Buscar

Física Experimental 1

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 39 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 39 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 39 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

FAESA 
ENG-LAB-001 
 
Faculdades Integradas Espírito Santenses 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Física Experimental I 
Professor Max Mauro Coser 
 
 
 
 
 
 
 
 
 
 
 
 
Unidade de Engenharia 
Vitória, Janeiro de 2012 
 
2 
 
 
SUMÁRIO 
 
 
1 Sistema de unidades e algarismos significativos ..................................................................... 3 
1.1 Sistema de unidades ......................................................................................................... 3 
1.1.1 O metro .......................................................................................................................... 5 
Unidades derivadas ................................................................................................................. 5 
1.1.2 O quilograma ................................................................................................................. 7 
1.1.3 O segundo ...................................................................................................................... 8 
1.1.4 Unidades combinadas .................................................................................................... 8 
Exercício ............................................................................................................................. 9 
1.1.5 Legislação Brasileira ................................................................................................... 10 
1.2 Algarismos significativos ............................................................................................... 13 
Exercício ........................................................................................................................... 15 
Exercício ........................................................................................................................... 15 
1.3 Avaliando medidas ......................................................................................................... 15 
1.3.1 Graduação do instrumento de medida ..................................................................... 15 
1.3.2 Menor divisão do instrumento de medida ............................................................... 16 
1.3.3 Valores mínimos e máximos da medida .................................................................. 17 
1.3.4 Avaliar o algarismo duvidoso .................................................................................. 17 
Exercício ........................................................................................................................... 17 
Exercício ........................................................................................................................... 18 
Exercício ........................................................................................................................... 18 
Exercício ........................................................................................................................... 19 
1.3.5 Avaliar a incerteza ................................................................................................... 20 
1.3.5.1 Regras para avaliação de incerteza ....................................................................... 21 
Exercício ........................................................................................................................... 21 
Exercício ........................................................................................................................... 21 
Exercício ........................................................................................................................... 21 
Exercício ........................................................................................................................... 22 
Exercício ........................................................................................................................... 22 
PRÁTICA 1: Introdução à medição ......................................................................................... 23 
2 Propagação de incertezas ....................................................................................................... 24 
2..1 Soma e subtração de grandezas ................................................................................. 24 
Exercício ........................................................................................................................... 25 
2.2 Multiplicação e divisão de grandezas ......................................................................... 25 
Exercício ........................................................................................................................... 26 
PRÁTICA 2: Introdução à medição - paquímetro .................................................................... 27 
PRÁTICA 3: Estudo de Movimento I. ..................................................................................... 29 
PRÁTICA 4: Estudo de Movimento II. .................................................................................... 31 
PRÁTICA 5: Força elástica das molas. .................................................................................... 33 
PRÁTICA 6: Atrito .................................................................................................................. 35 
PRÁTICA 7: Conservação da quantidade de movimento (momento linear) ........................... 37 
3 
 
 
1 Sistema de unidades e algarismos significativos 
 
1.1 Sistema de unidades 
 
Os padrões nos permitem classificar aquilo que nos rodeia, sendo uma necessidade atual para 
o desenvolvimento tecnológico. Em se falando de padrões de proporção, o que mais se 
sobressai é o da proporção áurea, onde obtemos um número irracional 1,618. 
 
 
 
Divisão de um segmento de reta na 
«razão de ouro» e construção de um 
«retângulo de ouro» recorrendo às 
mesmas proporções. 
 
 
 
 
«Homem Vitruviano», da autoria de 
Leonardo da Vinci, baseado nos estudos de 
Marcus Vitruvius Pollio. Nele, da Vinci 
procurou refletir as proporções harmônicas
do corpo humano ideal, (a altura do 
homem a dividir pela distância desde o 
chão até ao umbigo seria igual ao «número 
de ouro»). 
 
A busca de padrões é de extrema importância no funcionamento do nosso quotidiano. A 
adoção de padrões facilita a nossa vida, permitindo, por exemplo, desenvolver processos de 
produção em série. 
Na antiguidade desenvolveu-se o uso das chamadas unidades antropométricas, assim 
denominadas por serem baseadas nas medidas do corpo humano. Aí se usaram o pé, o passo, 
o dígito (dedo), a mão, o palmo, o braço ou o côvado (medida de comprimento referida na 
Bíblia e que corresponde à distância entre o cotovelo e o dedo mínimo da mão). Essas 
unidades apresentavam vários problemas, já que era natural cada pessoa adaptar as medidas 
que utilizava em função da sua própria estatura. 
Durante parte da Idade Média, em Inglaterra, a unidade de comprimento pé correspondia ao 
tamanho do pé do rei que estivesse no trono, mudando por isso o padrão com cada novo 
soberano que herdava a coroa. 
 
4 
 
 
Vivemos rodeados por instrumentos de medição e somos totalmente dependentes deles. 
Imagine o mundo sem os padrões de distância, tempo e massa. 
Com o desenvolvimento tecnológico, chegou-se a necessidade de unidades padronizadas. As 
mudanças não foram e ainda não são fáceis, pois a população reluta em abandonar aquilo que 
conhecem e sempre de certe forma ainda lhes servem. 
 
 
 
Os avanços, a vários níveis, da ciência e da tecnologia obrigaram a uma 
procura de maior rigor e, consequentemente, a uma definição mais precisa das 
medidas-padrão utilizadas e respectivos múltiplos e submúltiplos. 
(Fotos: Corel Corporation) 
 
Ao que parece,a primeira tentativa de normalização surgida na Europa só ocorreu no pós-
Revolução Francesa de 1789, quando a Academia Francesa de Ciências criou o Sistema 
Métrico Decimal. 
 
Em 1971, a 14a Conferência de Pesos e Medidas escolheu sete grandezas como unidades 
fundamentais, formando a base do Sistema Internacional de Unidades (SI). A Tabela 2.1 
mostra as quatro unidades fundamentais utilizadas em mecânica. 
 
 
 
 
 
 
 
 
5 
 
 
Tabela 1.1 Unidades fundamentais usadas em mecânica. 
Grandeza Nome Símbolo 
Comprimento Metro m 
Massa Quilograma kg 
Tempo Segundo s 
 
1.1.1 O metro 
 
Símbolo: m 
 
A definição do metro de 1889, baseada num protótipo de irídio e platina foi mudada em 1960, 
com base no comprimento da radiação emitida pelo Criptônio-86. 
 
 
Metro em lamina de latão, dividido em decímetros e centímetros, sendo o primeiro 
decímetro dividido em milímetros. 
 
A definição atual é a seguinte: O metro é a distância percorrida pela luz, no vácuo, durante um 
intervalo de tempo de 1/299792458 segundos. 
 
Em outras palavras; o metro é definido para que a velocidade da luz no vácuo seja de 
299.792.458 m/s. 
 
Unidades derivadas 
 
Como o padrão fundamental, o metro não é usado para medidas de grandes distâncias (como a 
distância de Vitória a Salvador) e pequenas dimensões (como o diâmetro de um fio de 
cabelo). Divisões desta unidade facilitam a representação e os cálculos. 
 
