Buscar

Apostila materiais IFRS

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 57 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 57 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 57 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
versão 1.0 
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA 
DO RIO GRANDE DO SUL – CAMPUS RIO GRANDE 
Curso Superior de Tecnologia em Construção de Edifícios 
Prof. Fábio Costa Magalhães 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MATERIAIS COMPONENTES DO CONCRETO 
– ESPECIFICAÇÕES E ENSAIOS – 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
2 
CAPÍTULO 1 – CONSIDERAÇÕES INICIAIS 
 
1.1 – INTRODUÇÃO 
 
 Esta apostila visa a apresentar sob um aspecto prático as especificações e metodologias de 
ensaio dos materiais com os quais é produzido o concreto de cimento Portland. São buscadas as 
regulamentações normativas de cada situação, objetivando uma preparação para a aplicação 
profissional dos conceitos aqui apresentados. Ao mesmo tempo, são expostas questões de 
conceituação teórica com o intuito de permitir o correto entendimento do conteúdo abordado. 
 
1.2 – OBJETIVOS 
 
 Com a aquisição do conhecimento contido no presente documento, o aluno deverá ser 
capaz de distinguir sobre as especificações e especificidades dos materiais componentes do 
concreto, utilizando as normas técnicas respectivas. Deverá possuir competência para a correta 
interpretação dos resultados dos ensaios realizados. 
 
1.3 – CONCRETO 
 
 Concreto de Cimento Portland é o material mais utilizado na construção civil na 
atualidade. É constituído pela mistura de cimento, agregados inertes e água e, de forma eventual, 
por aditivos e adições conforme a necessidade. 
Este material passou a ser utilizado como é conhecido hoje no fim do século XIX, com uso 
intensificado em meados do século XX; quando o concreto se transformou no material mais 
utilizado do mundo depois da água. 
A mistura de Cimento Portland e água forma uma pasta cuja fluidez varia conforme a 
relação água/cimento
1
 da combinação. Esta pasta envolve os agregados, produzindo um material 
que é capaz de se moldar aos mais variados formatos. Nas primeiras horas o concreto apresenta 
certa fluidez, dependendo das características da mistura, com o passar do tempo, a mistura 
endurece pela reação de caráter irreversível do cimento em contato com a água. Este adquire 
resistência mecânica tornando-se um material de grande utilidade estrutural. 
 
 
1
Razão, em massa, entre a quantidade de água e de cimento adicionada em argamassas ou concretos. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
3 
1.4 – MATERIAIS COMPONENTES DO CONCRETO – MCC’s 
 
 Tão fundamental quanto uma boa dosagem do concreto é a correta escolha dos materiais 
que o compõe. Neste documento são apresentados os principais materiais utilizados na produção 
do concreto e os principais ensaios de caracterização dos mesmos. A norma brasileira NBR 
12654 – Controle tecnológico de materiais componentes do concreto – estabelece as condições 
exigíveis do controle da qualidade dos materiais com os quais o concreto é produzido. 
 
CAPÍTULO 2 – CIMENTO PORTLAND 
 
2.1 – INTRODUÇÃO 
 
 O Cimento Portland é um aglomerante hidráulico
2
 proveniente da moagem do chamado 
Clínquer Portland. O clínquer é obtido pela mistura e moagem de calcário e argila em proporções 
adequadas. Esta mistura é aquecida em fornos (em geral rotativos) até temperaturas próximas da 
fusão completa do material, sofrendo um rápido resfriamento. O clínquer Portland é moído 
juntamente com gesso, resultando no Cimento Portland; um material em pó, fino e de cor 
acinzentada. 
 
 
Figura 2.1 – Clínquer Portland. 
 
 A adição do gesso (gipsita) é realizada na moagem final do cimento com o intuito de 
regular o tempo de pega, permitindo que o cimento permaneça trabalhável por um período de, 
pelo menos, uma hora. 
 
2
 Aglomerante hidráulico são os elementos que endurecem pela ação de água, através do processo de 
hidratação e depois de endurecido adquire características de rocha artificial, mantendo suas propriedades. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
4 
 O cimento produzido desta forma constitui-se de vários óxidos que compõem compostos 
complexos que se combinam com a água. Esta combinação entre o cimento e água resulta em um 
material cristalino com propriedades de resistência e aderência aos agregados e às armaduras. 
 Os principais óxidos que compõem o cimento e suas representações de forma simplificada 
são apresentados na Tabela 2.1. 
 
