Buscar

AULA 3) (Aterros sobre Solos Moles)

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 58 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 58 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 58 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

*
*
Faculdade Vale do Ipojuca – FAVIP
Curso: Graduação em Engenharia Civil
5) e 6) Aula: 
Aterros sobre Solos Moles
Disciplina: Mecânica dos Solos II;
Professor: Saul Barbosa Guedes.
Caruaru/PE
24 de Setembro de 2013
*
*
*
Aterros Sobre Solos Moles
1) Aterro:
	Acúmulo de terras removidas para nivelar ou altear um terreno.
*
Figura 1 – Exemplo de Construção de um Aterro
*
*
Aterros Sobre Solos Moles
2) Solos Moles:
	São solos com baixa capacidade de suporte e alta compressibilidade e quando situados sob a base de aterros apresentam problemas de estabilidade e recalques (turfas, argilas orgânicas, etc), caso não sejam feitos tratamentos adequados.
*
Figura 2 – Exemple rodovia em trecho sobre solo mole (Fonte: HUESKER)
*
*
*
2.1 – Origem dos Solos Moles:
	Os solos orgânicos são formados em bacias sem drenagem, pelo acumulo de material carreado dos barrancos laterais e de plantas que aí crescem e morrem soterrados por novos depósitos.
	É expressiva a presença de depósito orgânico em grande trecho da Via Anchieta, onde tem espessura de mais de 30 m. As turfas é um dos tipos de solos existentes nestes depósitos (GUSMÂO FILHO, 2008).
Figura 3 – Via Anchieta: presença de solo mole (Fonte: GOOGLE, 2013) 
*
*
*
Turfas: É uma massa de restos de planta decomposta, sendo que os caules e raízes são ainda distinguidos nos primeiros estágios de decomposição. Nos últimos estágios do processo de humificação, a turfa é preta, mole, pegajosa, praticamente sem estrutura nenhuma (GUSMÂO FILHO, 2008).
	A umidade natura da turfa é varias centenas por cento do seu peso seco. A porosidade da turfa é muito alta e o material é muito compressível (GUSMÂO FILHO, 2008).
Figura 4 – Exemplo de trecho com turfa (Fonte: GOOGLE, 2013) 
*
*
*
3) Ensaios para Obtenção dos Parâmetros dos Solos Moles
	Para obtenção dos parâmetros dos solos moles para projeto, faz-se necessário a utilização dos seguintes equipamentos de campo:
a) Poços e Sondagens a trado;
b) Standard Penetration Test (SPT);
c) Rotativa;
d) Cone (CPT) e Piezocone (CPTU);
e) Palheta (“Vane Test”);
f) Dilatômetro;
g) Pressiômetro;
*
*
*
3) Ensaios para Obtenção dos Parâmetros dos Solos Moles
	Para obtenção dos parâmetros dos solos moles para projeto, faz-se necessário a utilização dos seguintes equipamentos de campo:
a) Poços e Sondagens a trado;
b) Standard Penetration Test (SPT);
c) Rotativa;
d) Cone (CPT) e Piezocone (CPTU);
e) Palheta (“Vane Test”);
f) Dilatômetro;
g) Pressiômetro;
*
*
5) Ensaios para Determinação dos Parâmetros do Solo:
Ensaios In Situ
1) Trado;
2) Rotativa;
3) CONE;
4) Palheta (“Vane Test”)
5) Dilatômetro;
4) Palheta
2) Rotativa
1) Trado
3) Cone (CPT)
5) Dilatômetro
*
*
*
d) Ensaio de Cone e Piezocone:
Histórico:
 - Primeiras referências remontam à década de 1930 na Holanda;
 - O ensaio consolidou-se a partir da década de 1950.
Definição do Ensaio:
 Consiste na cravação de uma ponteira de aço instrumentada em forma de cone no solo, com uma velocidade padrão constante de 20mm/s, visando a obtenção (por motivos variados) da estratigrafia do subsolo e de alguns parâmetros geotécnicos do mesmo.
