Buscar

DETERMINAÇÃO DO EQUIVALENTE EM ÁGUA DE UM CALORÍMETRO - Físico-química experimental

Esta é uma pré-visualização de arquivo. Entre para ver o arquivo original

UNIVERSIDADE FEDERAL DO AMAZONAS - UFAM 
Instituto de Ciências Exatas - ICE 
Departamento de Química - DQ 
 
 
 
 
 
 
 
 
 
 
 
 
 
1º RELATÓRIO DE FÍSICO-QUÍMICA EXPERIMENTAL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MANAUS - AM 
05 DE MAIO DE 2015 
 
UNIVERSIDADE FEDERAL DO AMAZONAS - UFAM 
Instituto de Ciências Exatas - ICE 
Departamento de Química - DQ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DETERMINAÇÃO DO EQUIVALENTE EM ÁGUA DE UM CALORÍMETRO 
 
 
 
 
 
 
 
 
 
ALUNOS: AYRTON LUCAS TELES 21201646 
JOSIANA MOREIRA MAR 21206535 
LUANA LEÃO 21201434 
WAGNER MOREIRA 21203673 
 
 
 
 
MANAUS - AM 
05 DE MAIO DE 2015 
 
DETERMINAÇÃO DO EQUIVALENTE EM ÁGUA DE UM CALORÍMETRO 
 
RESUMO 
O equivalente em água de um calorímetro foi determinado a partir da média e 
desvio padrão calculados, onde pode-se medir a variação das temperaturas da água 
quente e fria em função da variação de tempo e também do volume adicionado ao 
calorímetro. Calculou-se então os valores dos equivalentes em água do calorímetro, 
onde nota-se que há pequenas variações do equivalente quando há variação de tem-
peratura e volume no calorímetro. Calculando-se o valor médio total de todas os pro-
cedimentos, obteve-se o equivalente em água (C) do calorímetro de 63,96 𝑐𝑎𝑙. ℃−1, 
com um desvio médio total de ±4,60, acima dos valores padrões adotados nos frascos 
de Dewar comercialmente, 20,00 𝑐𝑎𝑙. ℃−1, essa diferença de valores pode ser des-
crita devido a eventuais erros durante o processo. 
 
INTRODUÇÃO 
Calorímetros são definidos como aparelhos para medir variações de energia 
em situações onde a temperatura desempenha um papel primordial. (SIMONI; JORGE 
1990) 
Os calorímetros são uma família de importantes instrumentos destinados a me-
dir variações de energia onde a temperatura desempenha um papel de destaque. Os 
calorímetros, de um modo geral, são formados por três partes básicas: vaso calorimé-
trico, ambiente e a parede. (CHAGAS, 1999) 
A medida direta dos calores envolvidos nas reações químicas é uma parte da 
calorimetria a qual não é muito valorizada uma vez que muitas destas reações ocor-
rem sob condições que estão fora do alcance das medidas calorimétricas diretas. 
(WOLF, 2011) 
O calor especifico é a capacidade calorifica por unidade de massa. O calor é 
conservado e flui da substância mais quente para a mais fria até que suas temperatu-
ras se igualem. (MOORE, 1976) 
Uma grande capacidade calorifica significa que uma dada quantidade de calor 
produz um pequeno aumento de temperatura. Uma pequena capacidade calorifica 
significa que mesmo uma pequena quantidade de energia transferida na forma de 
calor produz um grande aumento de temperatura. (ATKINS, 2012). 
Torna-se essencial distinguir a capacidade calorífica no interior de um determi-
nado calorímetro, possibilitando assim o cálculo da quantidade de calor que vem a ser 
absorvido ou liberado durante a reação. Tal conceito, de acordo com Russel, 1994, 
fundamenta-se na quantidade de calor essencial para aumentar a temperatura do sis-
tema de 1ºC. 
A determinação da capacidade calorífica de um calorímetro é realizada usando-
se água, desta forma tal experimento tem como objetivo verificar a reprodutibilidade e 
os erros experimentais na determinação do equivalente em água de um calorímetro. 
Equivalente em água de um corpo é a massa de água que tem a mesma capa-
cidade térmica do corpo, ou seja, é a massa de água que recebendo a mesma quan-
tidade de calor fornecido ao corpo sofre a mesma elevação de temperatura que ele. 
Para sua determinação, utiliza-se o “Princípio das trocas de calor” (sem energizar o 
calorímetro), partindo de duas massas de água destiladas iguais, uma com tempera-
tura aproximada de 10ºC abaixo da temperatura ambiente e a outra com temperatura 
10ºC acima da temperatura ambiente. (DANO, 1985). 
Pelo princípio da conservação de energia, o calor cedido pela água quente deve 
ser igual ao calor recebido pela água fria e pelo calorímetro. Para uma mistura, pode-
se aplicar a seguinte equação: 
𝑚𝐻2𝑂
𝑞 . 𝐶𝐻2𝑂 . |∆𝑇𝑞| = 𝐶. |∆𝑇𝑓| + 𝑚𝐻2𝑂
𝑓 . 𝐶𝐻2𝑂 . |∆𝑇𝑓| (1) 
onde 𝑚𝐻2𝑂se refere as massas de água quente (q) e fria (f), 𝐶𝐻2𝑂é o calor es-
pecífico da água na temperatura adequada, C é o equivalente em água do calorímetro, 
|∆𝑇𝑞| e |∆𝑇𝑓| são as variações de temperatura da água quente e fria (em módulo), 
respectivamente, e |∆𝑇𝑞| = |𝑇𝑒𝑞𝑢𝑖𝑙í𝑏𝑟𝑖𝑜 − 𝑇𝑞 𝑖𝑛𝑖𝑐𝑖𝑎𝑙| e |∆𝑇𝑓| = |𝑇𝑒𝑞𝑢𝑖𝑙í𝑏𝑟𝑖𝑜 − 𝑇𝑓 𝑖𝑛𝑖𝑐𝑖𝑎𝑙|. 
O objetivo deste experimento é verificar a reprodutibilidade e os erros experi-
mentais na determinação do equivalente em água de um calorímetro e compará-lo 
com o valor de um recipiente adiabático, onde o sistema está isolado e não transfere 
calor para o meio ambiente, apresentado na literatura como um recipiente adiabático. 
 