Tabela 2.1 – Componentes principais do Cimento Portland. 
Representação Descrição 
Representação 
Simplificada 
CaO Óxido de Cal C 
SiO2 Óxido de Silício S 
Al2O3 Óxido de Alumínio A 
Fe2O3 Óxido de Ferro F 
 
 
Figura 2.2 – Jazida de extração mineral e britador (ITAMBÉ, 2008). 
 
O resultado das combinações entre os principais óxidos é a geração de quatro componentes 
principais: 
 - C3S – Silicato tricálcico; 
 - C2S – Silicato dicálcico; 
 - C3A – Aluminato tricálcico; 
 - C4AF – Ferro aluminato tetracálcico. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
5 
 
Figura 2.3 – Forno de clinquerização (ITAMBÉ, 2008). 
 
As características proporcionadas por estes compostos ao Cimento Portland durante o seu 
processo de hidratação estão apresentadas de forma resumida na Tabela 2.2. A Figura 2.4 
apresenta o comportamento mecânico dos componentes do concreto com o aumento da idade. As 
Figuras 2.5 e 2.6 apresentam um esquema simplificado do processo produtivo do cimento 
Portland e a vista aérea de uma fábrica, respectivamente. 
 
Tabela 2.2 – Características principais dos compostos de Cimento Portland. 
 Composto Característica 
 
C3S 
Endurecimento (reação) rápido, liberação de um moderado 
calor de hidratação
3
, altas resistências iniciais. 
 
 
C2S 
Endurecimento lento, baixo calor de hidratação liberado, 
altas resistências finais. 
 
 
C3A 
Endurecimento muito rápido, muito alto calor de 
hidratação, baixa resistência. 
 
 
C4AF 
Endurecimento rápido, calor de hidratação alto, resistência 
desprezível. 
 
 
 
 
 
 
3
 Calor desenvolvido no maciço de concreto durante o processo exotérmico de hidratação do cimento. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
6 
 
Figura 2.4 – Comportamento mecânico dos compostos do cimento Portland (TARTUCE e 
GIOVANNETTI, 1990). 
 
 
Figura 2.5 – Fluxograma de produção do cimento. 
 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
7 
 
Figura 2.6 – Vista aérea da fábrica de cimento Portland Ash Grove Cement em Oregon-EUA 
(MEHTA e MONTEIRO, 2008). 
 
2.1.1 – ADIÇÕES 
 
 Em determinadas situações, são adicionados outros materiais ao composto oriundo da 
moagem de clínquer e gesso. Quando estasadições participam do processo de hidratação do 
cimento são denominadas adições ativas. As adições no cimento melhoram certas características 
do concreto, além de preservar o ambiente ao aproveitar resíduos e diminuir a extração de 
matéria prima. A introdução destas adições resulta em Cimentos Portland de tipos distintos, cujas 
características e propriedades são normatizadas por normas brasileiras (NBR) vigentes. 
 
2.2 – TIPOS DE CIMENTOS PORTLAND 
 
2.2.1 – CIMENTO PORTLAND COMUM (CP I) 
 
 Este é um tipo de cimento sem qualquer adição além do gesso, que serve como retardador 
de pega. Suas características são estabelecidas através da NBR 5732 – Cimento Portland comum. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
8 
Sua utilização é indicada em construções de concreto nas quais a estrutura não fique exposta a 
ambientes agressivos, com presença de sulfatos. 
 Também se pode encontrar no mercado o Cimento Portland comum com adições (CP I-S), 
cuja composição apresenta a adição de material pozolânico
4
 em massa, ao ter de 5 %. 
 
2.2.2 – CIMENTO PORTLAND COMPOSTO (CP II) 
 
Este tipo de cimento é especificado através da norma brasileira NBR 11578 – Cimento 
Portland composto. Tem como característica a liberação de calor numa velocidade menor do que 
o gerado pelo CP I. Desta forma, sua utilização é mais recomendada no caso de grandes maciços 
de concreto, onde o elevado volume da concretagem e a superfície relativamente pequena 
reduzem a capacidade de resfriamento da massa. Este cimento também apresenta melhor 
resistência ao ataque dos sulfatos contidos no solo. 
 