*
*
*
d) Ensaio de Cone e Piezocone:
*
Figura 5 - Exemplo de um Ensaio de Piezocone
*
*
d) Ensaio de Cone e Piezocone:
*
Figura 6 - Exemplo de um Ensaio de Piezocone e do equipamento
*
*
e) Ensaio de Palheta ou Vane-Test:
Definição do Ensaio:
	Inserção no solo de uma palheta cruciforme, em seguida aplicação de uma rotação a velocidade constante, medindo-se o torque correspondente.
*
Figura 7 - Exemplo de um ensaio de Vane-Test
*
*
e) Ensaio de Palheta ou Vane-Test:
*
Figura 10 - Exemplo de um ensaio de Vane-Test
*
*
e) Ensaio de Palheta ou Vane-Test:
*
Figura 10 - Exemplo de um ensaio de Vane-Test
*
*
f) Ensaio Dilatométrico:
 Definição do Ensaio
 - Consiste na cravação da lâmina dilatométrica no terreno, medindo o esforço necessário à penetração, para em seguida usar a pressão de gás para expandir a membrana de aço (diafragma) no interior da massa de solo. 
	O equipamento é portátil e de fácil manuseio, sendo a operação simples e relativamente econômica
 - Aplicável à areia, silte, argila e solos orgânicos.
 - Para argilas mole / média, não sensíveis e não cimentadas.
*
*
*
d) Ensaio Dilatométrico:
*
Figura 11 - Exemplo de um Dilatômetro
*
*
d) Ensaio Dilatométrico:
*
Figura 12 - Exemplo do aparelho Dilatômetro
*
*
*
4) Soluções para Construir Aterros Sobre Solos Moles
	Para construir aterros sobre solos moles, alguma soluções podem ser adotadas, conforme a norma DNER-Pro 381/98 – Projetos de Aterros Sobre Solos Moles para Obras Viárias, são elas:
a) Aterros Leves;
b) Substituição Total da Camada Mole;
c) Bermas de Equilíbrio;
d) Construção Por Etapas;
e) Pré-Carregamento ou Sobrecarga Temporária;
f) Geodrenos e Sobrecarga Temporária;
g) Colunas de Areia de Alta performace;
h) Aterro Reforçado com geossintéticos.
*
*
*
a) Aterros Leves:
	O EPS (Expanded Polystyrene ou Poliestireno Expandido) é um material celular plástico que consiste de pequenas partículas de forma esférica, contendo na sua estrutura, aproximadamente, 98% de ar. Essa estrutura microcelular garante ao EPS um peso específico da ordem de 1% em relação aos solos, mas que apresenta boas propriedades mecânicas.
Figura 13 – Aplicação do EPS na rodovia BR-101, no trecho que se estende de Florianópolis até Osório, no Rio Grande do Sul (Fonte: GOOGLE, 2013). 
*
*
*
Desvantagens dos Aterros Leves:
- Ruptura por Cisalhamento do EPS: Em aplicações na engenharia, a resistência ao cisalhamento de projeto é governada mais pelo atrito entre blocos do que a resistência do material EPS. Os planos de contato entre blocos são considerados como pontos fracos do sistema.
- Flutuabilidade: Por sua leveza, o EPS apresenta o inconveniente da possibilidade de flutuar devido a ação do empuxo hidrostático, principalmente em casos de cheias. Várias medidas podem ser tomadas com o objetivo de evitar a flutuação, dentre elas podemos destacar:
a) Construção de camadas de material convencional (solo) sobre o EPS,
com peso suficiente para contrapor a ação do empuxo hidrostático.
b) Rebaixamento do lençol freático.
c) Disposição, na seção de projeto, do EPS acima do lençol freático ou da máxima cheia.
d) Atirantamento do conjunto de blocos.
