Buscar

Resumo 01 MatrizesDeterminantesSistemas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 9 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 9 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 9 páginas

Prévia do material em texto

Curso de Geometria Analítica
Abrangência: Graduação em Engenharia e Matemática - Professor Responsável: Anastassios H. Kambourakis
 Resumo Teórico 01- Matrizes , Determinantes e Sistemas Lineares 
A) MATRIZES
Definimos Matriz do tipo mxn (se lê: m por n), a toda tabela formada por m(n elementos, dispostos em m linhas e n colunas(as linhas e colunas são também chamadas de filas da matriz). Exemplos:
 1 2 3 x y 2
A= , Matriz 2x3; B= , Matriz 2x2; C= , Matriz 2x1; D= 2 1 3 , Matriz 1x3 . 
 5 7 8 a b 5
 a11 a12 a13 ------a1n 
 Representação Genérica de uma Matriz m x n: a21 a22 a23 ------- a2n
 a31 a32 a33 ------- a3n
 A = -- -- -- ----- --
 -- -- -- ----- --
 am1 am2 am3 ------ amn 
De um modo geral, aij é o elemento da matriz localizado na i-ésima linha e j-ésima coluna, assim: a11 é o elemento da matriz localizado na primeira linha e primeira coluna, a32 é o elemento da matriz localizado na terceira linha e segunda coluna, etc.
Podemos ainda escrever a matriz A na forma A = (aij)mxn .
As matrizes A e B serão chamadas de Mesmo Tipo quando o número de linhas de A é o mesmo que de B e o número de colunas de A é o mesmo que de B.
Matriz Quadrada: é a matriz com número de linhas igual ao de colunas (m=n). Dizemos, neste caso que a matriz é quadrada de ordem n. Os elementos aij, com i=j (a11 a22 ---- ann ), formam a diagonal principal. A outra diagonal da matriz é chamada de secundária.
Matriz Identidade ou Unidade: é a matriz quadrada indicada por In tal que aij=1 para i=j e aij=0 para i(j.
Matriz Inversa de uma Matriz: Dada uma matriz A, quadrada de ordem n, a matriz inversa de A, quando existir é uma matriz (indicada por A-1 ), tal que (A(A-1)=(A-1(A) = In. 
Matriz Nula: é a matriz cujos elementos são todos iguais a zero. A representamos por “ (” . 
Matriz Diagonal: é a matriz quadrada com todos os elementos que não pertencem a diagonal iguais a 0.
Matriz Linha: é a matriz com número de linhas igual a um (1 x n)
Matriz Coluna: é a matriz com número de colunas igual a um (m x 1)
Matriz Oposta de uma Matriz A: é uma matriz B de mesmo tipo que A, indicada por B=(-A), cujos elementos correspondentes são opostos aos da matriz A, isto é bij = - aij .
Matriz Transposta de uma Matriz A: é a matriz B cujas linhas são as respectivas colunas da matriz A e vice-versa. A transposta de uma matriz A é indicada por “ At ”
Matriz Simétrica: Uma matriz A será simétrica quando for igual à sua matriz Transposta, isto é, A = At .
Matrizes Iguais: Duas matrizes A e B serão iguais, quando forem do mesmo Tipo e os elementos correspondentes (elementos com o mesmo índice) forem iguais. 
OPERAÇÕES COM MATRIZES:
Adição
Dadas duas matrizes A(aij) e B(bij) do mesmo tipo, definimos soma das matrizes, a matriz C(cij) , (A+B=C), cujos elementos são iguais a soma dos elementos correspondentes de A e B, isto é, cij=aij+bij . Observar que a Adição de matrizes é definida somente para matrizes do mesmo Tipo.