Os Cimentos Portland Compostos apresentam-se em três diferentes composições: 
 
a) Cimento Portland composto com fíler (CP II-F): 
Este cimento apresenta adição de material carbonático
5
 (fíler) à mistura clínquer e 
gesso. A adição de fíler é estabelecida pela NBR 11578 entre 6 e 10 %, em massa, em 
relação ao cimento comum. Sua utilização não é recomendada em ambientes agressivos. 
 
b) Cimento Portland composto com pozolana (CP II-Z): 
Este tipo de cimento contém adição de material pozolânico. Apresenta adição de 
pozolana no percentual de 6 a 14 %, em massa; admitindo até 10 % de fíler à composição. 
A característica de resistência a sulfatos torna o composto pozolânico recomendado à 
aplicação em ambiente com sulfatos, tais como obras marítimas, subterrâneas ou 
industriais. 
 
c) Cimento Portland composto com escória (CP II-E): 
 
4
 Material composto em grande parte por silicatos que reagem com o hidróxido de cálcio liberado na 
hidratação do cimento, produzindo uma pasta compacta com resistência a certos agentes agressivos. 
5
 Materiais carbonáticos são rochas moídas compostas por carbonato de cálcio, como o calcário. Quando 
adicionados ao concreto são denominados fíler. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
9 
Este cimento apresenta adição de escória granulada de alto-forno. A escória de alto-
forno é obtida pelo processo de fusão do subproduto da produção de aço ou ferro, 
conhecido como escória de ferro. Esta fusão gera um material vítreo, capaz de ser moído. 
Esta escória é composta por silicatos inertes que se comportam como aglomerantes 
hidráulicos, auxiliando no endurecimento da pasta. O teor em massa de escória é 
estabelecido pela NBR 11578 com valores entre 6 e 34 %; com a possibilidade de adição 
de fíler ao teor máximo de 10 %. É recomendado para estruturas com necessidade de calor 
de hidratação moderado, tais como grandes maciços de concreto, como obras de barragens. 
 
2.2.3 – CIMENTO PORTLAND DE ALTO-FORNO (CP III) 
 
Este tipo de cimento é especificado pela NBR 5735 – Cimento Portland de alto-forno. 
Apresenta adição de escória em um percentual superior ao utilizado no cimento composto CP II-
E; fato que proporciona a este cimento características como: baixo calor de hidratação e maior 
resistência a agentes agressivos. Sua utilização é indicada para os mesmos casos do cimento 
composto por escória, porém com vantagens em relação ao CP II. Os teores de adição de escória 
de alto-forno são apresentados na Tabela 2.3. 
 
Tabela 2.3 – Teores dos componentes do CP III segundo a NBR 5735. 
Sigla 
Classe de 
Resistência 
Componentes (% em massa) 
Clínquer + sulfato 
de cálcio 
Escória granulada 
de alto-forno 
Material 
carbonático 
CP III 
25 
65-25 35-70 0-5 32 
40 
 
2.2.4 – CIMENTO PORTLAND POZOLÂNICO (CP IV) 
 
Este tipo de cimento é especificado pela NBR 5736 – Cimento Portland pozolânico. 
Apresenta adição de material pozolânico na proporção de 15 a 50 % em massa. O alto teor 
pozolânico proporciona ao concreto uma maior impermeabilidade e conseqüente durabilidade. 
Os materiais pozolânicos são definidos como elementos silicosos ou silicoaluminosos que 
por si só possuem pouca ou nenhuma atividade aglomerante, mas que, quando finamente 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
10 
divididos e na presença de água, reagem com o hidróxido de cálcio formando um composto com 
propriedades cimentícias. A origem da pozolana pode ser natural ou artificial. No caso natural 
são provenientes regiões vulcânicas
6
 ou de origem sedimentar. As pozolanas artificiais são 
oriundas de tratamentos térmicos ou subprodutos industriais, podendo ser: 
 
- Argilas calcinadas: provenientes da calcinação de algumas argilas que, quando tratadas 
com temperaturas entre 500 e 900 °C, passam a reagir com o hidróxido de cálcio; 
- Cinzas volantes: resíduos provenientes da combustão de carvão pulverizado ou 
granulado. 
 