 
PARTE EXPERIMENTAL 
 
 Material e Reagentes 
- Calorímetro composto por frasco de Dewar; 
- Termômetro; 
- Provetas de 100 e 250 ml. 
- Béquer 100 ml 
- Chapa aquecedora 
 
 Procedimento Experimental 
(a) Determinação do equivalente em água do calorímetro 
- Colocou-se no calorímetro 50 mL de água destilada na temperatura ambiente. 
Agitou-se moderadamente, logo após iniciou-se o registro da temperatura do 
sistema a cada 20 segundos até que a temperatura se mantivesse constante. 
Com uma proveta previamente aquecida tomou-se uma amostra de 50 mL de 
água destilada aquecida e de temperatura conhecida, cerca de aproximada-
mente 10°C acima da temperatura ambiente. Adicionou-se rapidamente amos-
tra de água morna no calorímetro. Agitou-se essa mistura e consequentemente 
anotou-se as temperaturas a cada 10 segundos, até que se mantivesse cons-
tante. 
 
(b) Avaliação do erro (variação do volume) 
- Repetiu-se o procedimento (a) variando a quantidade de água destilada com 
volume de 100 mL de água destilada na temperatura ambiente e 100 mL de 
água destilada aquecida. 
 
(c) Avaliação do erro (variação da temperatura) 
- Repetiu-se os procedimentos (a) e (b) adicionando água destilada aquecida 
com cerca de 20°C acima da temperatura ambiente, com as quantidades de 
água: 50 mL de água destilada na temperatura ambiente e 50 mL de água des-
tilada aquecida. 100 mL de água destilada na temperatura ambiente e 100 mL 
de água destilada aquecida. 
 
RESULTADOS E DISCUSSÃO 
Segundo Lavoisier, a substância do calor deveria ser um “fluido sutil” que ele 
chamou de calórico. De acordo com a teoria, a quantidade de calórico no universo 
teria de ser conservada. Em particular, a quantidade total de calórico em um sistema 
isolado termicamente de sua vizinhança também deveria se conservar. A transferên-
cia de calor, de um corpo mais quente (que possuía mais calórico) para um mais frio, 
poderia ser tranquilamente entendida como o fluxo de calórico. 
Os valores dos equivalentes de água para os volumes de 50 e 100ml, e para a 
variação de 10ºC e 20ºC acima da temperatura ambiente foram tabelados, onde en-
contra-se no corpo deste relatório. Observou-se o calor recebido pela água fria, e o 
calor cedido pela água quente, e consequentemente, a temperatura em equilíbrio das 
soluções, e utilizando-se da equação (1), encontrou-se o valor correspondente para 
aquele volume e temperatura. Pode-se então plotar os gráficos da variação de tempo 
em função das temperaturas para cada mistura. 
Por fim, determinou-se o valor médio das temperaturas de água fria e quente,
dos equivalentes em água no calorímetro, e seus respectivos desvios-padrões através 
de suas duplicatas. 
 
 Resultado do Equivalente (C) para 50 ml de água a 10º C acima da temperatura 
ambiente 
 
Os valores da variação da temperatura em razão do tempo para o volume de 
água de 50mL com cerca de 10 ºC acima da temperatura analisada estão listados nas 
tabelas 1 e 2. 
 
 
 
 
Tabela 1 - Variação da temperatura em função do tempo durante a determinação do 
equivalente em água para volume de água de 50mL, medida 01. 
 
 
 
 
 
 
 
 
 
 
 
Legenda: (Tf) Temperatura fria, (Tq) Temperatura quente 
A partir dos dados coletados na 1ª medida obteve-se a curva tempo em função 
da variação da temperatura, montou-se o gráfico (Figura 1) para melhor visualização 
e análise. 
 
Figura 1. Variação da temperatura em função do tempo para o volume de água de 50mL cerca de 10ºC 
acima da temperatura ambiente. 
t (s) Tf/ oC Tq/ oC 
0 27,30 36,00 
10 27,20 34,50 
20 27,10 34,00 
30 26,90 33,10 
40 26,70 32,10 
50 26,60 30,70 
60 26,50 30,20 
70 26,50 30,00 
80 26,40 29,50 
90 26,40 29,50 
100 26,30 29,40 
110 26,30 29,30 
120 26,30 29,30 
Média 26,65 31,35 
Desvio-padrão ± 0,36 ± 2,32 
24,00
25,00
26,00
27,00
28,00
29,00
30,00
31,00
32,00
33,00
34,00
35,00
36,00
0,0 20,0 40,0 60,0 80,0 100,0 120,0 140,0 160,0 180,0 200,0 220,0 240,0
Te
m
p
er
at
u
ra
/ 
⁰C
Tempo/ s
∆T
 
A variação total de temperatura da água fria (26,30 ºC) e da água quente (36,00ºC) 
é de ∆𝑇 = 9,70°𝐶, aproximadamente o valor da alteração solicitado. 
Pode-se analisar a partir deste experimento onde a água fria (Tf) após ser intro-
duzida no calorímetro, com uma temperatura inicial de 27,30 ºC, possui um pequeno 
declínio de temperatura, até a temperatura permanecer constante em 26,30 ºC a partir 
de 100 segundos, ∆𝑇𝑓
′ = 1,00°𝐶. 
Após a introdução da água quente (Tq) no calorímetro com temperatura de 36,00 
ºC, cerca de 9,70 ºC acima da temperatura da água fria, observa-se um súbito aumento 
de temperatura da mistura (Tf + Tq), onde ao decorrer do tempo começa a decair, até o 
ponto onde apresenta uma temperatura em equilíbrio no valor de 29,30 ºC a partir de 240 
segundos (110 segundos após inserida no calorímetro), ∆𝑇𝑞
′ = 6,70°𝐶. 
Conforme o cálculo teórico (Equação I), calculou-se do equivalente da água na 
mistura: 
𝑚𝐻2𝑂
𝑞 . 𝐶𝐻2𝑂 . |∆𝑇𝑞| = 𝐶 . |∆𝑇𝑓| + 𝑚𝐻2𝑂
𝑓 . 𝐶𝐻2𝑂 . |∆𝑇𝑓| 
50𝑔 . (1 𝑐𝑎𝑙. 𝑔−1. °𝐶−1) . |29,30°𝐶 − 36,0°𝐶| = 𝐶 . |29,30℃ − 26,30℃| + 50𝑔. (1 𝑐𝑎𝑙. 𝑔−1. °𝐶−1) |29,30℃ − 26,30℃| 
𝐶 =
{[50𝑔. (1 𝑐𝑎𝑙. 𝑔−1. °𝐶−1) |29,30℃ − 36,0℃|] − [50𝑔 . (1 𝑐𝑎𝑙. 𝑔−1. °𝐶−1) . |29,30°𝐶 − 26,30°𝐶|]}
|29,30℃ − 26,30℃|
 