Para determinações de dimensões lineares, como distâncias e comprimentos, temos os 
múltiplos e submúltiplos indicados na tabela a seguir. 
 
 
 
 
6 
 
 
 
(x10−−−−1 ) ( x 10+1) 
MULTIPLIQUE ENTRE UNIDADES 
Km 
Quilômetro 
hm 
hectômetro 
dam 
decâmetro 
m 
metro 
dm 
decímetro 
cm 
centímetro 
mm 
milímetro 
10−3 10−2 10−1 1 101 102 103 
 
Para determinações de dimensões de superfícies o padrão é o metro quadrado (um quadrado 
de lados iguais a um metro), os múltiplos e submúltiplos são indicados na tabela a seguir. 
 
 
(x10−−−−2 ) ( x 10+2) 
MULTIPLIQUE ENTRE UNIDADES 
km2 
quilômetro 
quadrado 
hm2 
hectômetro 
quadrado 
dam2 
decâmetro 
quadrado 
m2 
metro 
quadrado 
dm2 
decímetro 
quadrado 
cm2 
centímetro 
quadrado 
mm2 
milímetro 
quadrado 
10−6 10−4 10−2 1 102 104 106 
 
Para determinações de dimensões de volumes o padrão é o metro cúbico (um cubo de arestas 
iguais a um metro), os múltiplos e submúltiplos são indicados na tabela a seguir. 
 
 
(x10−−−−3 ) ( x 10+3) 
MULTIPLIQUE ENTRE UNIDADES 
km3 
quilômetro 
cúbico 
hm3 
hectômetro 
cúbico 
dam3 
decâmetro 
cúbico 
m3 
metro 
cúbico 
dm3 
decímetro 
cúbico 
cm3 
centímetro 
cúbico 
mm3 
milímetro 
cúbico 
10−9 10−6 10−3 1 103 106 109 
 
Exemplos: Observe que as transformações das medidas abaixo são feitas somente incluindo 
os fatores de conversão (potências de dez). 
 
Medida km m dm cm mm 
125,36 m 125,36 x 10−3 125,36 m 125,36 101 125,36 102 125,36 103 
12 cm 12 x 10−5 12 x 10−2 12 x 10−1 12 12 x 101 
 
 
Medida Km2 m2 dm2 cm2 mm2 
125,36 m2 125,36 x 10−6 125,36 125,36 102 125,36 104 125,36 106 
12 cm2 12 x 10−10 12 x 10−4 12 x 10−2 12 12 x 102 
 
 
Medida km3 m3 dm3 cm3 mm3 
125,36 m3 125,36 x 10−9 125,36 125,36 103 125,36 106 125,36 109 
12 cm3 12 x 10−15 12 x 10−6 12 x 10−3 12 12 x 103 
 
 
 
7 
 
 
1.1.2 O quilograma 
 
Símbolo: kg 
 
A unidade de massa preserva a sua definição de 1889, baseada no protótipo de irídio e platina. 
 
O quilograma é a unidade de massa igual à massa do protótipo internacional de irídio e 
platina, mantido nas condições estabelecidas em 1889. 
 
 
O cilindro com mais de 100 anos de idade que serve de protótipo e medida 
internacional para o peso de massa está trancado a num palácio perto de Paris. 
No entanto, este cilindro está diminuindo de forma misteriosa. 
 
Exercício: Preencha as tabelas abaixo com as unidades solicitadas. Dica: Use a tecla EXP da 
calculadora para cálculos com potências de dez. Exemplo: 5x103 = 5EXP3 (é só digitar 5 a 
tecla EXP e a potência 3, se for negativa digite o sinal – antes). 
 
Medida cm dm km m hm dam 
12 m 
5,3x102 mm 
0,65x10-3 cm 
 
 
 
 
Medida cm2 dm2 km2 m2 hm2 dam2 
2x10-4 m2 
3,67x10-8 mm2 
5,64x10-6 cm2 
 
 
Medida cm3 dm3 km3 m3 hm3 dam3 
1,04x10-8 m3 
24x108 mm3 
72,16x10-2 cm3 
 
 
8 
 
 
1.1.3 O segundo 
 
Símbolo: s 
O segundo foi por muito tempo considerado como a fração 1/86400 do dia solar médio. 
Devido à imprecisão dessa definição em decorrência das irregularidades da rotação da terra, 
foi estabelecida uma nova definição, baseada em fenômenos atômicos como se segue: O 
segundo é a duração de 9.192.631.770 períodos da radiação correspondente à transição de 
fase dos dois primeiros níveis de energia no césio-133 no seu estado não excitado. 
 
 
 
Desde 1972 o mundo adota o modelo de 
estabelecimento da hora com base em relógios 
atômicos. 
 
1.1.4 Unidades combinadas 
 
Velocidade: Relação entre distância percorrida e o tempo gasto. 
 
 
Velocímetro: Velocidade instantânea em km/h 
 
v = 
distância
tempo , com unidades: 
distância em metros
tempo em segundos = 
m
s
 
 
 
 
 
 
 
 
9 
 
 
Aceleração: Relação entre a variação da velocidade e o tempo gasto. 
 
 
a = 
velocidade
tempo , com unidades: 
velocidade em metros ÷ segundo
tempo em segundos = 
m ÷ s
s
 = 
m
s
2 
 
Força: Relação entre massa e aceleração. 
 
F = massa × aceleração, com unidades: massa em quilograma
aceleração em metros por segundo ao quadrado = 
kg
m ÷ s
2, que é a definição de Newton. 
 
Exemplo 1 
 
Transforme 20 m
s
 em 
km
h . 
 
Solução: 20 m
s
 x 
km
1000 m x 
3600 s
h = 20 x 3,6 
km
h = 72 
km
h 
 
 
Exercício: Transforme as unidades das grandezas abaixo. 
 
Velocidade 
Medida/Unida
des 
m/min cm/h km/min 
20 m/s 
36 cm/h 
44x103 mm/s 
 
Aceleração 
Medida/Unida
des 
m/min2 cm/h2 km/min2 
2 m/s2 
3x102 mm/m2 
5x10-3 cm/s2 
Para evitar o uso de números muito grandes ou muito pequenos, costuma-se utilizar prefixos. 
Estes prefixos estão relacionados na Tabela 1.2. 
 
 
 
10 
 
 
Tabela 1.2 Prefixos para o SI. 
Fator Prefixo Símbolo Fator prefixo símbolo 
1018 exa- E 10-18 atto- a 
1015 peta- P 10-15 femto- f 
1012 tera- T 10-12 pico- p 
109 giga- G 10-9 nano- n 
106 mega- M 10-6 micro- µ 
103 quilo- K 10-3 mili- m 
102 hecto- H 10-2 centi- c 
101 deca- Da 10-1 deci- d 
 
1.1.5 Legislação Brasileira 
 
O Brasil como praticamente todos os outros países, adota como base do seu sistema legal de 
medidas o Sistema Internacional de Unidades, permitindo, porém algumas outras unidades não 
pertencentes ao SI. Vejamos alguns exemplos: 
 
• a unidade de ângulo plano é o radiano mas permite-se a utilização do grau minuto e 
segundo. 
 