As cinzas volantes são precipitadas eletrostaticamente dos fumos de exaustão das centrais 
termelétricas a carvão e são as pozolanas artificiais mais comuns. No Rio Grande do Sul, o 
cimento CP IV é o mais produzido. Este fato decorre da grande oferta de cinzas volantes 
oriundas da queima de carvão mineral para a geração de energia elétrica nas usinas 
termoelétricas. A região de Candiota e Pinheiro Machado/RS concentra grande parte da 
produção de cimento deste estado. 
 
2.2.5 – CIMENTO PORTLAND DE ALTA RESISTÊNCIA INICIAL (CP V-ARI) 
 
Assim como o cimento comum CP I, o cimento CP V não apresenta nenhum tipo de 
adição, embora possa ser comercializado com teor de material carbonático de até 5 %. No 
entanto sua produção difere da dos demais cimentos em virtude da dosagem diferente entre 
calcário e argila utilizada na produção do clínquer e ao processo mais aprimorado de moagem 
que proporciona um cimento de grãos mais finos. Estas características fazem com que o CP V-
ARI apresente resistências elevadas com maior rapidez. 
Este tipo de cimento é amplamente utilizado em estruturas pré-moldadas de concreto e em 
estruturas que exijam resistências iniciais mais elevadas nas primeiras idades. 
A norma brasileira NBR 5733 - Cimento Portland de alta resistência inicial - define os 
parâmetros de produção deste tipo de cimento. 
 
2.2.6 – CIMENTO PORTLAND RESISTENTE A SULFATOS (CP RS) 
 
6
 A origem do termo pozolana é a região do vulcão Vesúvio no território italiano, conhecida como Pozzuoli, 
onde são encontradas cinzas vulcânicas com propriedades pozolânicas. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaioshttp://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
11 
Este tipo de cimento busca proporcionar resistência a ambientes agressivos sulfatados que 
tendem a acarretar manifestações patológicas nas estruturas de concreto. Este tipo de cimento é 
indicado para regiões marítimas e industriais. A norma NBR 5737 – Cimentos Portland 
resistentes a sulfatos – apresenta as características inerentes ao cimento do tipo RS. Segundo esta 
norma, cinco tipos de cimentos podem apresentar resistência a sulfatos (CP I, CP II, CP III, CP 
IV e CP V-ARI), desde que satisfaçam as seguintes condições: 
- Teor de aluminato tricálcico (C3A) do clínquer e teor de adições carbonáticas de no 
máximo 8 % e 5 % em massa, respectivamente; 
- Cimentos do tipo alto-forno que contiverem entre 60 % e 70 % de escória granulada de 
alto-forno, em massa; 
- Cimentos do tipo pozolânico que contiverem entre 25 % e 40 % de material pozolânico, 
em massa; 
- Cimentos que tiverem antecedentes de resultados de ensaios de longa duração ou de obras 
que comprovem resistência aos sulfatos. 
 
2.2.7 – CIMENTO PORTLAND BRANCO (CPB) 
 
O cimento Portland branco é produzido a partir de clínquer Portland branco. Esta cor é 
obtida a partir de matérias primas com baixos teores de óxido de ferro e manganês; além do fato 
de utilizar caulim
7
 ao invés de argila. A NBR 12989 – Cimento Portland branco – apresenta as 
especificações e exigências para este tipo de cimento. 
 
 
Figura 2.7 – Extração e pedras de caulim. 
 
 
7
 Minério composto de silicatos hidratados de alumínio, como a caulinita e a haloisita. Apresenta coloração 
branca. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
12 
Este tipo de cimento é encontrado para duas distintas aplicações: 
- Cimento Portland branco estrutural: é utilizado na execução de concretos estruturais com 
finalidades arquitetônicas; 
- Cimento Portland branco não-estrutural: Não pode ser utilizado para fins estruturais, 
sendo aplicado em acabamentos, tais como o rejuntamento de revestimentos cerâmicos. 
 