𝑪 = 𝟔𝟏, 𝟔𝟕 𝒄𝒂𝒍. ℃−𝟏 
 
Tabela 2 - Variação da temperatura em função do tempo durante a determinação do 
equivalente em água para volume de água de 50mL, medida 02. 
t (s) Tf/ oC Tq/ oC 
0 27,60 35,50 
10 27,20 34,30 
20 27,20 33,30 
30 27,00 32,40 
40 26,80 31,80 
50 26,70 31,20 
60 26,50 30,70 
70 26,40 30,50 
80 26,40 30,10 
90 26,20 29,40 
100 26,10 29,20 
 
 
 
 
Legenda: (Tf) Temperatura fria, (Tq) Temperatura quente 
 
A partir dos dados coletados na 2ª medida obteve-se a curva tempo em função 
da variação da temperatura, montou-se o gráfico (Figura 2) para melhor visualização 
e análise. 
 
Figura 2. Variação da temperatura em função do tempo para o volume de água de 50mL cerca de 10ºC 
acima da temperatura ambiente, medida 2. 
 
A variação total de temperatura da água fria (26,10 ºC) e da água quente (35,50 
ºC) é de ∆𝑇 = 9,40°𝐶, aproximadamente o valor da alteração solicitado. 
Pode-se analisar a partir deste experimento onde a água fria (Tf) após ser intro-
duzida no calorímetro, com uma temperatura inicial de 27,60 ºC, possui um pequeno 
declínio de temperatura, até a temperatura permanecer constante em 26,10 ºC a partir 
de 100 segundos, ∆𝑇𝑓
′ = 1,50°𝐶. 
Após a introdução da água quente (Tq) no calorímetro com temperatura de 35,50 
ºC, cerca de 9,40 ºC acima da temperatura da água fria, observa-se um súbito aumento 
de temperatura da mistura (Tf + Tq), onde ao decorrer do tempo começa a decair, até o 
110 26,10 29,10 
120 26,10 29,10 
Média 26,64 31,28 
Desvio-Padrão ± 0,49 ± 2,09 
25,00
26,00
27,00
28,00
29,00
30,00
31,00
32,00
33,00
34,00
35,00
36,00
0,0 20,0 40,0 60,0 80,0 100,0 120,0 140,0 160,0 180,0 200,0 220,0 240,0
Te
m
p
er
at
u
ra
/ 
⁰C
Tempo/ s
∆T
ponto onde apresenta uma temperatura em equilíbrio no valor de 29,10 ºC a partir de 240 
segundos (110 segundos após inserida no calorímetro), ∆𝑇𝑞
′ = 6,40°𝐶. 
Conforme o cálculo teórico (Equação I), calculou-se do equivalente da água na 
mistura: 
𝑚𝐻2𝑂
𝑞 . 𝐶𝐻2𝑂 . |∆𝑇𝑞| = 𝐶 . |∆𝑇𝑓| + 𝑚𝐻2𝑂
𝑓 . 𝐶𝐻2𝑂 . |∆𝑇𝑓| 
50𝑔 . (1 𝑐𝑎𝑙. 𝑔−1. °𝐶−1) . |29,10°𝐶 − 35,5°𝐶| = 𝐶 . |29,10℃ − 26,10℃| + 50𝑔. (1 𝑐𝑎𝑙. 𝑔−1. °𝐶−1) |29,10℃ − 26,10℃| 
𝐶 =
{[50𝑔. (1 𝑐𝑎𝑙. 𝑔−1. °𝐶−1) |29,10℃ − 35,5℃|] − [50𝑔 . (1 𝑐𝑎𝑙. 𝑔−1. °𝐶−1) . |29,10°𝐶 − 26,10°𝐶|]}
|29,10℃ − 26,10℃|
 
𝑪 = 𝟓𝟔, 𝟔𝟕 𝒄𝒂𝒍. ℃−𝟏 
 
Analisando os dois gráficos juntamente, pode-se nota certa proximidade nos 
valores, Figura 3. 
 
Figura 3. Variação da temperatura em função do tempo para o volume de água de 50mL cerca de 10ºC 
acima da temperatura ambiente, medida 1 e 2. 
 
Calculando a média dos equivalentes em água no calorímetro e o desvio-pa-
drão do mesmo, temos: 
24,00
25,00
26,00
27,00
28,00
29,00
30,00
31,00
32,00
33,00
34,00
35,00
36,00
37,00
0,0 20,0 40,0 60,0 80,0 100,0 120,0 140,0 160,0 180,0 200,0 220,0 240,0
Te
m
p
er
at
u
ra
/ 
⁰C
Tempo, s
2ª medida 1ª medida
 
Tabela 3 - Variação da temperatura em função do tempo durante a determinação do 
equivalente em água para volume de água de 50mL, medida 01 e 02. 
 
 
 
 
 
 
 
 
 
 
 
 
 Resultado do Equivalente (C) para 100 ml de água a 10º C acima da tempera-
tura ambiente 
 
Os valores da variação da temperatura em razão do tempo para o volume de 
água de 100mL com cerca de 10 ºC acima da temperatura analisada estão listados 
nas tabelas 4 e 5. 
 
Tabela 4 - Variação da temperatura em função do tempo durante a determinação do 
equivalente em água para volume de água de 100mL, medida 01. 
 