A Subtração de Matrizes (A-B), é determinada por A + (-B), onde (-B) é a matriz oposta de B, isto é, subtrair uma matriz B de uma matriz A é o mesmo que somar a matriz A com a matriz oposta de B. 
Propriedades:
		A1: A+B = B+A-----------------(comutativa;
		A2: A+(B+C) = (A+B)+C------(associativa;
		A3: A+( = (+A = A, (A -------(( 	é o elemento neutro da adição de matrizes;
		A4: A+(-A)=(-A)+A=(, (A----((-A) é o elemento oposto da Matriz A, na adição.
		A5: (A+B)t = At + Bt
Multiplicação de um número real por uma matriz
Para se multiplicar uma matriz A do tipo mxn, por um número real k, basta multiplicar este número por cada elemento da matriz A. Observamos que o produto de um número real por uma matriz é também uma matriz. Assim: k(A(aij) = B(bij) ( bij= k( aij .
Propriedades:
		K1: a((b(A) = (a(b)(A 
		K2: a((A+B) = a(A + a(B
		K3: (a+b)( A = a(A + b(A 
		K4: a((A)t = (a(A)t 
Multiplicação de Matrizes
Dada uma matriz A(aij)mxn e uma matriz B(bjk)nxp , o produto da matriz A pela matriz B (A(B), é a matriz C(cik)mxp , tal que cik é calculado multiplicando-se cada elemento de linha i da matriz A, pelo seu correspondente na coluna k da matriz B e somando-se os produtos obtidos.
Observamos que:
A(B só existe se A é do tipo mxn e B é do tipo nxp, isto é o número de colunas de A deve ser o mesmo que o número de linhas de B.
Se A é do tipo mxn e B é do tipo nxp e (A(B) = C, a matriz C obtida será do tipo mxp. 
Propriedades:
		P1: A((B(C)= (A(B)(C-----------------( Associativa;
		P2: A((B+C) = (A(B)+(A(C)----------(Distributiva à esquerda;
		P3: (A+B)(C = (A(C)+(B(C)----------(Distributiva à direita;
		P4: (A(B)t = Bt ( At
Observamos que em geral a propriedade comutativa não é válida para a multiplicação, mesmo quando existir o Produto.
B) DETERMINANTES
A toda matriz quadrada A(aij), associamos um número Real(IR), determinado através dos elementos da matriz. A esse número real denominamos Determinante da Matriz A(aij)
Observar que o determinante existe apenas para matrizes quadradas e recebe o nome da mesma ordem da matriz, assim matrizes de ordem n tem determinantes de ordem n.
A notação que usada para o determinante é semelhante ao da matriz substituindo os parêntesis por barras, assim, exemplificando, para a matriz A de ordem 2 temos o determinante de ordem 2:
 1 2 1 2 1 2
Matriz A= ( det A = ou ( (A( = 
 5 7 5 7 5 7
Definição de um determinante de ordem n: Dada a matriz quadrada A(aij), de ordem n, chama-se determinante dessa matriz, ao número real obtido pela somatória dos produtos dos elementos de uma fila qualquer (seja linha ou coluna), pelos seus respectivos cofatores.
Onde: Cofator de um elemento aij, de uma matriz quadrada A(aij), de ordem n, é o produto de ((1)i+j pelo determinante que se obtém de A(aij), quando eliminamos a linha i e a coluna j do elemento aij . Exemplificando para uma matriz de ordem 4 e o cofator do elemento a32 teremos:
 