*
*
*
Desvantagens dos Aterros Leves:
- Formação de trilhas de rodas: Caso as tensões atuantes no EPS ultrapassem o seu limite elástico, o mesmo deformará irrecuperavelmente e essas deformações serão refletidas no revestimento asfáltico na forma de trilhas de rodas.
Figura 14 – a) Aplicação do EPS na rodovia BR-101 e b) afundamento de trilha de roda (Fonte: GOOGLE, 2013)
*
*
*
b) Substituição Total da Camada de Solo Mole:
	A remoção de solo mole e substituição por material granular só deve ser considerada para depósitos poucos extensos, comprimento inferior a 200 metros e para espessura de solo inferior a 3,0 metros. Além disso, só deve ser considerada quando a camada for totalmente substituída (DNER-PRO 381/98)
Figura 15 – Substituição da camada de solo mole (Fonte: GOOGLE, 2013)
*
*
*
b) Substituição Total da Camada de Solo Mole:
OBS-1: Em nenhuma hipótese o DNER aprovará solução de substituição parcial, pois é uma solução cara e muito pouco eficaz.
OBS-2: Mesmo quando a substituição for uma solução viável, deve-se incluir nos custos os reflexos devidos a criação de bota fora e considerar os consequentes impactos ambientais provocados (DNER-PRO 381/98).
Figura 16 – Substituição da camada de solo mole (Fonte: HUESKER, 2009)
*
*
*
c) Bermas de Equilíbrio;
	As bermas de equilíbrio são empregadas para estabilizar e suavizar a inclinação média de um talude de um aterro, levando a um aumento do fator de segurança contra a ruptura.Figura 17 – Bermas de Equilíbrio aplicada a um aterro sobre solo mole (Fonte: GOOGLE, 2013)
*
*
*
d) Construção Por Etapas:
	A construção por etapas implica em subdividir a altura de aterro em duas ou três etapas. A primeira etapa pé construída aquém da altura crítica, para que seja estável, seguindo-se um período de repouso para que o processo de consolidação dissipe parte das poro-pressões e o solo mole ganhe resistência.
	Após certo tempo, quando o ganho de resistência chegar aos níveis estabelecidos no projeto e que ganharam a estabilidade, uma segunda etapa do aterro pode ser executada
Figura 18 – Construção aterro sobre solo mole em etapas (Fonte: GOOGLE, 2013)
*
*
*
d) Construção Por Etapas:
OBS: Esta técnica implica em geral em longos tempos de permanência que na maioria das vezes são inaceitáveis para um projeto rodoviário sobre solos moles de baixa permeabilidade. Entretanto, pode ser eficaz se empregada em conjunto com os drenos de areia e sobrecarga temporária que aceleram os tempos de dissipação.
Figura 18 – Construção sobre aterro sobre solo mole em etapas (Fonte: DNER-PRO 381/94)
*
*
*
e) Pré-Carregamento ou Sobrecarga Temporária:
	Trata-se de aplicar uma sobrecarga temporária, em geral da ordem de 25 a 30 % de peso do aterro para acelerar os recalques. O tempo de permanência da sobrecarga é determinado por estudos de adensamento e posteriormente verificado no campo através de instrumentação para observação de recalques e poropressões (DNER-PRO 381/98).
OBS: De acordo o DNER-Pro 384/98, está técnica pode ser eficaz em solos silto-arenosos, mas é pouco eficaz em solos argilosos de baixa permeabilidade, especialmente se a espessura da camada mole for grande. Nesse caso esta alternativa só é eficaz se combinada com o uso de drenos verticais. 
Figura 19 – Construção do tipo pré-carregamento (Fonte: DNER-PRO 381/94)
*
*
*
f) Geodrenos e Sobrecarga Temporária:
	Os geodrenos são elementos drenantes constituídos de materiais sintéticos com 100 mm de largura e 3 a 5 mm de espessura e grande comprimento. 
	São cravados verticalmente no terreno dispostos em malha, de forma a permitir a drenagem e acelerar os recalques. 