 
 
 
 
 
 
 
 
 
 
Legenda: (Tf) Temperatura fria, (Tq) Temperatura quente 
Medida 
Equivalente em água/ 
 𝒄𝒂𝒍. ℃−𝟏 
1 61,67 
2 56,67 
Média 59,17 
Desvio-Padrão ± 3,54 
t (s) Tf/ oC Tq/ oC 
0 24,40 33,00 
10 24,10 31,80 
20 23,90 30,30 
30 23,90 29,60 
40 23,70 28,80 
50 23,30 27,80 
60 22,90 27,50 
70 22,80 26,90 
80 22,80 26,70 
90 22,70 26,60 
100 22,60 26,50 
110 22,30 26,30 
120 22,30 26,30 
Média 23,21 28,32 
Desvio-padrão ±0,71 ±2,23 
A partir dos dados coletados na 1ª medida obteve-se a curva tempo em função 
da variação da temperatura, montou-se o gráfico (Figura 4) para melhor visualização 
e análise. 
 
 
Figura 4. Variação da temperatura em função do tempo para o volume de água de 100mL cerca de 10ºC 
acima da temperatura ambiente. 
 
A variação total de temperatura da água fria (22,30 ºC) e da água quente (33,00 
ºC) é de ∆𝑇 = 10,70°𝐶, aproximadamente o valor da alteração solicitado. 
Pode-se analisar a partir deste experimento onde a água fria (Tf) após ser intro-
duzida no calorímetro, com uma temperatura inicial de 24,40
ºC, possui um pequeno 
declínio de temperatura, até a temperatura permanecer constante em 22,30 ºC a partir 
de 110 segundos, ∆𝑇𝑓
′ = 2,10°𝐶. 
Após a introdução da água quente (Tq) no calorímetro com temperatura de 33,00 
ºC, cerca de 10,70 ºC acima da temperatura da água fria, observa-se um súbito aumento 
de temperatura da mistura (Tf + Tq), onde ao decorrer do tempo começa a decair, até o 
ponto onde apresenta uma temperatura em equilíbrio no valor de 26,30 ºC a partir de 240 
segundos (110 segundos após inserida no calorímetro), ∆𝑇𝑞
′ = 6,70°𝐶. 
Conforme o cálculo teórico (Equação I), calculou-se do equivalente da água na 
mistura: 
21,00
22,00
23,00
24,00
25,00
26,00
27,00
28,00
29,00
30,00
31,00
32,00
33,00
34,00
0,0 20,0 40,0 60,0 80,0 100,0 120,0 140,0 160,0 180,0 200,0 220,0 240,0
Te
m
p
er
at
u
ra
/ 
⁰C
Tempo, s
∆T
𝑚𝐻2𝑂
𝑞 . 𝐶𝐻2𝑂 . |∆𝑇𝑞| = 𝐶 . |∆𝑇𝑓| + 𝑚𝐻2𝑂
𝑓 . 𝐶𝐻2𝑂 . |∆𝑇𝑓| 
100𝑔 . (1 𝑐𝑎𝑙. 𝑔−1. °𝐶−1) . |26,30°𝐶 − 33,0°𝐶| = 𝐶 . |26,30℃ − 22,30℃| + 100𝑔. (1 𝑐𝑎𝑙. 𝑔−1. °𝐶−1) |26,30℃ − 22,30℃| 
𝑪 = 𝟔𝟕, 𝟓𝟎 𝒄𝒂𝒍. ℃−𝟏 
 
Tabela 5 - Variação da temperatura em função do tempo durante a determinação do 
equivalente em água para volume de água de 100mL, medida 02. 
 
 
 
 
 
 
 
 
 
 
 
 
Legenda: (Tf) Temperatura fria, (Tq) Temperatura quente 
 
A partir dos dados coletados na 2ª medida obteve-se a curva tempo em função 
da variação da temperatura, montou-se o gráfico (Figura 5) para melhor visualização 
e análise 
 
 
 
 
 
t (s) Tf/ oC Tq/ oC 
0 24,50 33,00 
10 24,30 32,10 
20 24,00 31,00 
30 23,80 29,80 
40 23,70 29,10 
50 23,50 28,60 
60 23,50 28,30 
70 23,40 27,80 
80 23,30 27,30 
90 23,30 27,00 
100 23,10 26,90 
110 23,00 26,70 
120 23,00 26,70 
Média 23,57 28,79 
Desvio-Padrão ±0,48 ±2,11 
 
Figura 5. Variação da temperatura em função do tempo para o volume de água de 100mL cerca de 10ºC 
acima da temperatura ambiente, medida 2. 
 
A variação total de temperatura da água fria (23,00 ºC) e da água quente (33,00 ºC) é de 
∆𝑇 = 10,00°𝐶, o valor da alteração solicitado. 
Pode-se analisar a partir deste experimento onde a água fria (Tf) após ser introduzida no 
calorímetro, com uma temperatura inicial de 24,50 ºC, possui um pequeno declínio de tempe-
ratura, até a temperatura permanecer constante em 23,00 ºC a partir de 110 segundos, ∆𝑇𝑓
′ =
0,73°𝐶. 
Após a introdução da água quente (Tq) no calorímetro com temperatura de 33,00 ºC, 
cerca de 10,00 ºC acima da temperatura da água fria, observa-se um súbito aumento de tem-
peratura da mistura (Tf + Tq), onde ao decorrer do tempo começa a decair, até o ponto onde 
apresenta uma temperatura em equilíbrio no valor de 26,70 ºC a partir de 240 segundos (110 
segundos após inserida no calorímetro), ∆𝑇𝑞
′ = 6,30°𝐶. 
Conforme o cálculo teórico (Equação I), calculou-se do equivalente da água na mistura: 
𝑚𝐻2𝑂
𝑞 . 𝐶𝐻2𝑂 . |∆𝑇𝑞| = 𝐶 . |∆𝑇𝑓| + 𝑚𝐻2𝑂
𝑓 . 𝐶𝐻2𝑂 . |∆𝑇𝑓| 
50𝑔 . (1 𝑐𝑎𝑙. 𝑔−1. °𝐶−1) . |26,70°𝐶 − 33,00°𝐶| = 𝐶 . |26,70℃ − 23,00℃| + 50𝑔. (1 𝑐𝑎𝑙. 𝑔−1. °𝐶−1) |26,70℃ − 23,00℃| 
𝑪 = 𝟕𝟎, 𝟐𝟕 𝒄𝒂𝒍. ℃−𝟏 
 
21,00
22,00
23,00
24,00
25,00
26,00
27,00
28,00
29,00
30,00
31,00
32,00
33,00
34,00
0,0 20,0 40,0 60,0 80,0 100,0 120,0 140,0 160,0 180,0 200,0 220,0 240,0
Te
m
p
er
at
u
ra
/ 
⁰C
Tempo, s
∆T
Analisando os dois gráficos juntamente, pode-se nota certa proximidade nos 
valores, Figura 6. 
 