 a11 a12 a13 a14 
 a11 a13 a14
 a21 a22 a23 a24 
A = ( cof (a32) =((1)3+2 a21 a23 a24
 a31 a32 a33 a34 
 a41 a43 a44
 a41 a42 a43 a44 
Observamos que o cofator de um elemento é um número real.
Notamos o cofator do elemento aij, por Aij,
Assim para calcularmos o determinante da matriz A(aij) de ordem 4, tendo escolhido a terceira linha, teremos: det A(aij) = a31 A31 + a32 A32 + a33 A33 + a34 A34 
Considerando que para calcular o valor do determinante de uma matriz, pela definição dada é um tanto trabalhoso, usamos processos de artifícios simplificados para as matrizes de até terceira ordem, utilizando portanto a definição acima para cálculode determinantes de matrizes de ordem maior que 3. A seguir detalhamos as formas de cálculo do determinante de matrizes até ordem 3.
Determinante da matriz de ordem 1:
O determinante da Matriz A(a11) é o próprio número real a11. Exemplo A= (5) ( detA = 5
Determinante da matriz de ordem 2:
O determinante de uma matriz de ordem 2 é a diferença entre o produto dos elementos da diagonal Principal e o produto dos elementos da Diagonal Secundária . Exemplo:
 1 2 1 2 
Matriz A= ( det A = ( det A = (1 ( 7 ( 2 ( 5 ) = ( 3 
 5 7 5 7 
Determinante da matriz de ordem 3:
O determinante de uma matriz de terceira ordem é calculado através de uma regra prática, chamada “Regra de Sarrus”, descrita a seguir:
Escrevemos as duas primeiras colunas da matriz ao lado da terceira, obtendo assim uma matriz de 3 linhas com 5 colunas. Desta forma são determinadas 3 diagonais principais e 3 diagonais secundárias. O determinante da matriz é o numero real obtido pela diferença entre a somatória dos produtos dos elementos das diagonais principais e a somatória dos produtos dos elementos das diagonais secundárias como mostrado no exemplo a seguir.
 a11 a12 a13 a11 a12 a13 a11 a12
A= a21 a22 a23 det A = a21 a22 a23 a21 a22 
 a31 a32 a33 a31 a32 a33 a31 a32
det A = (a11(a22(a33 +a12(a23(a31+a13(a21(a32) ( (a31(a22(a13+a32(a23(a11+a33(a21(a12).
 1 2 (1 1 2 (1 1 2 
A= 3 1 5 det A = 3 1 5 3 1 
 2 1 (1 2 1 (1 2 1 
detA =(1(1((1+2(5(2+(1(3(1)((2(1((1+1(5(1+(1(3(2)= ((1+20(3) (((2+5(6) = (16) (((3)= 19.
Propriedades dos Determinantes:
D1: O determinante de uma matriz é igual ao de sua transposta: detA =detAt
D2: Se uma matriz tem uma linha ou coluna de zeros, seu determinante é nulo.
D3: Se uma matriz tem duas filas (duas linhas ou duas colunas), formadas por elementos proporcionais (isto é uma fila é múltiplo da outra), seu determinante é nulo. 
D4: Se todos os elementos situados de um mesmo lado da diagonal principal forem iguais a zero, o determinante da matriz é o produto dos elementos da diagonal principal.
D5: Se permutar duas filas (duas linhas ou duas colunas) de uma matriz, seu determinante tem seu valor multiplicado por (1 (oposto).
D6: Multiplicando os elementos de uma fila (linha ou coluna) de uma matriz por um número real k (k(0), seu determinante fica também multiplicado por k. Consequentemente se multiplicarmos uma matriz de ordem n por k seu determinante é multiplicado por kn : det(k(A) = kn( (detA).
D7: Multiplicando-se uma linha (ou coluna) de uma matriz por um número real (k(0) e adicionando o resultado a outra linha (ou coluna), o valor de seu determinante permanece o mesmo (não se altera).
D8: O determinante do produto de duas matrizes é igual ao produto dos determinantes destas matrizes: det(A(B) = (detA)((detB).
D9: A soma dos produtos de uma linha(ou coluna) de uma matriz pelos cofatores de outra linha (ou coluna) é igual a zero. 
MATRIZ INVERSA
A matriz inversa de uma matriz A existe quando seu determinante é diferente de zero.
Para calcularmos a matriz inversa de uma matriz A podemos fazê-lo dos seguintes modos:
Pela aplicação da definição de Matriz Inversa: (A(A-1)= In
Neste caso a solução dependerá do desenvolvimento de um sistema de equações que quando resolvido nos fornecerá os elementos da matriz inversa requerida. Observar que este modo é conveniente para matrizes quadradas de ordem pequena (menor ou igual que 3).
Exemplo: Determinar a inversa da matriz A sendo: 
 1 2 a b 1 2 a b 1 0
A = Seja A-1 = , devemos ter ( = = In
 3 (1 c d 3 (1 c d 0 1
Assim teremos o sistema das equações: 1a + 2c = 1, 1b + 2d =0, 3a (1c = 0 e 3b (1d = 1, que quando resolvido nos fornecerá aos valores de a=1/7, b=2/7, c= 3/7 e d= (1/7, e a matriz inversa de A será: 
 1/7 2/7
 A-1=
 3/7 (1/7
Pela aplicação da matriz de cofatores: Dada uma matriz A=(aij)nxn, de ordem n, chama-se Matriz-Cofator de A à uma matriz B=(bij)nxn, cujos elementos são cofatores dos elementos correspondentes de A, isto é B = cof A ( bij= Aij, ( i e ( j. 
 