• a unidade de tempo é o segundo, permitindo-se, também, a hora e o minuto. 
 
• a unidade de volume é o m3 permitindo-se o litro = 0,001 m3. O símbolo reservado para o 
litro é a letra éle minúscula (l). Podemos utilizar, também, o símbolo L para evitar 
confusão com o número 1 ou a letra i. 
 
Existem algumas outras unidades também aceitas em conjunto com o SI. Nos trabalhos 
técnicos científicos, porém, recomenda-se, tanto quanto possível o uso mais amplo do SI. 
 
No uso do sistema legal de unidades há algumas regras que devem ser estritamente 
observadas. Vejamos algumas delas associadas a erros muito freqüentes: 
 
 
 
1. Grafia de nomesdas unidades: os nomes das unidades são escritos com inicial minús- 
cula. Exemplos: metro, newton, volt, joule, segundo. A grafia dos símbolos, quando se tratar 
de unidade com nome de cientista o símbolo leva inicial maiúscula: N, V, J. 
 
2. O plural dos nomes das unidades se faz com as seguintes regras: 
 
• os nomes recebem um “s” no final da palavra sem desfigurar o nome da unidade: 
metros, candelas, volts, mols, decibels, pascals; 
• exceto quando terminam por s, x ou z: hertz, siemens, lux, etc. 
 
3. O símbolo não admite plural (nunca!): 1 m, 10 m, 1 V, 23 V, etc; 
 
4. Não se coloca ponto depois do símbolo: kg e não “kg.”; 
 
5. O símbolo do prefixo quilo (103) é k (minúscula) e não K (maiúscula): 10 kg e não 
10 Kg; 
 
11 
 
 
6. a separação da parte decimal em um número, no Brasil, é feita utilizando-se vírgula e não 
ponto. É errado, pois, dizer que uma temperatura é de trinta e seis “ponto” cinco graus 
Celsius, ou escrever 36.5 ◦C. O certo é 36,5 ◦C que se lê como trinta e seis graus 
celsius e cinco décimos ou, ainda, trinta e seis vírgula cinco graus celsius; 
 
7. Está também excluída a possibilidade de representar frações decimais menores do que um 
pela expressão “ponto tal”. Exemplo: “a capacitância de um capacitor é .51 µF”. O certo é 
0,51 µF; 
8. Os símbolos ’ e ” são reservados para minuto e segundo de ângulo 
plano, nunca para indicar tempo; 
 
9. Não se usa a unidades “mícron”, nem o plural “micra”, para indicar 0,000 001 m que é 
igual a 1 micrometro (1 µm); 
 
10. A pronúncia dos prefixos SI tem a sílaba tônica no nome da unidade e não no prefixo. 
Falamos de micrometro (pronunciado “micrométro”). Exceto nos casos consagrados pelo 
uso: quilômetro, decímetro, centímetro, milímetro; 
 
11. Os símbolos devem ser grafados corretamente. Às vezes são utilizadas deturpações do 
tipo “seg” para representar segundo, cujo símbolo correto é s; 
 
12. A unidade de temperatura recomendada é o kelvin (não é “graus Kelvin”). Existe, 
porém uma unidade também utilizada que é derivada do kelvin e que se denomina grau 
celsius, dada por: 
 
t = T − T0 , com T0 = 273,15 K 
 
onde t é a temperatura em graus celsius e T a temperatura em Kelvins. Nota: não existe, na 
legislação, a denominação “grau centrígrado”! 
 
Informações Complementares 
 
Símbolo - Não é abreviatura 
O símbolo é um sinal convencional e invariável utilizado para facilitar e universalizar a 
escrita e a leitura das unidades SI. Por isso mesmo não é seguido de ponto. 
 
 
 
 
 
 
 
 
12 
 
 
Símbolo - Não tem plural 
O símbolo é invariável; não é seguido de “s”. 
 
 
 
Unidade Composta 
Ao escrever uma unidade composta, não misture nome com símbolo. 
 
 
 
O Grama 
 
O grama pertence ao gênero masculino. Por isso, ao escrever e pronunciar essa unidade, seus 
múltiplos e submúltiplos, faça a concordância corretamente. 
 
Exemplos: 
dois quilogramas quinhentos miligramas duzentos e dez gramas oitocentos e um gramas 
 
O Prefixo Quilo 
O prefixo quilo (símbolo k) indica que a unidade está multiplicada por mil. Portanto, não 
pode ser usado sozinho. 
 
 
Use o prefixo quilo da maneira correta. 
 
 
13 
 
 
Medidas de Tempo 
Ao escrever as medidas de tempo, observe o uso correto dos símbolos para hora, minuto e 
segundo. 
 
 
 
Obs: Os símbolos ’ e ” representam minuto e segundo em unidades de ângulo plano e não de 
tempo. 
 
 
 
1.2 Algarismos significativos 
 
A representação de qualquer medida deve levar em consideração o conceito de algarismos 
significativos. Definem-se algarismos significativos como sendo todos os algarismos de uma 
medida contados da esquerda para a direita a partir do primeiro dígito diferente de zero. 
 
 
Figura 1.1 Régua graduada em cm. 
 
Na figura 1.1 tem-se uma régua graduada em centímetros com resolução de 0,1 cm (resolução 
= menor divisão do instrumento de medida). Pode-se dizer que o comprimento da barra é 2,54 
cm (três algarismos significativos). 
 
Os algarismos 2 e 5 são garantidos, porém o 4 foi avaliado. No lugar de 4 poderíamos ter 3 ou 
5, podendo a leitura ser 2,53 cm ou até 2,55 cm. Concluímos desta forma que o último dígito 
de qualquer medida pode variar, sendo este chamado de duvidoso. 
 
 
Ponte de espaguete com 337 g (3 algarismos 
significativos). Carga de ruptura de 34821 g (5 algarismos 
significativos). 
 
 
14 
 
 
Uma medida pode ser representada de várias formas, desde que não alteremos a quantidade de 
algarismos significativos. Desta forma podemos representar uma medida com 3 algarismos de 
diversas maneiras: 25,4 cm = 0,254 m = 0,000254 km = 0,254 x 10−3 km. 
 
Observe os exemplos: 
 
a) 25,4 cm tem 3 algarismos significativos; 
 
b) 0,254 m tem 3 algarismos significativos; 
 
c) 2,54x10−1 m tem 3 algarismos significativos; 
 
d) 25,40 cm tem 4 algarismos siginificativos; 
 
e) 25,400 cm tem 5 algarismos significativos 
 
Nos exemplos citados podemos tirar as seguintes conclusões: 
 
• Zeros à esquerda e potências de dez não representam algarismos significativos, porém 
zeros a direita de uma medida representam algarismos significativos. 
 