Figura 6. Variação da temperatura em função do tempo para o volume de água de 100mL cerca de 10ºC 
acima da temperatura ambiente, medida 1 e 2. 
 
Calculando a média dos equivalentes em água no calorímetro e o desvio-padrão do 
mesmo, temos: 
 
Tabela 6 - Variação da temperatura em função do tempo durante a determinação do 
equivalente em água para volume de água de 100mL, medida 01 e 02. 
 
 
 
 
 
 
 
 
 
 
 
21,00
22,00
23,00
24,00
25,00
26,00
27,00
28,00
29,00
30,00
31,00
32,00
33,00
34,00
0,0 20,0 40,0 60,0 80,0 100,0 120,0 140,0 160,0 180,0 200,0 220,0 240,0
Te
m
p
er
at
u
ra
/ 
⁰C
Tempo, s
2ª medida 1ª medida
Medida 
Equivalente em água/ 
 𝒄𝒂𝒍. ℃−𝟏 
1 67,50 
2 70,27 
Média 68,89 
Desvio-Padrão ±1,96 
 Resultado do Equivalente (C) para 50 ml de água a 20º C acima da temperatura 
ambiente 
 
Os valores da variação da temperatura em razão do tempo para o volume de 
água de 50mL com cerca de 20 ºC acima da temperatura analisada estão listados nas 
tabelas 7 e 8. 
Tabela 7 - Variação da temperatura em função do tempo durante a determinação do 
equivalente em água para volume de água de 50mL, medida 01. 
 
 
 
 
 
 
 
 
 
 
 
 
Legenda: (Tf) Temperatura fria, (Tq) Temperatura quente 
 
A partir dos dados coletados na 1ª medida obteve-se a curva tempo em função 
da variação da temperatura, montou-se o gráfico (Figura 7) para melhor visualização 
e análise. 
 
t (s) Tf/ oC Tq/ oC 
0 27,50 46,00 
10 26,80 43,30 
20 26,60 40,30 
30 26,50 38,30 
40 26,40 36,40 
50 26,20 35,60 
60 26,00 34,50 
70 25,90 33,40 
80 25,60 32,60 
90 25,40 32,00 
100 25,20 31,60 
110 25,00 31,40 
120 25,00 31,40 
Média 26,01 35,91 
Desvio-padrão ±0,76 ±4,79 
 
 
Figura 7. Variação da temperatura em função do tempo para o volume de água de 50mL cerca de 20ºC 
acima da temperatura ambiente. 
 
A variação total de temperatura da água fria (25,00 ºC) e da água quente (46,00 
ºC) é de ∆𝑇 = 21, °𝐶, aproximadamente o valor da alteração solicitado. 
Pode-se analisar a partir deste experimento onde a água fria (Tf) após ser intro-
duzida no calorímetro, com uma temperatura inicial de 27,50 ºC, possui um pequeno 
declínio de temperatura, até a temperatura permanecer constante em 25,00 ºC a partir 
de 110 segundos, ∆𝑇𝑓
′ = 2,50°𝐶. 
Após a introdução da água quente (Tq) no calorímetro com temperatura de 
46,00ºC, cerca de 21,00 ºC acima da temperatura da água fria, observa-se um súbito 
aumento de temperatura da mistura (Tf + Tq), onde ao decorrer do tempo começa a de-
cair, até o ponto onde apresenta uma temperatura em equilíbrio no valor de 31,40 ºC a 
partir de 230 segundos (100 segundos após inserida no calorímetro), ∆𝑇𝑞
′ = 14,60°𝐶. 
Conforme o cálculo teórico (Equação I), calculou-se do equivalente da água na 
mistura: 
 
24,00
25,00
26,00
27,00
28,00
29,00
30,00
31,00
32,00
33,00
34,00
35,00
36,00
37,00
38,00
39,00
40,00
41,00
42,00
43,00
44,00
45,00
46,00
0,0 20,0 40,0 60,0 80,0 100,0 120,0 140,0 160,0 180,0 200,0 220,0 240,0
Te
m
p
er
at
u
ra
/ 
⁰C
Tempo, s
∆T
𝑚𝐻2𝑂
𝑞 . 𝐶𝐻2𝑂 . |∆𝑇𝑞| = 𝐶 . |∆𝑇𝑓| + 𝑚𝐻2𝑂
𝑓 . 𝐶𝐻2𝑂 . |∆𝑇𝑓| 
50𝑔 . (1 𝑐𝑎𝑙. 𝑔−1. °𝐶−1) . |31,40°𝐶 − 46,0°𝐶| = 𝐶 . |31,40℃ − 25,0℃| + 50𝑔. (1 𝑐𝑎𝑙. 𝑔−1. °𝐶−1) |31,40℃ − 25,0℃| 
𝑪 = 𝟔𝟒, 𝟎𝟔 𝒄𝒂𝒍. ℃−𝟏 
 
Tabela 8 - Variação da temperatura em função do tempo durante a determinação do 
equivalente em água para volume de água de 50mL, medida 02. 
 