 ( cof A)t
A matriz inversa de A, pode ser calculada por: A-1= 
 det A
Exemplo: Determinar a inversa da matriz A sendo: 
 1 2 (1 (3 (1 (2 
A = , A matriz cofator da A é (cofA) = , (cof A)t = e detA = (7.
 3 (1 (2 1 (3 1 
Assim a matriz inversa de A será: 
 
 ( cof A)t 1/7 2/7
 A-1= = 
 det A 3/7 (1/7
Pela aplicação da transformação conjunta de matrizes equivalentes, da matriz A, a ter a determinação de sua inversa e a matriz unidade In correspondente.
O processo, chamado método de Gauss - Jordan consiste em dispor as matrizes A e In , lado a lado e proceder as transformações neste conjunto, utilizando as propriedades de matrizes equivalentes, objetivando transformar a matriz A na matriz In correspondente. Ao obter isto, a matriz que resultar na posição original da matriz In, será a matriz A-1.
Lembramos as propriedades de matrizes equivalentes:
Podemos multiplicar(ou dividir) uma linha de uma matriz por um número real ((0);
Podemos permutar linhas de uma matriz;
Podemos somar duas linhas de uma matriz e substituir uma destas com o resultado desta soma.
B) SISTEMAS LINEARES
Equações Lineares: Uma equação Linear é do tipo a1x1+ a2x2+ a3x3+------+ anxn = b.
Onde a1, a2, a3,---, an são coeficientes; x1, x2, x3,---xn são incógnitas e b é o termo independente.
Uma solução de uma equação linear é uma n-upla, ordenada de números reais ((1,(2,(3,----,(n), que satisfazem a equação, quando assumem os valores das incógnitas (x1, x2, x3,---xn).
Sistemas Lineares: Um Sistema Linear é um conjunto de duas ou mais Equações Lineares. Exemplificando para um Sistema de m equações com n incógnitas temos: 
			
a11x1+ a12x2+ a13x3+------+ a1nxn = b1
			a21x1+ a22x2+ a23x3+------+ a2nxn = b2	
			---------------------------------------------
			---------------------------------------------
am1x1+ am2x2+ am3x3+----+ amnxn = bn	
Uma solução de um Sistema linear é uma n-upla, ordenada de números reais ((1,(2,(3,----,(n), que satisfazem simultaneamente todas as equações, quando assumem os valores das incógnitas (x1, x2, x3,---xn).
Classificação dos Sistemas Lineares: Se um sistema linear tiver pelo menos uma solução diremos que é compatível ou possível; se não tiver solução diremos que é incompatível ou impossível. Quando o sistema é compatível e tiver uma única solução diremos que é determinado; se tiver mais que umasolução diremos que é indeterminado. 
Esquematizando podemos resumir:	
 Determinado
 (solução única)
 Compatível
 Indeterminado
 (mais que uma solução)
Sistema Linear
 Incompatível
 (não há solução)
Sistemas Homogêneos: Um Sistema linear é dito Homogêneo, quando o termo independente é sempre nulo. Exemplificando para um Sistema de m equações com n incógnitas temos:
			