• As medidas (a), (d) e (e) foram feitas com instrumentos diferentes (possuem 
quantidades diferentes de algarismos significativos); 
 
• A medida (e) é a mais precisa do que as medidas (a) e (d) pois possui maior 
quantidade de algarismos significativos; 
 
 
A tabela 1.3 exemplifica a quantidade de algarismos significativos obtidos por medidas de 
diferentes instrumentos. 
 
Tabela 1.3 Algarismos significativos entre instrumentos diferentes. 
Instrumento Menor divisão da escala (resolução) [cm] 
Comprimento da 
barra [cm] 
Régua em cm 1 12,7 
Régua comum 0,1 12,75 
Paquímetro 0,005 12,745 
Micrômetro 0,0001 12,74515 
 
A quantidade de algarismos significativos é maior quanto menor for a divisão (resolução do 
instrumento) da escala de instrumentos de mesma graduação. Pode-se perguntar então: 
“Existe alguma medida exata?”. 
 
 
15 
 
 
Exercício – Escreva na tabela abaixo o número correto de algarismos significativos de cada 
medida apresentada. Observe que potência de dez não representa algarismo significativo. 
 
MEDIDA NÚMERO DE ALGARISMOS SIGNIFICATIVOS 
42,0540 m 
123,36 dm 
23x102 cm 
23x10-2 cm 
23,038 mm 
0,00142 km 
3,000000 mm 
0,000003 mm 
 
Exercício – Escreva na tabela abaixo a medida 8927,536x10-3 km de acordo com o número 
de algarismos significativos pedidos. Forneça as respostas em metros. Como critério de 
arredondamento, acrescente um unidade no último dígito se o dígito posterior for maior ou 
igual a 5. 
 
NÚMERO DE ALGARISMOS 
SIGNIFICATIVOS RESPOSTA 
6 8927,54 x103 m 
5 
4 
3 
2 
1 
 
 
1.3 Avaliando medidas 
 
Uma das etapas fundamentais do curso de física experimental é a de avaliar uma medida, pois 
devemos aprender que nenhuma medida é exata. Seguem as regras fundamentais para o 
processo correto de avaliação de medidas. 
 
1.3.1 Graduação do instrumento de medida 
 
A graduação é a primeira etapa de um processo de medida. Entende-se por graduação de um 
instrumento de medida os números gravados no instrumento seguido da unidade especificada. 
 
 
 
 
16 
 
 
Observe os exemplos nas figuras a seguir: 
 
 
Figura 1.2 Régua graduada em metros (m) 
 
Na figura 1.2 vemos que os números 1, 2, 3 e 4 representam 1 m, 2 m, 3 m e 4 m 
respectivamente. 
 
 
Figura 1.3 Régua graduada em centímetros (cm) 
 
Na figura 1.3 vemos que os números 1, 2, 3 e 4 representam 1 cm, 2 cm, 3 cm e 4 cm 
respectivamente. 
 
 
 
Figura 1.4 Régua graduada em decímetros (dm) 
 
Na figura 1.4 vemos que os números1, 2, 3 e 4 representam 1 dm, 2 dm, 3 dm e 4 dm 
respectivamente. 
 
1.3.2 Menor divisão do instrumento de medida 
 
A menor divisão de um instrumento de medida é chamada de resolução. A resolução do 
instrumento representado pela figura 1.5 (abaixo) é de 0,1 m. 
 
 
Figura 1.5 Régua graduada em metros (m) 
 
Podemos encontrar a resolução dividindo a diferença entre graduações consecutivas pelo 
número de traços contidos entre elas. Na figura 1.5 temos: 3 − 210 = 0,1 cm. 
 
 
Figura 1.6 Régua graduada em metros (m) 
 
Na figura 1.6 temos: 4 − 210 = 0,2 cm. Observe que a resolução agora é de 0,2 cm. 
 
17 
 
 
1.3.3 Valores mínimos e máximos da medida 
 
Na figura 1.5 podemos verificar que o traço escuro está entre 2,5 m e 2,6 m, ou seja: 
 
• O menor valor possível para a medida é de 2,5 m (valor mínimo). 
• O maior valor possível para a medida é de 2,6 m (valor máximo). 
 
Desta forma podemos dizer que a medida é maior que 2,5 e menor que 2,6. 
 
1.3.4 Avaliar o algarismo duvidoso 
 
Sabemos que a medida do traço escuro na figura 1.5 é maior que 2,5. Os algarismos 2 e 5 são 
os algarismos significativos que conhecemos da medida, pois temos certeza que ela é maior 
que 2,5. Para completar a avaliação temos que avaliar o último algarismo significativo, 
chamado de duvidoso. Qualquer valor menor que o máximo é valido, porém temos que 
avaliar (chutar) um valor coerente. 
Como possibilidades temos: 
 
2,54 m, uma medida com três algarismos significativos, sendo o 4 o duvidoso (avaliado); 
2,55 m, uma medida com três algarismos significativos, sendo o 5 o duvidoso (avaliado); 
2,56 m, uma medida com três algarismos significativos, sendo o 6 o duvidoso (avaliado); 
 
Como impossibilidades temos: 
 
2,51 m, pois sabemos que a medida não está próxima de 2,5. 
2,59 m, pois sabemos que a medida não está próxima de 2,6. 
 
 Exercício – Faça a leitura da altura da rampa, na régua representada abaixo. Forneça a 
resposta em metros. 
 
 
 
Resposta em metros: ___________________ 
 
 
 
 
 
 
 
18 
 
 
Exercício – Escreva na tabela abaixo a medida do retângulo conforme escalas desenhadas na 
figura abaixo. Forneça as respostas em metros. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exercício - Escreva a medida dos objetos utilizando as escalas graduadas em milímetros, 
desenhadas nas figuras abaixo. 
 
Apresente a medida em milímetros: 
 
___________________________________________ 
 
Apresente a medida em centímetros 
 
_________________________________________ 
 
 
 
 
 
 
Respostas em metros 
Lado A 
Lado B 
0 1 2 3 4
10 
20 
30 
0 
Graduação 
em cm 
Graduação 
em dm 
Lado A 
Lado B 
19 
 
 
Exercício - Com uma régua graduada em centímetros, avalie as medidas das figuras abaixo e 
escreva os valore na tabela abaixo. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Lado A 
Lado B 
Lado C 
Lado D 
Lado E Lado F 
Lado G 
Lado H Lado I 
Lado J 
Lado K 
Lado L 
Lado M 
20 
 
 
LADO MEDIDA 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
 
 
1.3.5 Avaliar a incerteza 
 
De acordo com as regras apresentadas no item anterior, o traço escuro na figura 1.7 pode ter 
como medida (estimativa): 
• Primeira possibilidade: 2,4 m – Dois algarismos significativos, sendo o 4 o duvidoso; 
• Segunda possibilidade: 2,5 m – Dois algarismos significativos, sendo o 5 o duvidoso; 
• Terceira possibilidade: 2,6 m – Dois algarismos significativos, sendo o 6 o duvidoso; 
 
Observamos que a medida deve estar contida em uma faixa de possibilidades, variando desde 
um valor mínimo 2,4 m até um valor máximo 2,6 m. Desta forma podemos representar a 
medida do traço da seguinte forma: 
Escolhendo um valor central, neste caso o 2,5 e representando a faixa acrescentando ± 0,1 
para atingir os limites de possibilidades. Desta forma a medida será representada por (2,5 ± 
0,1) m. 
 