Figura 20 – Detalhes de um geodreno (Fonte: VERTEMATTI, 2004)
*
*
*
	Os geodrenos são a alternativa técnica e econômica que substituem os antigos drenos de areia que, por sua vez não devem ser mais empregados (DNER-PRO 381/98).
Figura 21 – Detalhes da deformação nos drenos verticais (Fonte: GOOGLE, 2013)
*
*
*
f) Geodrenos e Sobrecarga Temporária:
	Os geodrenos são constituídos de, pelos menos, dois materiais: o miolo drenante e o seu revestimento. Este tem por objetivo permitir a passagem da água e reter o ingresso de solo.
	O miolo drenante, tem por objetivo conduzir a água até a superfície do terreno e drená-la através do colchão drenante na superfície e resistir aos reforços de instalação e os provenientes da deformação do aterro (DNER PRO 381/94).
Figura 22 – Detalhes da cravação de um geodreno (Fonte: GOOGLE, 2013)
*
*
*
f) Geodrenos e Sobrecarga Temporária:
	Os geodrenos a serem empregados em obras rodoviárias devem ter as seguintes características (DNER-PRO 381/98):
- Alta capacidade de descarga, maior ou igual a 1000 m3/ano;
- Resistência à tração superior a 2,5 kN e deformação axial antes da ruptura minima de 30 %;
- Instalação atraves de mandril ou agulha fechada, isto é, envolvendo totalmente e protegendo dreno durante a cravação.
- Para evitar amolgamento excessivo da argila o mandril ouagula de instalação do geodreno deverá ter a área da sua seção transversal contida inferior a 70 cm2.
*
*
*
f) Geodrenos e Sobrecarga Temporária:
	Os geodrenos são cravados através de um colchão drenante de areia colocado sobre a superfícice do terreno com espessura mínima de 30 cm e que permita o tráfego de equipamentos sem dano ao seu funcionamento. 
Figura 23 – Detalhes do prcesso de adensamento com uso do geodreno (Fonte: GOOGLE, 2013)
*
*
*
h) Colunas de Areia de Alta Performace :
	O ringtrac é um geossintético tubular de alto módulo de rigidez à tração perimetral e baixa fluência, com perímetro contínuo (sem emendas). Sua principal aplicação é o confinamento e o reforço de colunas de areia ou de brita em sistemas de melhoramento de solos para implementação de aterros em terrenos de solos moles (HUESKER, 2008).
Figura 24 – Detalhes do Ringtrac (Fonte: HUESKER, 2008)
*
*
*
h) Colunas de Areia de Alta Performace :
- Definição de Técnica: O Ringtrac promove o confinamento das colunas granulares, garantindo a sua integridade (evitando a perda de material e mistura com o solo mole) e o ser reforço e aporte de capacidade de suporte.
Figura 25 – Detalhes do Ringtrac (Fonte: HUESKER, 2008)
*
*
*
h) Colunas de Areia de Alta Performace :
- Principio de Funcionamento da Técnica: O involucro Ringtrac reage às cargas resultante da tendência de deformação radial da coluna granular, à medida que aumenta a carga vertical sobre ela. Desta forma, quanto maior a sobrecarga (altura do aterro), maior a eficiência do sistema no mecanismo de melhoria do solos de fundação. .
Figura 25 – Detalhes do Ringtrac (Fonte: HUESKER, 2008)
*
*
*
Obtenção dos Parâmetros dos Solos Moles para Critérios de Dimensionamento de Aterros
1) Determinação da Altura Critica (hCrítica): Ruptura da Fundação 
	A ruptura da fundação do aterro é um problema de capacidade de carga. Neste caso, o aterro participa apenas como carregamento, mas não com a sua resistência (ALMEIDA & ESTHER, 2010).