 
 
 
 
 
 
 
 
 
 
 
Legenda: (Tf) Temperatura fria, (Tq) Temperatura quente 
 
A partir dos dados coletados na 2ª medida obteve-se a curva tempo em função 
da variação da temperatura, montou-se o gráfico (Figura 08) para melhor visualização 
e análise 
 
 
 
 
 
t (s) Tf/ oC Tq/ oC 
0 27,10 45,50 
10 26,50 43,80 
20 26,50 41,90 
30 26,20 40,90 
40 26,10 39,20 
50 25,80
38,00 
60 25,50 36,80 
70 25,30 35,00 
80 25,10 33,20 
90 25,10 32,00 
100 25,10 31,80 
110 25,10 31,50 
120 25,10 31,50 
Média 25,73 37,01 
Desvio-Padrão ±0,69 ±4,95 
 
 
Figura 8. Variação da temperatura em função do tempo para o volume de água de 50mL cerca de 20ºC 
acima da temperatura ambiente, medida 2. 
 
A variação total de temperatura da água fria (25,10 ºC) e da água quente (45,50 
ºC) é de ∆𝑇 = 20,40°𝐶, próximo ao valor da alteração solicitado. 
Pode-se analisar a partir deste experimento onde a água fria (Tf) após ser intro-
duzida no calorímetro, com uma temperatura inicial de 27,10 ºC, possui um pequeno 
declínio de temperatura, até a temperatura permanecer constante em 25,10 ºC a partir 
de 90 segundos, ∆𝑇𝑓
′ = 2,00°𝐶. 
Após a introdução da água quente (Tq) no calorímetro com temperatura de 45,50 
ºC, 20,40 ºC acima da temperatura da água fria, observa-se um súbito aumento de tem-
peratura da mistura (Tf + Tq), onde ao decorrer do tempo começa a decair, até o ponto 
onde apresenta uma temperatura em equilíbrio no valor de 31,50 ºC a partir de 240 segun-
dos (1b10 segundos após inserida no calorímetro), ∆𝑇𝑞
′ = 14,00°𝐶. 
Conforme o cálculo teórico (Equação I), calculou-se do equivalente da água na 
mistura: 
 
24,00
25,00
26,00
27,00
28,00
29,00
30,00
31,00
32,00
33,00
34,00
35,00
36,00
37,00
38,00
39,00
40,00
41,00
42,00
43,00
44,00
45,00
46,00
0,0 20,0 40,0 60,0 80,0 100,0 120,0 140,0 160,0 180,0 200,0 220,0 240,0
Te
m
p
er
at
u
ra
/ 
⁰C
Tempo, s
∆T
𝑚𝐻2𝑂
𝑞 . 𝐶𝐻2𝑂 . |∆𝑇𝑞| = 𝐶 . |∆𝑇𝑓| + 𝑚𝐻2𝑂
𝑓 . 𝐶𝐻2𝑂 . |∆𝑇𝑓| 
50𝑔 . (1 𝑐𝑎𝑙. 𝑔−1. °𝐶−1) . |31,50°𝐶 − 45,50°𝐶| = 𝐶 . |31,50℃ − 25,10℃| + 50𝑔. (1 𝑐𝑎𝑙. 𝑔−1. °𝐶−1) |31,50℃ − 25,10℃| 
𝑪 = 𝟓𝟗, 𝟑𝟕 𝒄𝒂𝒍. ℃−𝟏 
 
Analisando os dois gráficos juntamente, pode-se nota certa proximidade nos valores, 
Figura 9. 
 
Figura 9. Variação da temperatura em função do tempo para o volume de água de 50mL cerca de 20ºC 
acima da temperatura ambiente, medida 1 e 2. 
 
Calculando a média dos equivalentes em água no calorímetro e o desvio-pa-
drão do mesmo, temos: 
 
Tabela 9 - Variação da temperatura em função do tempo durante a determinação do 
equivalente em água para volume de água de 50mL, medida 01 e 02. 
 
 
 
 
 
 
 
 
 
Medida 
Equivalente em água/ 
 𝒄𝒂𝒍. ℃−𝟏 
1 64,06 
2 59,38 
Média 61,72 
Desvio-Padrão ±3,31 
24,00
25,00
26,00
27,00
28,00
29,00
30,00
31,00
32,00
33,00
34,00
35,00
36,00
37,00
38,00
39,00
40,00
41,00
42,00
43,00
44,00
45,00
46,00
0,0 20,0 40,0 60,0 80,0 100,0 120,0 140,0 160,0 180,0 200,0 220,0 240,0
Te
m
p
er
at
u
ra
/ 
⁰C
Tempo, s
2ª medida 1ª medida
 
 Resultado do Equivalente (C) para 100 ml de água a 20º C acima da tempera-
tura ambiente 
 
Os valores da variação da temperatura em razão do tempo para o volume de 
água de 100mL com cerca de 20 ºC acima da temperatura analisada estão listados 
nas tabelas 10 e 11. 
 
Tabela 10 - Variação da temperatura em função do tempo durante a determinação do 
equivalente em água para volume de água de 100mL, medida 01. 
 
 
 
 
 
 
 
 
 
 
 
Legenda: (Tf) Temperatura fria, (Tq) Temperatura quente 
 
A partir dos dados coletados na 1ª medida obteve-se a curva tempo em função 
da variação da temperatura, montou-se o gráfico (Figura 10) para melhor visualização 
e análise. 
 
 
 
 
t (s) Tf/ oC Tq/ oC 
0 26,00 44,50 
10 25,80 42,80 
20 25,40 41,20 
30 25,10 39,50 
40 24,70 38,60 
50 24,60 36,30 
60 24,30 34,80 
70 24,10 33,70 
80 24,00 32,50 
90 23,90 31,90 
100 23,90 31,70 
110 23,90 31,70 
120 23,90 31,70 
Média 24,58 36,22 
Desvio-padrão ±0,76 ±4,61 
Figura 10. Variação da temperatura em função do tempo para o volume de água de 100mL cerca de 
20ºC acima da temperatura ambiente. 
 