 
 
 
 Figura 1.7 Régua graduada em metros (m) 
 
Todas as medidas devem ser representadas em uma faixa de possibilidades, sendo esta a 
representação correta das mesmas. Desta forma concluímos que nenhuma medida é exata! 
 
 
 
21 
 
 
1.3.5.1 Regras para avaliação de incerteza 
 
Em qualquer leitura direta em instrumentos de medida a incerteza é avaliada como sendo a 
metade da resolução. A resolução da régua na figura 1.7 é de 1 m, portanto a incerteza será de 
0,5 m, sendo a medida do traço (2,4 ±0,5) m. Observe que o último dígito da incerteza (o 
cinco) acompanha o algarismo duvidoso (o quatro) na mesma casa decimal. 
 
Veja outros exemplos na tabela abaixo: 
 
RESOLUÇÃO INCERTEZA 
1 m 0,5 m 
0,2 cm 0,1 cm 
2 dm 1 dm 
0,03 mm 0,015 mm 
5 m 2,5 m 
 
IMPORTANTE: Neste curso utilizaremos incerteza com 1 algarismo significativo. 
 
Exercício – Acrescente as incertezas nas medidas feitas nos exercícios anteriores. 
 
Exercício – De acordo com as medidas apresentadas a seguir: 
 
(2,36 ± 0,1) 
dm 
(53,3 ± 0,2) 
cm 
(0,13 ± 0,03) m (2050,0 ± 5,0) x10-3 
km 
(236,1 ± 0,1) 
mm 
 
 
Represente abaixo: 
A medida 
representada de 
forma incorreta 
A representação 
correta da medida 
descrita 
anteriormente 
A medida com 
menor número de 
algarismos 
significativos 
A medida com 
maior número de 
algarismos 
significativos 
Represente a 
medida dada em 
milímetros em 
centímetros 
 
Exercício – Preencha a tabela abaixo expressando na coluna da direita a notação correta 
para a medida escrita de forma errada na coluna da esquerda (observe a potência de dez na 
resposta). 
Notação errada Notação correta 
(42,054 ± 0,5) ( ) x 10 −1 
(123,36 ± 2) 
(23 ± 0,2)x102 ( ) x 10 2 
(23,38 ± 0,0751) 
(0,0142 ± 0,00007) ( ) x 10 −2 
 
 
22 
 
 
Exercício – Na tabela abaixo temos diversas medidas realizadas. 
 
(1,434 ± 0,005) cm (2,497 ± 0,006) cm (41,00 ± 0,04) mm 
(28,50 ± 0,04) mm (4,96 ± 0,04) dm (99,8 ± 0,2) dm 
(0,432 ± 0,004) dm (75,84 ± 0,04) mm (12,60 ± 0,06) cm 
Em relação aos dados responda: 
a) Qual medida é mais precisa? 
b) Qual é a maior resolução? 
c) Qual é a menor resolução? 
d) Quais medidas podemos dizer que foram feitas com o mesmo instrumento? 
e) Qual é a medida menos precisa? 
 
Exercício – Escreva as medidas representadas nas figuras abaixo (paquímetros graduados em 
mm). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Apresente a medida em centímetros: 
 
Apresente a medida em decímetros: 
 
23 
 
 
PRÁTICA 1: Introdução à medição 
Uma técnica chamada de Microscopia de Força 
Atômica (AFM - Atomic Force Microscopy), 
produz imagens medindo a força de atração 
entre os átomos da amostra e a ponta de prova 
do microscópio. É como se a ponta de prova, 
que é tão fina que sua extremidade pode conter 
um único átomo, "apalpasse" a amostra. A 
imagem é criada a partir das variações na 
intensidade da força de interação entre a ponta 
de prova e o átomo. O microscópio eletrônico 
cria uma espécie de "mapa topográfico" da 
molécula. A visualização direta, por meios 
ópticos, é impraticável porque a molécula é 
muito menor do que o comprimento de onda da 
luz visível. [Imagem: IBM Research - Zurich] 
 
Objetivos 
 
Avaliar medias com instrumentos de diversas graduações. 
Avaliar incertezas em medidasProcedimento experimental 
 
1. Separar o material experimental; 
2. Medir as dimensões dos objetos fornecidos; 
3. Anotar os resultados na folha de dados; 
 
Coleta dos dados 
 
 
Tabela 1 - Coleta de Dados da dimensão 1 
 
Objeto Medida I 
Medida 
II 
Medida 
III 
Medida 
IV 
1 ( ± ) ( ± ) ( ± ) ( ± ) 
2 ( ± ) ( ± ) ( ± ) ( ± ) 
3 ( ± ) ( ± ) ( ± ) ( ± ) 
4 ( ± ) ( ± ) ( ± ) ( ± ) 
5 ( ± ) ( ± ) ( ± ) ( ± ) 
 
 
24 
 
 
Tabela 1 - Coleta de Dados da dimensão 2 
 
Objeto Medida I 
Medida 
II 
Medida 
III 
Medida 
IV 
1 ( ± ) ( ± ) ( ± ) ( ± ) 
2 ( ± ) ( ± ) ( ± ) ( ± ) 
3 ( ± ) ( ± ) ( ± ) ( ± ) 
4 ( ± ) ( ± ) ( ± ) ( ± ) 
5 ( ± ) ( ± ) ( ± ) ( ± ) 
 
 
2 Propagação de incertezas 
 
Observe a figura abaixo: 
 
 
 
 
 
 
Figura 2.1 Retângulo com medidas em metros (m) 
 
O lado referente a base tem medida (2,8 ± 0,1) m e a sua altura é de (1,3 ± 0,1) m. Como 
poderemos representar a medida de sua área? Normalmente multiplicamos a medida da base 
(2,8) pela medida da altura (1,3), tendo 3,64 m2 como resultado. E como iremos representar a 
incerteza no resultado? Veja a teoria a seguir. 
 
Geralmente é necessário usar valores medidos e afetados por erros para realizar cálculos a fim 
de se obter o valor de outras grandezas. É necessário conhecer como o erro na medida original 
afeta a grandeza final. 
 
2..1 Soma e subtração de grandezas 
 
A análise estatística rigorosa mostra que ao somarmos ou subtrairmos grandezas 
estatisticamente independentes o erro no resultado será dado pela raiz quadrada da soma dos 
quadrados dos erros de cada uma das grandezas. Por exemplo, se tivermos três grandezas 
dadas por: x ± ∆ x , y ± ∆ y e z ± ∆ z , a soma (ou subtração) delas, 
 
w = x + y + z 
 
será afetada por erro de valor 
 
222 )()()( zyxw ∆+∆+∆=∆ . 
 