	A equação clássica de capacidade de carga de uma fundação direta em solo com ângulo de atrito nulo (Φ = 00) com resistência não drenada (Su) é dada por (ALMEIDA & ESTHER, 2010):
*
*
*
1) Determinação da Altura Critica: R
Onde:
- hCritica = Altura Critica do Aterro ou Altura Máxima que o Aterro Pode Admitir sem Proporcionar Ruptura a Fundação de Solo Mole;
- NC = Fator de Capacidade de Carga (Nc ≈ 5,5);
- ɣAterro = Peso Especifico Natural do Aterro;
- SU = cVane-Test = Resistência não Drenada da Camada de Argila Mole (Fundação do Aterro), obtida por meio de Ensaios de Campo (Ensaio de Palheta/Vane Test ou Ensaio de Piezocone) e Laboratório (Ensaio Triaxial do Tipo UU/Unconsolidated Undrained = Não Consolidado e Não Drenado).
*
*
*
OBS-1: A resistência ao cisalhamento dos solos moles, é obtida em termos da tensão total: σTensão-Total = σTensão-Efetiva + µPressão-Neutra, por se tratar de solos quase saturados.
OBS-2: A resistência ao cisalhamento dos solos moles obtida no campo, por meio de ensaios tais como, Palheta (Vane-Test) ou Piezocone, é do tipo não drenada. Devido a baixa permeabilidade do material analisado (camada de argila mole). 
OBS-3: A resistência não drenada dos solos moles é função apenas da coesão dos mesmos (SU(Resistência-Não-Drenada) = cVane Test = cCoesão), ou seja, desprezamos o valor do seu ângulo de atrito (Φ = 0°), devido ao fato dos mesmos serem demasiadamente pequenos.
*
*
*
	De acordo com Massad (2010), para as argilas moles da Baixada Santista (São Paulo), os ensaios de Palheta (Vane Test) indicaram uma variação linear crescente da coesão com a profundidade conforme a expressão:
cVane Test = c0 + c1.Z
- cVane Test = Coesão não drenada ao longo da profundidade da camada de solo mole;
- c0 = Coesão não drenada inicial, obtida no topo da camada de solo mole. Para os solos moles da Baixada Santista, temos: 2,5 < c0 < 35 kPa.
- c1 = Coesão não drenada, obtida em função da profundidade de análise da camada de solo mole. Este tipo de coesão e obtido pela formula : c1 = 0,4.ɣSubmerso.
- Z = Profundidade da camada de solo mole em analise.
NOTA: O crescimento linear da coesão com a profundidade deve-se ao adensamento do solo sob a ação do peso próprio da camada.
*
*
*
	A coesão do solos moles é usualmente obtida pelos ensaio de compressão simples (laboratório) ou pelo Vane Test (Campo). Em facede diversos fatores, tais como a perturbação das amostras, anisotropia, tipo de solicitação do solo no ensaio, sua velocidade, etc., os valores da coesão (c = Su) de compressão simples são inferiores aos do Vane Test. O valor “real” estaria entre os dois (MASSAD, 2010).
	Bjerrum (1973), um engenheiro dinamarquês, concluiu que a coesão do Vane Test (cVane Test) deveria ser reduzida de um certo valor µ, variável de 0,6 a 1, obtido em função do índice de plasticidade (IP) do solo, ou seja:
SU(Projeto) = cProjeto = µ.cVane Test
*
*
*
	Na Figura 26, ilustra-se o abaco de Bjerrum (1973) para o fator de correção (µ) no ensaio de Palheta (Vane Test).
Figura 26 – Fator de correção para ensaio de Palheta de campo 
(Fonte: BJERRUM, 1973)
*
*
*
2) Determinação da Altura Admissível (hAdmissivel):
	Muitas vezes a altura do aterro a se construir é maior do que a altura critica do mesmo. Neste caso, deve-se construir o aterro em etapas e com base na altura admissível do mesmo, a qual é determinada fazendo uso da seguinte formulação:
Onde:
- hAdmissivel = Altura Admissível do Aterro;
- hCritica = Altura Critica do Aterro;
- Fs= Fator de segurança;
- NC = Fator de Capacidade de Carga;
- ɣAterro = Peso Especifico Natural do Aterro;
- SU = cVane-Test = Resistência não Drenada da Camada de Argila Mole (Fundação do Aterro),
*
*
*
OBS-4: O fator de segurança (Fs) e´ definido a partir de critério de projeto, considerando a importância da obra. Usam-se, em geral, valores de Fs superiores a 1,5, sendo aceitos valores menores (Fs ≥ 1,3) no caso de calculo de estabilidade para uma condição temporária (exemplos: aterros construídos em etapas), com monitoramentos de inclinometros e sem que haja vizinhos próximos (ALMEIDA & ESTHER, 2010).