a11x1+ a12x2+ a13x3+------+ a1nxn = 0
			a21x1+ a22x2+ a23x3+------+ a2nxn = 0	
			--------------------------------------------
			--------------------------------------------
am1x1+ am2x2+ am3x3+----+ amnxn = 0	
Todo o Sistema Homogêneo admite como solução a n-upla ( 0, 0, 0,-----, 0), que é chamada de solução trivial. Assim sendo todo o sistema homogêneo é sempre compatível. Se tiver apenas a solução trivial será determinado e se tiver outras soluções alem da trivial será indeterminado.
Sistemas Lineares Equivalentes: Dois Sistemas S1 e S2 são equivalentes, se e somente se toda a solução de S1 é também solução de S2
Forma Matricial de um Sistema: Todo o sistema de m equações cm n incógnitas, pode ser representado através de uma matriz mxn (de m linhas e n colunas) como segue:
a11 a12 a13------a1n b1 Esta matriz formada pelos coeficientes
			a21 a22 a23------a2n b2	e pelos termos independentes é chamada
			----------------------------------- de Matriz Completa do Sistema.
			-----------------------------------
am1 am2 am3-----amn bn	 
Esta matriz completa pode originar as seguintes matrizes:
Matriz incompleta: é formada apenas pelos coeficientes das incógnitas;
Matriz das incógnitas: é formada pelas incógnitas (é uma matriz coluna);
Matriz dos Termos independentes: é formada pelos termos independentes (matriz coluna). 
RESOLUÇÃO DE SISTEMAS ATRAVÉS DE MATRIZES E DETERMINANTES.
Regra de Cramer (conveniente para um sistema de 3 equações com 3 incógnitas, x, y e z):
Consiste em determinar os valores das incógnitas utilizando os determinantes D, Dx Dy e Dz, das matrizes assim definidas:
D é o determinante da matriz incompleta, formada pelos coeficientes das incógnitas;
Dx é o determinante da matriz obtida da matriz incompleta substituindo a coluna de x pela coluna dos termos independentes;
Dy é o determinante da matriz obtida da matriz incompleta substituindo a coluna de y pela coluna dos termos independentes;
Dz é o determinante da matriz obtida da matriz incompleta substituindo a coluna de z pela coluna dos termos independentes;
Os valores de x, y e z são determinados por:
 Dx Dy Dz
 X = , Y = e Z =
 D D D
Exemplo: Resolver o Sistema:
					3x – 2y + z = 6
					 x + y – z = 4
					2x + y – 2z = 6
Temos:
 3 -2 1 6 -2 1 3 6 1 3 -2 6
 D = 1 1 -1 = -4 Dx = 4 1 -1 = -12 Dy = 1 4 -1 = -8 Dz = 1 1 4 = -4
 2 1 -2 6 1 -2 2 6 –2 2 1 6
Assim sendo teremos:
 Dx Dy Dz
 X = = 3 , Y = = 2 e Z = = 1
 D D D
Discussão De Sistemas Lineares Através Do Método De Cramer.
Se D(0 o sistema admite uma única solução, isto é, ele é Compatível e Determinado;
Se D=0 e Dx=Dy=Dz=0, o sistema será Compatível e Indeterminado;
Se D=0 e Dx ou Dy ou Dz for diferente de zero, o sistema será Incompatível;
 Isto é : 
 D(0 Sistema Possível e Determinado
 