A variação total de temperatura da água fria (23,90 ºC) e da água quente (44,50 
ºC) é de ∆𝑇 = 20,60, °𝐶, aproximadamente o valor da alteração solicitado. 
Pode-se analisar a partir deste experimento onde a água fria (Tf) após ser intro-
duzida no calorímetro, com uma temperatura inicial de 26,00 ºC, possui um pequeno 
declínio de temperatura, até a temperatura permanecer constante em 23,90 ºC a partir 
de 90 segundos, ∆𝑇𝑓
′ = 2,10°𝐶. 
Após a introdução da água quente (Tq) no calorímetro com temperatura de 
44,50ºC, cerca de 20,60 ºC acima da temperatura da água fria, observa-se um súbito 
aumento de temperatura da mistura (Tf + Tq), onde ao decorrer do tempo começa a de-
cair, até o ponto onde apresenta uma temperatura em equilíbrio no valor de 31,70 ºC a 
partir de 230 segundos (100 segundos após inserida no calorímetro), ∆𝑇𝑞
′ = 12,80°𝐶. 
Conforme o cálculo teórico (Equação I), calculou-se do equivalente da água na 
mistura: 
𝑚𝐻2𝑂
𝑞 . 𝐶𝐻2𝑂 . |∆𝑇𝑞| = 𝐶 . |∆𝑇𝑓| + 𝑚𝐻2𝑂
𝑓 . 𝐶𝐻2𝑂 . |∆𝑇𝑓| 
100𝑔 . (1 𝑐𝑎𝑙. 𝑔−1. °𝐶−1) . |31,70°𝐶 − 44,50°𝐶| = 𝐶 . |31,70℃ − 23,90℃| + 100𝑔. (1 𝑐𝑎𝑙. 𝑔−1. °𝐶−1) |31,70℃ − 23,90℃| 
𝑪 = 𝟔𝟒, 𝟏𝟎 𝒄𝒂𝒍. ℃−𝟏 
22,00
23,00
24,00
25,00
26,00
27,00
28,00
29,00
30,00
31,00
32,00
33,00
34,00
35,00
36,00
37,00
38,00
39,00
40,00
41,00
42,00
43,00
44,00
45,00
46,00
0,0 20,0 40,0 60,0 80,0 100,0 120,0 140,0 160,0 180,0 200,0 220,0 240,0
Te
m
p
er
at
u
ra
/ 
⁰C
Tempo, s
∆T
 
Tabela 11 - Variação da temperatura em função do tempo durante a determinação do 
equivalente em água para volume de água de 100mL, medida 02. 
 
 
 
 
 
 
 
 
 
 
Legenda: (Tf) Temperatura fria, (Tq) Temperatura quente 
 
A partir dos dados coletados na 2ª medida obteve-se a curva tempo em função 
da variação da temperatura, montou-se o gráfico (Figura 11) para melhor visualização 
e análise 
 
Figura 11. Variação da temperatura em função do tempo para o volume de água de 100mL cerca de 
20ºC acima da temperatura ambiente, medida 2. 
t (s) Tf/ oC Tq/ oC 
0 27,50 45,00 
10 26,80 43,50 
20 26,50 42,20 
30 26,20 41,20 
40 26,00 39,80 
50 25,80 37,40 
60 25,50 35,70 
70 25,30 34,40 
80 25,10 33,40 
90 25,10 32,80 
100 25,10 32,50 
110 24,90 32,40 
120 24,90 32,40 
Média 25,75 37,13 
Desvio-Padrão ±0,82 ±4,66 
22,00
23,00
24,00
25,00
26,00
27,00
28,00
29,00
30,00
31,00
32,00
33,00
34,00
35,00
36,00
37,00
38,00
39,00
40,00
41,00
42,00
43,00
44,00
45,00
46,00
0,0 20,0 40,0 60,0 80,0 100,0 120,0 140,0 160,0 180,0 200,0 220,0 240,0
Te
m
p
er
at
u
ra
/ 
⁰C
Tempo, s
∆T
A variação total de temperatura da água fria (24,90 ºC) e da água quente (45,00 
ºC) é de ∆𝑇 = 20,10°𝐶, próximo ao valor da alteração solicitado. 
Pode-se analisar a partir deste experimento onde a água fria (Tf) após ser intro-
duzida no calorímetro, com uma temperatura inicial de 27,50 ºC, possui um pequeno 
declínio de temperatura, até a temperatura permanecer constante em 24,90 ºC a partir 
de 110 segundos, ∆𝑇𝑓
′ = 2,60°𝐶. 
Após a introdução da água quente (Tq) no calorímetro com temperatura de 45,00 
ºC, 20,10 ºC acima da temperatura da água fria, observa-se um súbito aumento de tem-
peratura da mistura (Tf + Tq), onde ao decorrer do tempo começa a decair, até o ponto 
onde apresenta uma temperatura em equilíbrio no valor de 32,40 ºC a partir de 240 segun-
dos (110 segundos após inserida no calorímetro), ∆𝑇𝑞
′ = 12,60°𝐶. 
Conforme o cálculo teórico (Equação I), calculou-se do equivalente da água na 
mistura: 
𝑚𝐻2𝑂
𝑞 . 𝐶𝐻2𝑂 . |∆𝑇𝑞| = 𝐶 . |∆𝑇𝑓| + 𝑚𝐻2𝑂
𝑓 . 𝐶𝐻2𝑂 . |∆𝑇𝑓| 
100𝑔 .
(1 𝑐𝑎𝑙. 𝑔−1. °𝐶−1) . |32,40°𝐶 − 45,00°𝐶| = 𝐶 . |32,40℃ − 24,90℃| + 50𝑔. (1 𝑐𝑎𝑙. 𝑔−1. °𝐶−1) |32,40℃ − 24,90℃| 
𝑪 = 𝟔𝟖, 𝟎𝟎 𝒄𝒂𝒍. ℃−𝟏 
 
Analisando os dois gráficos juntamente, pode-se nota certa proximidade nos 
valores, Figura 12. 
Figura 12. Variação da temperatura em função do tempo para o volume de água de 100mL cerca de 
20ºC acima da temperatura ambiente, medida 1 e 2. 
22,00
23,00
24,00
25,00
26,00
27,00
28,00
29,00
30,00
31,00
32,00
33,00
34,00
35,00
36,00
37,00
38,00
39,00
40,00
41,00
42,00
43,00
44,00
45,00
46,00
0,0 20,0 40,0 60,0 80,0 100,0 120,0 140,0 160,0 180,0 200,0 220,0 240,0
Te
m
p
er
at
u
ra
/ 
⁰C
Tempo, s
2ª medida 1ª medida
 
Calculando a média dos equivalentes em água no calorímetro e o desvio-pa-
drão do mesmo, temos: 
 
Tabela 12 - Variação da temperatura em função do tempo durante a determinação do 
equivalente em água para volume de água de 100mL, medida 01 e 02. 
 