*
*
*
3) Bermas de Equilíbrio:
3.1 – Definição:
	Caso o valor de hAdmissivel seja inferior a altura necessária do aterro (hAterro) para o projeto, deve-se usar um método construtivo alternativo, como, por exemplo, construção em etapas ou aterros reforçado ou construção de bermas de equilíbrio.
	As bermas são aterros construídos nas laterais do aterro de projeto, que funcionam como contrapeso, opondo-se a eventual ruptura do aterro principal.
*
*
*
3) Bermas de Equilibrio:
3.2 – Critérios de Dimensionamento das Bermas de Equilíbrio:
	A altura da berma de equilíbrio (hBerma) é calculada por meio da seguinte equação:
Onde:
- HAterro = Altura de projeto do aterro;
- HAdmissível do Aterro = Altura admissível do aterro diante das condições de resistência da camada de solo mole;
- F = Fator de segurança da obra (recomenda-se F = 1,5);
- γAterro = Peso especifico do aterro;
- c = SU = resistência não drenada da camada de solo mole.
- Nc = Fator de capacidade de carga.
*
*
*
	A largura da berma de equilíbrio (LBerma) é calculada por meio do Ábaco de Jakobson (1948), conforme detalhes esquemáticos contidos na Figura 27.
Figura 27 – Ábaco de Jakobson (1948) 
para dimensionamento de Bermas de equilíbrio 
*
*
*
	Para cálculo das bermas de equilíbrio, utilizando os ábacos de Jakobson (1948), precisamos fazer uso do seguinte roteiro:
1) Inicialmente precisamos obter os seguintes dados: b1, P1, h, Su e F, onde:
- b1 = Largura do aterro, até o ponto médio do talude do mesmo;
- P1 = peso do aterro, obtido pelo produto da altura do aterro pelo peso específico do mesmo: P1 = hAterro.γAterro;
- h = Espessura da camada de solo mole;
- Su = Resistência não drenada corrigida;
- F = Fator de segurança (F ≥ 1,5);
2) Em seguida devemos calcular a resistência admissivel (RAdmissível);
RAdmissível = Su /F 
*
*
*
3) Em seguida determinamos o peso P2 da berma, dado por:
 P2 = P1 – 5,5.RAdmissível
Onde: P2 < 5,5.RAdmissível
4) Depois determina-se a razão entre: b1/h e P1/P2 e entra-se no gráfico superior à esquerda. Se as condições indicarem ruptura, no Caso II, determina-se b2/b1 deste gráfico (ver Figura 28).
5) Se as condições indicarem Caso I ou Caso III, deve-se entrar no gráfico apropriado com: Radmissível/P1 e P1/P2 e determina-se b2/b1 (ver Figura 29).
*
*
*
Figura 28 – Ábaco de Jakobson (1948) para dimensionamento de Bermas de Equilíbrio 
*
*
*
Figura 29 – Ábaco de Jakobson (1948) para dimensionamento de Bermas de Equilíbrio 
*
*
*
4) Dimensionamento dos Drenos de Areia:
4.1 – Teoria:
	de acordo com Almeida & Esther (2010), a utilização de drenos verticais promove a aceleração dos recalques ao diminuir o caminho de drenagem dentro da massa de solo compressível para cerca das metade da distância entre drenos.