2.2.8 – CLASSES DE RESISTÊNCIA DO CIMENTO 
 
Além das especificações e classificações dos cimentos em virtude do tipo e teor de adição 
que o mesmo apresenta, têm-se a distinção em classes de resistência. Esta distinção é 
estabelecida com base no resultado aos 28 dias de idade da resistência à compressão de uma 
pasta do cimento determinada de acordo com a norma brasileira NBR 7215 – Cimento Portland – 
Determinação da resistência à compressão. As designações das classes de cimento são 25, 32 e 
40; referindo-se as resistências à compressão de 25, 32 e 40 MPa, respectivamente. 
Por exemplo, um cimento com a classificação CP IV-32, indica um cimento Portland 
pozolânico cuja resistência à compressão conforme a NBR 7215 é de, pelo menos, 32 MPa aos 
28 dias de idade. 
No Brasil, a produção de cimento apresentou um grande incremento na década de 1970, 
através do chamado “Milagre Brasileiro”. Após duas décadas de estagnação, a produção voltou a 
crescer, impulsionado, sobretudo, pela criação do Plano Real e pelo Programa de Aceleração do 
Crescimento (PAC). A Figura 2.8 apresenta esta evolução. 
 
 
Figura 2.8 – Consumo brasileiro de cimento (Fonte: SNIC). 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
13 
2.3 – ENSAIOS DE CIMENTOS 
 
Existem diversos ensaios utilizados para caracterizar os cimentos. Alguns são comumente 
utilizados, outros são realizados em situações específicas, dependendo da necessidade. A seguir 
são apresentados alguns destes ensaios, suas características, procedimentos e referências 
normativas. Cada tipo de cimento possui suas especificações, sendo estas estabelecidas nas 
respectivas normas de referência. A metodologia de ensaio destas especificações, no entanto, é 
comum à maioria dos cimentos Portland. 
 
2.3.1 – PASTA DE CONSISTÊNCIA NORMAL 
 
A determinação da pasta de consistência normal faz-se fundamental no estudo das 
propriedades dos cimentos Portland. Esta pasta normal é utilizada como forma de padronizar 
todos os ensaios de caracterização dos cimentos, tornando uniforme a metodologia de análise e 
evitando variações provocadas pelas manipulações de laboratoristas. 
A norma brasileira NBR NM 43 – Cimento Portland – Determinação da pasta de 
consistência normal – define a pasta normal como a mistura de água destilada e cimento Portland 
realizada conforme esta norma, na qual a sonda de Tetmajer
8
 (Figura 2.10-a), acoplada ao 
aparelho de Vicat (Figura 2.9), penetra a uma distância de (6 ± 1) mm da placa da base. 
A metodologia de preparação da pasta de consistência normal é padronizada pela NBR 
NM 43. Para a mistura, deve ser utilizado um misturador com pás padronizadas (Figura 2.11) e 
com duas velocidades de rotação e translação, conforme a Tabela 2.4. 
 
 
Figura 2.9 – Aparelho de Vicat para determinação do tempo de início e fim de pega no 
cimento e pasta de consistência normal. 
 
8
 Sonda acoplada ao aparelho de Vicat para a determinação da pasta de consistência normal. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
14 
Medidas em milímetros 
 
(a) (b) (c) 
Figura 2.10 – Sonda de Tetmajer para determinação da consistência normal (a); Agulha para 
determinação do tempo de pega inicial (b) e Agulha e acessórios para determinação do fim de 
pega (NBR NM 43). 
 
 
(a) 
 
(b) 
Figura 2.11 – (a) Argamassadeira de movimento planetário para mistura de cimentos e 
argamassas em ensaios de laboratório; (b) Misturador mecânico com dimensões normatizadas. 
 