25 
 
 
Exercício – De acordo com as medidas indicadas na tabela abaixo: 
Medida Valor 
d (3,240 ± 0,009) 
e (1,34 ± 0,07) 
f (2,1 ± 0,8) 
Represente os resultados das operações na tabela abaixo (com número de algarismos 
significativos e incerteza expressa de forma correta).: 
Operação Resultado 
d + e 
d - e 
f - e 
d + e + f 
d + e - f 
 
 
2.2 Multiplicação e divisão de grandezas 
 
Neste caso, o erro relativo do resultado será dado pela raiz quadrada da soma dos quadrados 
dos erros relativos de cada fator. Por exemplo, se w = x/y teremos: 
 
22 )()(
y
y
x
x
w
w ∆
+
∆
=
∆
 
 
Generalizando na fórmula βα CBAkF ⋅⋅⋅= as operações de multiplicação, divisão, 
radiciação e potenciação, teremos: 
 
2222 )()()()(
c
c
b
b
a
a
k
k
f
f ∆
+
∆
+
∆
+
∆
=
∆ βα , onde: 
 
A = ( a ± ∆a); B = ( b ± ∆b); C = ( c ± ∆c); e K = ( k ± ∆k) (constante que não depende de 
medição). A constante K poderá aparecer nas seguintes formas: 
 
Número formado por quantidade finita de dígitos (número exato). Nesse caso a incerteza 
absoluta, ∆k, é nula; 
 
Número que matematicamente comporte infinitos dígitos (irracional, dízima). Neste caso a 
incerteza absoluta dependerá da quantidade de dígitos adotada. Se utilizarmos uma 
calculadora que opere com dez dígitos, teremos pi = 3,141592654. O último dígito foi 
arredondado pela máquina, e está afetado por uma incerteza de uma unidade (∆pi = 
0,000000001). Deve-se notar que na maioria das vezes a incerteza relativa do número pi, para 
tantas casas decimais, será desprezível perante as incertezas relativas das outras variáveis. 
26 
 
 
Exercício – De acordo com as medidas indicadas na tabela abaixo: 
 
 
 
Represente os resultados das operações na tabela abaixo (com número de algarismos 
significativos e incerteza expressa de forma correta). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Medida Valor 
d (3,54 ± 0,09) mm 
e (2,10 ± 0,61) cm 
f (21,35 ± 0,04) m 
Operação Resultado [m] 
f .d 
d.e 
f/d 
d/f 
(f+d)/e 
(f-d)/(d+e) 
27 
 
 
PRÁTICA 2: Introdução à medição - paquímetro 
 
Introdução 
 
O paquímetro é um instrumento usado para medir dimensões lineares internas, externas e de 
profundidade de uma peça. Consiste em uma régua graduada, com encosto fixo, sobre a qual 
desliza um cursor. A leitura da dimensão é feita somando-se a leitura da escala, quantidade de 
traços na escala principal antes do zero do cursor, mais a leitura do nônio. A leitura do nônio, 
por sinal, é feita com base na coincidência de um dos traços do nônio com um dos traços da 
escala principal. Na Figura 3.1 é apresentado um exemplo de leitura com paquímetro. A 
marcação da leitura na escala principal é de 73 mm, pois existem 73 traços antes do zero do 
cursor, e a leitura do nônio é de 0,65 mm, pois o traço 65 do nônio é o coincidente. 
 
Figura – Leitura do paquímetro com resolução de 0,05 mm 
 
 Leitura na Escala: 73 mm 
 Leitura no Nônio: 0,65 mm 
 Leitura Final: 73,65 mm 
 
Objetivos 
 
Familiarizar-se com o manuseio do instrumento. 
Aplicar as regras de propagação de incerteza. 
 
Procedimento experimental 
 
Para cada cilindro determine o diâmetro e a altura utilizando o paquímetro fornecido, anote os 
dados na tabela 2.1 no item coleta de dados; 
 
Determine a massa de cada cilindro utilizando a balança fornecida; 
 
Com os dados coletados determine para cada cilindro sua massa específica usando a 
expressão: 
ρ = m/V 
 
 
Anote os resultados na tabela 2.2. 
 
 
 
28 
 
 
Coleta dos dados 
 
Tabela 2.1 - Coleta de Dados 
 
Objeto Diâmetro [mm] Altura [mm] Massa [g] 
Cilindro de cobre ( ± ) ( ± ) ( ± ) 
Cilindro de 
alumínio ( ± ) ( ± ) ( ± ) 
Cilindro de plástico ( ± ) ( ± ) ( ± ) 
Cilindro de aço ( ± ) ( ± ) ( ± ) 
Cilindro de latão ( ± ) ( ± ) ( ± ) 
 
 
 
 
 
 
Tabela 2.2 - Resultados 
 
Objeto Diâmetro [g/mm3] 
Cilindro de cobre ( ± ) 
Cilindro de alumínio ( ± ) 
Cilindro de plástico ( ± ) 
Cilindro de aço ( ± ) 
Cilindro de latão ( ± ) 
 
 
 
 
 
 
 
 
29 
 
 
PRÁTICA 3: Estudo de Movimento I. 
 
Câmera mais rápida do mundo usa lasers e não tem CCD 
 
Câmera mais rápida do mundo usa 
lasers e é capaz de filmar processos 
químicos e biológicos fundamentais em 
tempo real.[Imagem: K. Goda] 
Pesquisadores da Universidade da 
Califórnia, nos Estados Unidos, criaram 
um novo tipo de câmera filmadora 
ultrarrápida que quebra as barreiras 
tradicionais entre as câmeras 
fotográficastradicionais, as filmadoras 
e os microscópios eletrônicos. Para 
observar eventos que ocorrem em 
altíssima velocidade, como ondas de 
choque, atividades neurais ou mesmo as 
comunicações entre células vivas, é 
necessário capturar milhões ou bilhões de imagens a cada segundo. Até hoje, nenhuma 
câmara sequer se aproximava dessa capacidade. A nova câmera alcança esses objetivos 
alterando radicalmente o conceito utilizado atualmente para a captura de imagens ópticas. 
Introdução 
 
Movimento é o estado de um corpo cuja posição, em relação a um referencial, muda. Quando uma 
partícula se move, em uma trajetória, em relação ao referencial, esta possui uma velocidade média que 
pode ser calculada, se for conhecido o tempo e a distância percorrida. 
 
t
sV
∆
∆
= [3.2.1] 
 
O movimento pode ser “absoluto”, quanto o referencial é um ponto fixo, e relativo, quando o 
observador também se move. 
Quando dois corpos estão em movimento relativo, esses possuem uma velocidade relativa entre si, 
onde essa velocidade relativa, é dada pela diferença das velocidades dos dois corpos. 
 