	A sobrecarga temporária também acelera recalques relativos ao adensamento primário e reduz os recalques pós-construtivos. Assim, a conjugação de drenos verticais juntamente com a sobrecarga temporária explora ao máximo o benefício do adensamento acelerado.
	Drenos e sobrecarga têm grande aplicabilidade na construção de aterros rodoviários, ferroviários, aeroportuários, portuários e áreas de estocagem em geral (ALMEIDA & ESTHER, 2010). 
*
*
*
4) Dimensionamento dos Drenos de Areia:
	
	A teoria de adensamento para projetos utilizando-se drenos verticais de areia foi desenvolvida por Barron (1948), com uma extensão da Teoria de Terzaghi.
	O grau de adensamento, num dado tempo, seria obtido pela expressão:
100 – U(t)r,v % = (1/100).[100 – U(t)r %].[100 - U(t)v %]
Onde:
- U(t)v = grau de adensamento para a drenagem na vertical;
- U(t)r = grau de adensamento para a drenagem radial.
*
*
*
4) Dimensionamento dos Drenos de Areia:
	O fator U(t)r também pode ser obtido por meio da Tabela 1, em função da relação R/rw e de Tr (fator tempo para a drenagem radial).
	
	
Onde:
- Tr = Fator tempo para a drenagem radial;
- t = tempo necessário para que ocorra o grau de adensamento desejado nas condições estabelecidas;
- Cr = coeficiente de adensamento radial;
- R = Raio da zona equivalente de influência do dreno;
- rw = raio efetivo do dreno de areia.
*
*
*
Tabela 1 – Adensamento radial, valores de Tr em função de U(t)r e n (R/rw)
	
	O uso da Tabela 1, permite ser feita à estimativa do espaçamento do dreno necessário para se obter uma dada percentagem média de adensamento em um tempo especificado, para algum diâmetro particular de dreno e uma dada condição de solo. 
*
*
*
4) Dimensionamento dos Drenos de Areia:
OBS: O coeficiente de adensamento radial (Cr) pode ser obtido pela relação entre os coeficiente de permeabilidade horizontal (KH) e vertical (Kv) e o coeficiente de adensamento vertical (Cv).
*
*
*
4.2 – Procedimentos de Cálculo:
a) Questões a serem respondidas: diâmetro e espaçamento dos drenos;
b) Dados: parâmetros de compressibilidade (Cs, Cc, CV, CR,) tempo (t) para que ocorra a parcela desejada do recalque total (U(t)R,v %);
c) Determinar o recalque total por adensamento por:
d) Com o tempo (t) pra que ocorra o recalque, determina-se o fator tempo Tv através da fórmula:
e) Com o fator, determina-se o grau de adensamento vertical:
através de gráficos, tabelas ou fórmulas. 
*
*
*
4.2 – Procedimentos de Cálculo:
f) De posse do grau de adensamento vertical (U(t)R) e do grau de adensamento desejado (U(t)R,v); determina-se o grau de adensamento radial apenas, que pode ser obtido pela expressão:
100 – U(t)r,v % = (1/100).[100 – U(t)r %].[100 - U(t)v %]
g) Adotar um fator n = R/rw e de posse do valor (U(t)R), determinar o valor do fator tempo radial (Tr) na Tabela 1.
h) Encontrar o raio da zona equivalente de influência do dreno (R):
i) Determinar o espaçamento entre os drenos (s) por:
2R=de=1,05.s (Espaçamento Triangular)
j) Determinar o diâmetro do dreno pela expressão:
n = (R/rw), onde foi definido no item (f) e R foi obtido no item (g).
*
*
*
OBS: 
	Na Prática, o diâmetro do dreno (2.Rw) de areia deve estar entre o seguinte intervalo: 
20 cm ≤ 2.Rw ≤ 30 cm
	Enquanto o diâmetro de influênciado dreno (2.R) deve estar entre o intervalo especificado:
1,50 m ≤ 2.R ≤ 2,0 m
*
*

Outros materiais