Tabela 2.4 – Velocidade da pá do misturador (NBR NM 43). 
Velocidade 
Rotação 
[min
-1
] 
Movimento Planetário 
[min
-1
] 
Lenta 140 ± 5 62 ± 5 
Rápida 285 ± 10 125 ± 10 
 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
15 
A pasta é preparada com uma massa de cimento de (500 ± 0,5) gramas, sendo a água 
adicionada ao aglomerante por tentativas, com exatidão de 0,5 g. Após a mistura, a pasta deve 
ser colocada no molde e posicionada no aparelho de Vicat. Esta é classificada como de 
consistência normal quando a pasta faz com que a sonda de Tetmajer se situe a uma distância de 
(6 ± 1) mm da placa da base após 30 segundos do instante em que esta foi solta no molde. 
Nos resultados do ensaio de determinação da pasta de consistência normal, deve ser 
expresso o percentual de água adicionado ao cimento que proporcionou a pasta normal. A 
equação (2.1) estabelece a quantidade de água utilizada: 
𝐴 =
𝑚𝑎
𝑚𝑐
 .100 (2.1) 
Onde: 
- ma é a massa de água utilizada para obtenção da pasta normal, em gramas; 
- mc é a massa de cimento utilizada no ensaio, em gramas. 
 
Esta pasta de consistência normal deverá ser utilizada na determinação de outras 
propriedades dos cimentos Portland, conforme se pode verificar a seguir. 
 
2.3.2 – PEGA E ENDURECIMENTO 
 
Após um determinado tempo da mistura entre o cimento e a água, a pasta começa a perder 
sua plasticidade. Este fato ocorre devido ao início das reações químicas nos compostos do 
cimento. Ao tempo transcorrido entrea mistura e o início das reações dá-se o nome de início de 
pega. O início de pega pode ser percebido através do aumento repentino da viscosidade da pasta, 
bem como pelo aumento de sua temperatura – decorrência das reações exotérmicas da hidratação 
do cimento. 
Por convenção, dá-se o nome de fim de pega ao ponto em que a pasta de cimento atinge 
um estágio de indeformabilidade ao sofrer pequenas solicitações de cargas. Após o fim de pega, 
a pasta de cimento continua o processo de incremento de resistência mecânica e coesão; etapa 
conhecida como endurecimento. 
Determinar o início e o fim de pega do cimento é importante para se ter uma noção do 
período em que o concreto irá apresentar plasticidade, permitindo o transporte, lançamento e 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
16 
adensamento; bem como o instante a partir do qual se poderá transitar sobre ele e iniciar o 
procedimento de cura
9
. 
Diversos são os fatores que influenciam nos tempos de início e fim de pega: 
- Composição de cimento rica em aluminato tricálcico (C3A) acarreta períodos curtos de 
início de pega, pois provoca um rápido endurecimento da pasta. A adição de gesso ao composto 
corrige este tempo; 
- Quanto mais aprimorada for a moagem do clínquer, ou seja, mais fino forem os grãos do 
cimento, mais rápido o início de pega. Isto ocorre devido a maior área de hidratação dos grãos no 
caso de moagem mais fina; 
- O aumento da temperatura culmina em redução do início de pega pela aceleração das 
reações químicas; 
A medição do tempo de pega do cimento é feita com a utilização de uma agulha (Figura 
2.10-b e 2.10-c), acoplada ao Aparelho de Vicat (Figura 2.9). A norma NBR NM 65 – Cimento 
Portland – Determinação do tempo de pega, estabelece as condições e metodologias de ensaio. 
O ensaio consiste em produzir uma pasta de cimento de consistência normal e penetrar 
uma agulha de forma padronizada à mesma. 
O tempo de início de pega é, em condições normalizadas, o intervalo de tempo decorrido 
desde a adição de água ao cimento até o momento em que a agulha de Vicat penetra na pasta até 
uma distância de (4 ± 1) mm da placa base. 
O tempo de fim de pega é, em condições normalizadas, o intervalo de tempo decorrido 
desde a adição de água ao cimento até o momento em que a agulha de Vicat penetra 0,5 mm na 
pasta. 
 
2.3.3 – EXPANSIBILIDADE (ESTABILIDADE DE VOLUME) 
 
Faz-se fundamental que uma estrutura executada a partir de uma pasta de cimento 
(argamassa ou concreto), não sofra grandes variações volumétricas desde a hidratação até o 
endurecimento. Mais precisamente, não pode haver uma expansão prejudicial na pasta, fato que, 
sob condições de contenção, tende a provocar desagregações e deformações. 
 