ABAB VVV
rrr
−=
−
 [3.2.2] 
 
Com base nesses conceitos, pode-se analisar a partir do seguinte experimento, esses dois 
casos de movimento, usando corpos diferentes, mas que percorrem a mesma trajetória em 
sentidos opostos. 
 
Objetivo 
 
Analisar e classificar os movimentos dos objetos; 
Verificar a importância do referencial no estudo de um movimento. 
 
 
Procedimento experimental 
30 
 
 
Montar o trilho de ar e posicionar os sensores; 
Definir um referencial na régua e medir o tempo para quatro posições da esfera em relação a 
esse referencial pré-fixado; 
 
 Coleta dos dados 
 
Os dados devem ser anotados na Tabela 3.1. 
 
Cálculos 
 
Calcular a velocidade média e a incerteza associada para cada trecho do movimento. Utilize a 
expressão 
t
sV
∆
∆
= . Anote os resultados na tabela 3.2 
 
Coleta de dados - Estudo de movimentos 
 
 
Tabela 3.1 - Coleta de dados 
 
Movimento da esfera (tempo em segundos e distâncias em centímetros) 
Ref = (15 ± 1 ) Tempo 
X1 = ( ± ) ( ± ) 
X2 = ( ± ) ( ± ) 
X3 = ( ± ) ( ± ) 
X4 = ( ± ) ( ± ) 
 
 
 
 
Tabela 3.2 – Resultados 
 
Velocidade da esfera 
V1 ( ± ) m/s 
V2 ( ± ) m/s 
V3 ( ± ) m/s 
V4 ( ± ) m/s 
31 
 
 
 
PRÁTICA 4: Estudo de Movimento II. 
 
Introdução 
 
Movimento acelerado é o estado de um corpo cuja 
velocidade, em relação a um referencial, muda. A esta 
mudança de velocidade damos o nome de aceleração. A 
aceleração de queda livre, como o nome já indica, é aquela 
em que o objeto está sujeito somente a força gravitacional. 
 
 
t
V
a
∆
∆
= 
 
 
 
 
Objetivo 
 
Determinação da aceleração de queda livre. 
 
 
Procedimento experimental 
 
Montar o trilho de ar na vertical e posicionar os sensores; 
 
Definir um referencial na régua e medir o tempo de queda para quatro posições da esfera em 
relação a esse referencial pré-fixado; 
 
 Coleta dos dados 
 
Os dados devem ser anotados na Tabela 4.1. 
 
Cálculos 
 
Calcular a aceleração e a incerteza associada para cada trecho do movimento. Utilize a 
expressão 
t
V
a
∆
∆
= . Anote os resultados na tabela 4.2 
 
 
 
 
 
 
 
 
 
 
 
 
32 
 
 
 
Coleta de dados - Estudo de movimentos II 
 
 
Tabela 4.1 - Coleta de dados 
 
Movimento da esfera (tempo em segundos e distâncias em centímetros) 
Ref = (15 ± 1 ) Tempo 
X1 = ( ± ) ( ± ) 
X2 = ( ± ) ( ± ) 
X3 = ( ± ) ( ± ) 
X4 = ( ± ) ( ± ) 
 
 
 
 
Tabela 3.2 – Resultados 
 
Aceleração da esfera 
a1 ( ± ) m/s2 
a2 ( ± ) m/s2 
a3 ( ± ) m/s2 
a4 ( ± ) m/s2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33 
 
 
PRÁTICA 5: Força elástica das molas. 
 
Introdução 
 
Um exemplo de força variável é a força de uma mola, onde essa é proporcional a sua 
deformação. As molas helicoidais, sem exceção alguma, possuem uma constante elástica (k), 
que pode ser calculada através da relação matemática conhecida como Lei de Hooke, 
xkF ∆⋅−= [3.3.1] onde F é a força exercida pela mola, e ∆x é a sua deformação. 
 
Essa lei (Eq. 3.3.1) explica o funcionamento do dinamômetro, o qual nos indica a força 
aplicada sobre o mesmo observando-se a deformação de sua mola. 
 
Usando uma haste milimetrada, diferentes massas, e duas molas, pode-se calcular as 
constantes elásticas (k) e as incertezas associadas, de cada mola, e de suas associações em 
série e em paralelo. 
 
Objetivo 
 
Obter a constante elástica das molas e de suas associações em série e em paralelo 
analiticamente; 
 
Procedimento experimental 
 
1. Montar a mola 1 no suporte graduado; 
2. Medir o peso do recipiente; 
3. Pendurar na mola o recipiente que conterá as massas e estabelecer o referencial para as 
medidas de deformações; 
4. Medir o peso do conjunto recipiente + massas; 
5. Pendurar novamente o recipiente na mola e medir a deformação; 
6. Repetir os itens (5) e (6) do procedimento quatro vezes, variando a quantidade de 
massas; 
7. Ao término da primeira bateria, item (7), repetir o procedimento para a mola 2 do item 
(3) até o (7); 
8. Ao término da segunda bateria, item (8), associar as duas molas em série e repetir o 
procedimento do item (3) até o (7); 
9. Ao término da terceira bateria, item (9), associar as duas molas em paralelo e repetir o 
procedimento do item (3) até o (7). 
 
Coleta dos dados 
 
 Os dados devem ser anotados na Tabela 5.1 da folha de dados. 
 
Cálculos 
Calcular 1k e a incerteza associada. Saiba que y
mgk
∆
= , lembrando que m é a massa total e 
y∆ é a deformação no eixo y (g=9,8 m/s2); Calcular 2k e a incerteza associada; Calcular 
Sériek −12 e a incerteza associada; Calcular Paralelok −12 e a incerteza associada. 
34 
 
 
Coleta de dados – Força elástica das molas 
 
 
Tabela 5.1 - Coleta de Dados // Resultados 
Situação Variável Objeto 1 Objeto 2 Objeto 3 
Mola 1 
Força (N) ( ± ) ( ± ) ( ± ) 
Deformação 
(m) ( ± ) ( ± ) ( ± ) 
K1 (N/m) ( ± ) ( ± ) ( ± ) 
Mola 2 
Força (N) 
 
( ± ) ( ± ) ( ± ) 
Deformação 
(m) ( ± ) ( ± ) ( ± ) 
K2 (N/m) ( ± ) ( ± ) ( ± ) 
Série 
Força (N) ( ± ) ( ± ) ( ± ) 
Deformação 
(m) ( ± ) ( ± ) ( ± ) 
K12-Série 
(N/m) ( ± ) ( ± ) ( ±) 
Paralelo 
Força (N) ( ± ) ( ± ) ( ± ) 
Deformação 
(m) ( ± ) ( ± ) ( ± ) 
k12-Paralelo 
(N/m) ( ± ) ( ± ) ( ± ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35 
 
 
PRÁTICA 6: Atrito 
 
Introdução 
 
Atrito é um fenômeno físico, que ocorre quando existe o contato entre dois corpos, gerando 
uma força resistente, ou seja, contrária ao movimento, ou a tendência de movimento. Essa 
força resistente, ou força de atrito, máxima é dada pela equação: 
 
NFat ⋅= µmax , Onde µ é o coeficiente de atrito, e N é a força normal. 
 