 D(Xi) =0 (I Sistema possível e Indeterminado
 D=0
 (I / D(Xi)(0 Sistema Impossível
II. Método de Gauss:
 Consiste em, dado um sistema linear S utilizar um processo para obter um sistema S’ , equivalente a este e que seja mais simples, isto é que sua matriz seja triangular.
Este sistema pode ser determinado através de transformações elementares feitas nas equações(ou na matriz) de S. Lembramos que estas transformações são:
Multiplicar (ou dividir) uma linha da matriz(ou uma equação) do sistema, por um número real, ((0);
Permutar entre si duas linhas da matriz (ou duas equações) do sistema;
Multiplicar uma linha (ou uma equação) do sistema por um número real ((0) e adicionar o resultado a outra linha da matriz (ou a outra equação) do sistema.
O método de Gauss, ou método das eliminações sucessivas, é um processo que faz uso das transformações elementares, tornando o sistema dado em outro mais simples (triangularizado) equivalente e de resolução imediata.
O objetivo deste método consiste em:
Eliminar a primeira incógnita das equações exceto da primeira equação;
Eliminar a segunda incógnita das equações exceto da segunda equação;
Eliminar a terceira incógnita das equações exceto da terceira e assim sucessivamente.
Quando falamos em eliminar a incógnita, queremos dizer tornar seu coeficiente igual a zero, através das transformações elementares. Podemos conseguir isto simplificando a matriz do sistema, isto é, transformando em zeros todos os elementos da matriz abaixo da diagonal principal. Exemplo: Resolver o Sistema:
	 2x – 3y + z = –1
					 x + 2y – z = 3
					 4x + y + 2z = 5
Matriz completa associada: 2 –3 1 –1 Realizamos as transformações passo a passo:
				 1 2 –1 3
				 4 1 2 5
Primeiro passo: Permutar as linhas L1 e L2: 1 2 –1 3
 2 –3 1 –1
 4 1 2 5
Segundo passo: substituir L2 por 2(L1+L2 e L3 por -4(L1+L3 1 2 –1 3
 0 –7 3 –7
 0 –7 6 –7
Terceiro passo: substituir L2 por –1/7(L2 1 2 –1 3
 0 1 – 3/7 1
 0 –7 6 –7
Quarto passo: substituir L1 por –2(L2+L1 e L3 por 7(L2+L3 1 0 –1/7 1
 0 1 – 3/7 10 0 3 0
Quinto Passo: substituir L3 por 1/3(L3 1 0 –1/7 1
 0 1 – 3/7 1
 0 0 1 0
Sexto passo: substituir L1 por 1/7(L3 +L1 e L2 por 3/7(L3+L2 1 0 0 1
 0 1 0 1
 0 0 1 0
Considerando que as 3 primeiras colunas representam as incógnitas x , y , z e a quarta coluna os termos independentes, podemos concluir que x=1, y=1 e z=0 é a solução do sistema da última matriz que por ser equivalente a matriz original nos permite concluir que x=1, y=1 e z=0 é também a solução do sistema dado.
Discussão De Sistemas Lineares Através Do Método De Gauss.
Ao conduzirmos o processo da solução de um sistema linear, através do método de Gauss, temos condições de discutir a existência de soluções através das seguintes observações:
Seja a matriz equivalente do sistema dado, de n incógnitas, simplificada obtida através do método de Gauss:
 1 0 0 0 0-----C1
 0 1 0 0 0-----C2
 ---------------------
 Á = 0 0 0 0 1-----Cr m linhas
 0 0 0 0 0-----Cr+1
 ----------------------
 0 0 0 0 0-----Cm
 n+1 colunas
Se tivermos uma das linhas com todos os valores das colunas das incógnitas iguais a zero e o termo independente diferente de zero, o sistema será Incompatível;
Se tivermos uma, ou mais linhas com todos os elementos iguais a zero, o sistema será Compatível e Indeterminado;
Se o número de equações for igual ao das incógnitas e a parte da matriz relativa às incógnitas se transformar na matriz unidade (ou diagonal), o sistema será Compatível e Determinado.
Exemplo de Inversão de matriz pelo método de Gauss – Jordan:
Determinar a matriz inversa da matriz A sendo:
 1 1 1
A = 1 2 3 Dispondo as matrizes A e I3 , lado a lado temos:
 1 4 9 A I
 L1 ( 1 1 1 1 0 0 
 L2 ( 1 2 3 0 1 0
 L3 ( 1 4 9 0 0 1
Primeiro passo: substituir L2 por L1-L2 e L3 por L1-L3 L1 ( 1 1 1 1 0 0 
 L2 ( 0 -1 -2 1 -1 0
 L3 ( 0 -3 -8 1 0 -1
Segundo passo: substituir L2 por L2 ((-1) L1 ( 1 1 1 1 0 0 
 L2 ( 0 1 2 -1 1 0
 L3 ( 0 -3 -8 1 0 -1
Terceiro passo: substituir L1 por L1-L2 e L3 por 3L2+L3 L1 ( 1 0 -1 2 -1 0 
 L2 ( 0 1 2 -1 1 0
 L3 ( 0 0 -2 -2 3 -1
Quarto passo: substituir L3 por L ((-1/2) L1 ( 1 0 -1 2 -1 0 
 L2 ( 0 1 2 -1 1 0
 L3 ( 0 0 1 1 -3/2 ½
Quinto passo: substituir L1 por L3+L1 e L2 por -2L3+L2 L1 ( 1 0 0 3 -5/2 ½ 
 L2 ( 0 1 0 -3 4 -1
 L3 ( 0 0 1 1 -3/2 ½
 I A-1
 3 -5/2 ½
Assim sendo A-1 = -3 4 -1
 1 -3/2 ½
Centro Universitário da FSA
Prof.: Anastassios H.K.
�PAGE �1�
�PAGE �7�

Outros materiais

Outros materiais