9
 Conjunto de procedimentos realizados para evitar a perda acelerada de água do maciço de concreto nos 
primeiros dias após o lançamento. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
17 
Cimentos com excesso de óxido de cálcio (CaO) apresentam maior tendência de 
expansibilidade, visto que a hidratação deste composto ocorre mais lentamente e o hidróxido de 
cálcio (Ca(OH)2) ocupa um volume muito maior quando comparado ao CaO. 
Devido ao fato da expansão do cimento dar-se de forma bastante lenta, muitas vezes 
tornando-se aparente apenas após alguns meses, são utilizados ensaios acelerados para a 
determinação desta propriedade. 
A norma NBR 11582 – Cimento Portland – Determinação da expansibilidade de Le 
Chatelier, normatiza a metodologia para determinar a expansibilidade da pasta de cimento. O 
método consiste em medir o distanciamento de duas hastes provocado pela expansão da pasta de 
cimento de consistência normal moldada no interior de um cilindro fendido segundo uma 
diretriz, em um aparelho denominado Agulha de Le Chatelier (ver Figura 2.12). 
 
 
(a) 
 
(b) 
Figura 2.12 – Especificações da Agulha de Le Chatelier (a); Agulha de Chatelier (b). 
 
Este documento apresenta duas análises distintas: Expansibilidade a frio e a quente. Estas 
se diferem em função das condições de cura e ensaio a que a pasta é submetida. 
 
2.3.4 – CALOR DE HIDRATAÇÃO 
 
As reações que ocorrem na pasta de cimento durante o período de pega e endurecimento 
são exotérmicas; ou seja, acarretam elevação da temperatura do concreto ou argamassa, 
principalmente nas reações rápidas. 
Os efeitos do calor da hidratação do cimento são mais sensíveis nos concretos-massa
10
, 
uma vez que a dissipação térmica ocorre pela superfície da peça e este calor é proporcional ao 
volume, provocando efeitos desfavoráveis. Os efeitos da elevação da temperatura dos concretos 
 
10
 Estruturas que exigem grandes volumes de concreto como, por exemplo, as obras de barragens. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
18 
e argamassas em decorrência da energia térmica liberada durante a hidratação do cimento podem 
ser muito nocivos às estruturas. 
No entanto, em outras situações o calor de hidratação pode ser favorável, como por 
exemplo, nas concretagens que são realizadas em situações de baixa temperatura, uma vez que 
este calor tende a oferecer energia de ativação para as reações de hidratação. 
O calor de hidratação é a quantidade de calor liberada pela unidade de massa de cimento 
durante sua reação de hidratação. É expresso em calorias por grama (cal/g) ou joule por grama 
(J/g). 
 
Figura 2.13 – Taxa de liberação de calor de uma pasta de cimento Portland durante a pega e o 
período de endurecimento (MEHTA e MONTEIRO, 2008). 
 
A norma brasileira NBR 12006 – Cimento – Determinação do calor de hidratação pelo 
método da garrafa de Langavant, descreve a metodologia de determinação do calor de hidratação 
dos cimentos por meio de um calorímetro semi-adiabático
11
. 
 
 
Figura 2.14 – Garrafa de Langavant para determinação do calor de hidratação do cimento. 
 
2.3.5 – RESISTÊNCIA À COMPRESSÃO 
 
11
 Uma fronteira adiabática isola completamente o sistema de sua vizinhança no que tange a troca de matéria 
ou ao calor. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
19 
A determinação da resistência do cimento faz-se necessária à qualificação dos distintos 
cimentos quanto aos esforços mecânicos que o mesmo é capaz de suportar. 
O conceito de resistência do cimento visa determinar o comportamento do cimento nas 
argamassas e concretos; sendo assim, os ensaios deveriam ser realizados com base em pastas de 
argamassas e em concretos. Na prática esta metodologia não é adotada por obrigar a trabalhar 
com grandes quantidades de materiais e pelo fato de ampliar a possibilidade de dispersão nos 
resultados devido à dificuldade de normatizar todos os agregados utilizados. O ensaio da pasta de 
cimento e água – sem agregados – também não é representativo devido à diferença na quantidade 
de água para amassamento e devido à variação do incremento de resistência com o tempo 
quando comparada ao ensaio com a utilização de agregados. 
A Figura 2.15 apresenta uma relação entre as resistências de concreto e de argamassa para 
uma mesma relação água/cimento.Figura 2.15 – Relação entre as resistências de concreto e de argamassas com igual relação 
água/cimento (NEVILLE, 2007). 
 