Existem dois tipos de atrito. O atrito estático, que ocorre quando não existe movimento 
relativo entre as superfícies, e o cinético, que ocorre quando existe esse movimento. O contato 
entre diferentes superfícies, conduz a diferentes coeficientes de atrito, tanto estático quanto 
dinâmico. Nesse experimento, analisa-se esse fenômeno entre um plano inclinado e blocos 
com diferentes superfícies, porém de mesma massa. 
 
 
 
 
 
 
Figura 6.1 
 
Objetivo 
 
Obter o coeficiente de atrito estático e a força de atrito máxima entre duas superfícies 
utilizando um plano inclinado. 
 
Procedimento experimental 
 
1. Medir o peso do bloco; 
2. Colocar o bloco sobre o plano (Fig. 3.5.1) e aumentar vagarosamente a inclinação do 
plano com a horizontal, até o bloco iniciar o seu movimento; 
3. Ao iniciar o movimento do bloco, medir o ângulo de inclinação do plano com a 
horizontal; 
4. Para cada superfície do bloco, repetir o procedimento mais quatro vezes; 
 
Coleta dos dados 
 
 Os dados devem ser anotados nas Tabelas 6.1 e 6.2. 
 
Cálculos 
 
Fazer um desenho esquemático mostrando as forças e suas componentes, ângulos e distâncias 
existentes; Calcular o coeficiente de atrito estático médio, desvio padrão e a incerteza 
associada para cada bloco utilizado, lembrando que NFat ⋅= µ ; Calcular a força de atrito e a 
incerteza associada para cada bloco utilizado. 
 
h 
L 
d θ 
36 
 
 
Coleta de dados - Atrito 
 
Tabela 6.1 – Coleta dos dados 
 
DADO: L = (1,0 ± 0,2) m 
Superfícies / 
Corrida h (m) µµµµe = Tg(θθθθ) Força Normal (N) Força de atrito (N) 
I 
1 ( ± ) 
2 ( ± ) 
3 ( ± ) 
4 ( ± ) 
 
II 
1 ( ± ) 
2 ( ± ) 
3 ( ± ) 
4 ( ± ) 
 
III 
1 ( ± ) 
2 ( ± ) 
3 ( ± ) 
4 ( ± ) 
 
 
Tabela 6.2 - Peso do Bloco 
 
Peso do bloco (N) 
( ± ) 
 
 
 
 
 
37 
 
 
PRÁTICA 7: Conservação da quantidade de movimento (momento linear) 
 
Introdução 
 
 Quando duas partículas interagem, pode-se aplicar a Terceira Lei de Newton, isto é, a 
toda ação corresponde uma reação, com a mesma intensidade e direção e de sentidos opostos. 
 
Se as partículas forem consideradas como um sistema isolado, apenas as forças de ação e 
reação atuam internamente, e então o sistema deve permanecer em equilíbrio (em repouso ou 
em movimento retilíneo uniforme). Pode-se assim afirmar que, se não houver agentes 
externos modificando este equilíbrio, todas as grandezas internas conservar-se-ão. 
 
Define-se uma grandeza interna do sistema como momento linear P (ou momentum, ou 
quantidade de movimento) que é o produto de cada uma das massas das partículas do sistema 
por sua velocidade (P = mv), onde m é um escalar positivo e v é um vetor, logo P será um 
vetor com a mesma direção e sentido de v. 
 
Figura 7.1: (a) Trajetória da esfera 1 no suporte de descida até o plano de medida do alcance 
das esferas; (b) Trajetória das esferas 1 e 2 antes e após a colisão. 
 
Havendo uma colisão, e considerando as partículas como um sistema isolado, então: 
P(antes do choque) = P’(depois do choque) 
221121 vmvmPPP +=+= (neste caso, teremos v2 = 0) 
'
22
'
11
'
2
'
1
' vmvmPPP +=+= 
 
Onde m1 e m2 são as massas que se chocam e v e v ‘ são as velocidades antes e depois do 
choque, respectivamente. 
 
Objetivo 
 
Observar experimentalmente a lei de conservação do momento linear, em uma dimensão. 
 
Procedimento experimental 
 
1. Verificar se o ponto D do suporte de descida das esferas está na mesma linha vertical 
do início do plano de medida de alcance das esferas. 
2. Abandonar 4 vezes a esfera maior a partir de um ponto no suporte de descida (maior 
altura), e anotar em cada caso o alcance. 
38 
 
 
3. Abandonar novamente a esfera maior 4 vezes desde cada um dos três pontos marcados 
no suporte de descida, desta vez provocando um choque com a esfera menor que 
estará localizada no ponto D, anotar o alcance de cada esfera. 
 
 
Coleta de dados 
 
Para a altura de abandono da esfera: 
Calcule os valores médios e as incertezas do alcance da esfera (
−
∆X e 





∆∆
−
X ). 
Calcule a velocidade horizontal média da esfera sem choque (
−
v ), e a incerteza associada 
(∆
−
v ). 
Calcule a velocidade horizontal média para cada esfera após o choque (
−
'
1v e 
−
'
2v ), e a incerteza 
associada (∆
−
'
1v e ∆
−
'
2v ). 
Calcule o momento linear P a incerteza associada, sem choque. 
Calcule o momento linear de cada esfera a incerteza associada, após o choque (P1’ e P2’): 
Compare os resultados para o momento linear, antes do choque (P) e depois do choque (P1’ + 
P2’), conforme descrito na Introdução. 
 
Massa da esfera 1: m1 = ( ± ) kg 
 
Massa da esfera 2: m2 = ( ± ) kg 
 
Altura de abandono: h (MÁXIMA) 
 
Tempo de queda: t = (0,45 ± 0,05) s 
Tabela 7.1: Coleta de Dados 
SEM COLISÃO 
Lançamento 1 2 3 4 
X1 (m) ( ± ) ( ± ) ( ± ) ( ± ) 
Velocidade 1 
(m/s) 
COM COLISÃO 
X1 (m) ( ± ) ( ± ) ( ± ) ( ± ) 
Velocidade 1 
PARCIAIS 
X2 (m) ( ± ) ( ± ) ( ± ) ( ± ) 
Velocidade 2 
PARCIAIS 
 
39 
 
 
Tabela 7.2: Coleta de Dados 
ANTES DA COLISÃO 
Esfera Média da velocidade (m/s) Momento, p = mv (kg.m/s) 
1 ( ± ) ( ± ) 
2 ZERO ZERO 
APÓS A COLISÃO 
Esfera Média das velocidades (m/s) Momento, p = mv (kg.m/s) 
1 ( ± ) ( ± ) 
2 ( ± ) ( ± )

Outros materiais