definição, o
ângulo entre elas já está definido e é igual a 90o.
No caso em que as retas são concorrentes ou reversas, podemos determinar
o ângulo entre elas através do ângulo entre seus vetores diretores. Assim, seja α o
ângulo entre as retas (r) e (s) e seja θ o ângulo entre seus vetores diretores.
Como vimos anteriormente temos que
|v||v|
vv
cos
21
21
rr
rr
⋅
⋅
=θ . Então:
a) se θ=α⇒≤θ≤ oo 900 b) se
θ−=α⇒≤θ< ooo 18018090
θ
α
2v
r
(s)
(r) 1
v
r
α=θ
2v
r
(s)
(r)
1v
r
u
r
A B
v
r
D
C
D
B
v
r
u
r
CA ≡
θ
CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA
Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru
Portanto, em ambos os casos a) e b) temos que: |)180cos(||cos|cos o θ−=θ=α ⇒
|v||v|
vv
cos
21
21
rr
rr
⋅
⋅
=α .
2.3 Ângulo entre dois planos
Considere dois planos de equações gerais 0dzcybxa:)( 11111 =+++π e
0dzcybxa:)( 22222 =+++π com seus respectivos vetores normais 21 nen
rr
. O
ângulo α entre os dois planos é sempre o menor ângulo formado por eles e
oo 900 ≤α≤ .
Se os planos forem coincidentes ou paralelos o ângulo entre eles é adotado
com sendo 0o. Se os planos forem perpendiculares, por definição, o ângulo entre
eles já está definido e é igual a 90o.
No caso em que os planos são concorrentes, podemos determinar o ângulo
entre eles através do ângulo entre seus vetores normais. Assim, seja α o ângulo
entre os planos (π1) e (π2) e seja θ o ângulo entre seus vetores normais. Então:
a) se θ=α⇒≤θ≤ oo 900 b) se
θ−=α⇒≤θ< ooo 18018090
Portanto, em ambos os casos a) e b) temos que: |)180cos(||cos|cos o θ−=θ=α ⇒
|n||n|
nn
cos
21
21
rr
rr
⋅
⋅
=α .
2.4 Ângulo entre uma reta e um plano
Considere uma reta de equação vetorial vtAX:)r(
r
+= , cujo vetor diretor é v
r
e um plano de equação geral 0dczbyax:)( =+++π , cujo vetor normal é n
r
. O
ângulo α entre a reta e o plano e o menor ângulo formado por eles e oo 900 ≤α≤ .
θ=α
)( 2π
)( 1π
α
1n
r
2n
r
2n
r
1n
r
α
)( 2π
)( 1π
α
1n
r
2n
r
2n
r
1n
r
θ
CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA
Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru
Caso a reta seja paralela ao plano, em particular, se ela estiver contida no
plano o ângulo entre eles é adotado como sendo 0o. Se a reta for perpendicular ao
plano, por definição, o ângulo entre eles já está definido e é igual a 90o.
No caso em que a reta é concorrente ao plano, podemos determinar o ângulo
entre eles através do ângulo entre o vetor diretor da reta e o vetor normal ao
plano. Assim, seja α o ângulo entre a reta (r) e o plano (π) e seja θ o ângulo entre
o vetor diretor da reta e o vetor normal ao plano. Então:
a) se θ−=α⇒≤θ≤ ooo 90900 b) se ooo 9018090 −θ=α⇒≤θ<
Nestes casos devemos determinar o ângulo θ entre o vetor diretor da reta e o
vetor normal ao plano entre através do valor de
|n||v|
nv
cos rr
rr
⋅
⋅
=θ e,
posteriormente, determinar o ângulo α , uma vez que: a) se
θ−=α⇒≤θ≤ ooo 90900 e b) se ooo 9018090 −θ=α⇒≤θ< .
Exemplo (3): Determine o ângulo entre os planos 03zyx2:)( 1 =+−+π e
04yx:)( 2 =−+π .
Solução: Estamos interessados em determinar o ângulo α entre os planos, em
função do ângulo θ entre os vetores normais que são )0,1,1(ne)1,1,2(n 21 =−=
rr
.
Note que: como LI}n,n{ 21
rr
e 0nn 21 ≠⋅
rr
, logo os planos são concorrentes. Então:
21
21
nn
nn
|cos|cos rr
rr
⋅
⋅
=θ=α ⇒
26
3
011)1(12
0)1(1112
cos
222222 ⋅
=
++⋅−++
⋅−+⋅+⋅
=α ⇒
2
3
cos =α . Portanto, o30=α .
Exemplo (4): Sejam a reta
3
2z
2
1y
x:)r(
−
=
−
−
= e o plano 03z5yx:)( =++−π .
Qual é o ângulo entre eles?
Solução: Queremos determinar o ângulo α entre a reta e o plano em função do
ângulo θ entre o vetor diretor da reta )3,2,1(v −=
r
e o vetor normal ao plano
θ
α
)(π
v
r
n
r
)r(
θ
α
)(π
v
r
n
r
)r(
CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA
Luiz Francisco da Cruz – Departamento de Matemática – Unesp/Bauru
)5,1,1(n −=
r
. Note que a reta é concorrente ao plano. Vamos determinar θ usando a
expressão
|n||v|
nv
cos rr
rr
⋅
⋅
=θ . Então:
222222 5)1(13)2(1
53)1()2(11
cos
+−+⋅+−+
⋅+−⋅−+⋅
=α ⇒
7
42
cos =θ . Como 0cos >θ ⇒ oo 900 ≤θ≤ ⇒ θ−=α o90 . Portanto,
−=α
7
42
arccos90o .
Exercícios Propostos
1) Sejam o plano 015z5y5x3:)( =−++π . Ao "passar" pelo ℜ3 ele deixa traços e
intercepta os eixos coordenados em pontos P, Q e R, cujo esboço do plano (π) é o
triângulo PQR. Determine o ângulo do vértice R do triângulo PQR.
Resp:
=α=θ
34
173
arccos
2) Determine o ângulo entre as retas, cujos vetores diretores são )h,g,f(v 1111 =
r
e
)h2,g,f(v 1222 =
r
, sabendo-se que 21 vvAB
rr
+= , com A(2,3,-1) e B(4,-3,5), 1iv1 =⋅
rr
e ji8kv2
rrrr
−−=× . Resp:
=θ
27
7
arccos
3) Sejam A(2,3,0), B(2,1,4) e C(4,1,4) vértices de um triângulo ABC. Sejam M e N
pontos médios dos lados AC e BC, respectivamente. Determine o ângulo entre as
retas suportes do lado AC e do segmento MN. Resp:
=θ
6
30
arccos
4) Determine a distância entre as retas 1ze2y
2
1x
:)r( −=−=
−
e
2ze
2
2y
4
1x
:)s( =
−
=
−
. Resp: .c.u3d =
5) Determine a distância da reta 2z5y
3
x
:)r( −=−= ao plano
030z5y2x:)( =−−+π . Resp: .c.u30d =