 
 
 
 
 
 
 
 
 
 
Tabela 13 - Variação do equivalente em água do calorímetro em função do volume e 
temperatura da água. 
 
Equivalente em 
água 
50 mL ±10º C 
(𝑐𝑎𝑙. ℃−1) 
Equivalente em 
água 
100 mL ±10º C 
(𝑐𝑎𝑙. ℃−1) 
Equivalente em 
água 
50 mL ±20º C 
(𝑐𝑎𝑙. ℃−1) 
Equivalente em 
água 
100 mL ±20º C 
(𝑐𝑎𝑙. ℃−1) 
Medida 1 61,67 67,50 64,06 64,10 
Medida 2 56,67 70,27 59,38 68,00 
Média 59,17 68,89 61,72 66,05 
Desvio-
padrão 
±3,54 ±1,96 ±3,31 ±2,76 
 
Calculando-se o valor médio total de todas os procedimentos, teremos o equi-
valente em água (C) do calorímetro é de 63,96 𝑐𝑎𝑙. ℃−1, com um desvio médio total 
de ±4,60. 
 
Teoricamente, o calor cedido pela água quente deveria ser igual ao calor rece-
bido pela água fria. Exemplificando através de um dado obtido nesses experimento, te-
mos que em 50 mL de água com acréscimo de 9,70ºC 
𝑇á𝑔𝑢𝑎 𝑓𝑟𝑖𝑎 = 26,30 ℃ 𝑇á𝑔𝑢𝑎 𝑞𝑢𝑒𝑛𝑡𝑒 = 36,00 ℃ 𝑇á𝑔𝑢𝑎 𝑒𝑞𝑢𝑖 = 29,30 ℃ 
Pode-se dizer que houve um acréscimo de temperatura na água fria, ou seja, a 
Medida 
Equivalente em água/ 
 𝒄𝒂𝒍. ℃−𝟏 
1 64,10 
2 68,00 
Média 66,05 
Desvio-Padrão ±2,75 
água fria recebeu calor da água quente, acréscimo de 3,00℃ e na água fria cedeu res-
pectivamente, perda de 6,70℃. 
No entanto, levando em consideração um calorímetro ideal, onde o sistema está 
isolado e não transfere calor para o meio ambiente, teríamos 𝑇á𝑔𝑢𝑎 𝑒𝑞𝑢𝑖 = 31,15 ℃, onde 
os valores de perda e ganho de calor para a água quente e fria, respectivamente, seriam 
iguais a 4,85 ℃. Portanto, pode dizer que o calorímetro absorveu parte desse calor, ou 
seja, 1,85 ℃ foram absorvidos pelo calorímetro, ignorando os demais fatores envolvidos 
na absorção de calor durante o experimento. Conforme SERWAY (2008), todo material, 
por mais isolante térmico que seja é capaz de absorver calor durante o processo, ou 
seja, parte do calor cedido pela água quente foi absorvido pela frasco de Dewar. 
Existem outros fatores que também podem ter influenciado na perda da ideali-
dade. Dentre eles pode-se citar o tempo de transferência do líquido quente para o líquido 
frio, o tempo que o calorímetro permaneceu aberto ao receber a água quente, o tempo 
de uso do frasco de Dewar, estabilidade de temperatura da água quente levando em 
conta a temperatura ambiente influencia durante a transferência do líquido, erros na afe-
rição das eventuais temperaturas. Para correção desses possíveis erros, seria necessá-
ria maior rapidez no momento da adição da água quente, termômetros mais precisos e 
novos, frasco de Dewar em melhor estado. 
 
CONCLUSÃO 
 
A partir do que foi realizado e observado no calorímetro, determinou-se valores 
de equivalentes de água para situações em que o volume e a temperatura variavam 
conforme a variação do tempo e tirou-se a média e o desvio padrão dos valores obti-
dos para analisar a capacidade calorífica do mesmo. O valor que se obteve está acima 
dos calorímetros vendidos atualmente pelas industrias, 20,00 𝑐𝑎𝑙. ℃−1, cerca de con-
dizente ao permitido aos fabricantes de calorímetros, ou seja, 63,96 𝑐𝑎𝑙. ℃−1, com um 
desvio médio total de ±4,60, valor de equivalente abaixo do aceitável pelo padrões, 
esse valor pode ser justificado pelos eventuais erros descritos. 
 
 
 
REFERÊNCIAS BIBLIOGRÁFICAS 
 
ATKINS, Peter. Princípios de química: questionando a vida moderma e o meio ambi-
ente. 5 ed. – Porto Alegre: Bookman, 2012. 
 
CHAGAS, Aécio Pereira. Termodinâmica química: fundamentos métodos e aplica-
ções. Editora da Unicamp. São Paulo, 1999. 
 
DANO, Higino S., Física Experimental I e II, Caxias do Sul, Editora da Universidade 
de Caxias do Sul, 1985. 
 
MOORE, Walter John. Físico – Química. Volume 1, 4ª edição Americana. São Paulo: 
Blucher, 1976. 
 
RUSSEL, J.B. Química Geral. 2ª ed, Trad. M. A. Brotto et al, São Paulo: Makron Books 
do Brasil Editora Ltda, 1994. 
 
SERWAY, Raymond A; JR., John W. Jewett. Princípios de física: movimento ondula-
tório e termodinâmica. São Paulo: Cengage Learning, 2008. 
 
SIMONI, J.A.; JORGE, R.A. Química Nova, 13 (1990) 108-111. 
 
WOLF, Lúcia Daniela et al. Construção de um calorímetro simples para determinação 
da entalpia de dissolução. Eclet. Quím. [online]. 2011, vol.36, n.2, pp. 69-83.

Teste o Premium para desbloquear

Aproveite todos os benefícios por 3 dias sem pagar! 😉
Já tem cadastro?

Outros materiais