Como forma de uniformizar o método de qualificação do cimento quanto aos esforços 
mecânicos, foi determinado o ensaio do cimento sob a forma de argamassa composta por 
agregado miúdo. A NBR 7215 – Cimento Portland – Determinação da resistência à compressão, 
especifica o método de determinação da resistência à compressão do cimento Portland. 
A argamassa a ser ensaiada deve ser produzida com uma areia normal, cujas especificações 
atendam a NBR 7214 – Areia normal para ensaio de cimento – Especificação. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
20 
A NBR 7215 especifica todas as condições de ensaio, desde a temperatura ambiente do 
laboratório (24 ± 4 °C) até os métodos de cura dos corpos de prova; passando pela dosagem dos 
materiais. Este documento define a relação água/cimento da argamassa em 0,48. A mistura dos 
materiais deve ser realizada com equipamento mecanizado e padronizado, conforme a Figura 
2.11. Os corpos de prova de argamassa são moldados em formas cilíndricas com dimensões 5 x 
10 cm (Figura 2.16) e rompidos sob compressão para determinação da carga de ruptura
12
. Antes 
do rompimento os exemplares devem ser capeados com um mistura de enxofre a quente, 
conforme a Figura 2.17. 
 
 
 
Figura 2.16 – Formas metálicas para corpos de prova de argamassa com dimensões 5 x 10 cm. 
 
Para cada idade, devem ser rompidos quatro CP’s; sendo a resistência à compressão igual à 
média dos resultados, em megapascals, dos rompimentos individuais. 
 
 
Figura 2.17 – Capeamento de corpos de prova de argamassa com 
enxofre. 
 
 
12
 Carga máxima indicada no equipamento de ensaio. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
21 
Os quatro resultados individuais de resistência, bem como a média destes resultados e o 
desvio padrão máximo
13
 deverão compor o certificado de ensaio. 
Quando o desvio padrão máximo for superior a 6 %, deve ser calculada uma nova média, 
desconsiderando o valor discrepante. Este valor descartado deve ser identificado no certificado 
de ensaio por um asterisco. 
A Figura 2.18 mostra um exemplo de prensa hidráulica utilizada no rompimento dos 
corpos de prova e na determinação da resistência à compressão do cimento. A Tabela 2.5 (pág. 
27) apresenta os valores mínimos exigidos de resistência à compressão para cada idade de 
rompimento de todos os tipos de cimento comercializados no Brasil. 
 
 
Figura 2.18 – Modelo de prensa hidráulica com acionamento elétrico para rompimento dos 
corpos de prova (Catálogo EMIC). 
 
A Figura 2.19 apresenta a evolução média da resistência à compressão dos tipos de 
cimento Portland brasileiros. 
 
13
 Desvio padrão máximo é a diferença entre a resistência média dos rompimentos e a resistência individual 
que mais se afasta desta média. Deve ser expresso em percentual. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
22 
 
Figura 2.19 – Evolução média da resistência à compressão dos cimentos brasileiros (ABCP). 
 
2.3.6 – FINURA 
 
A medida da finura do cimento Portland busca verificar a granulometria dos grãos deste 
material. A definição da finura é importante, pois muitas propriedades dos concretos e 
argamassas variam em função deste valor. Como a hidratação do cimento se dá através da 
superfície dos grãos, a finura (grau de moagem) irá influenciar na rapidez da hidratação e em 
propriedades como calor de hidratação, retração, incremento de resistência com a idade, entre 
outras. Cimentos mais finos terão maiores resistências nas primeiras idades, bem como, tenderão 
a ser mais homogêneos (resistentes à penetração de água). Esta finura, no entanto, aumenta a 
possibilidade de fissuramento e retração, através da quantidade de calor liberada. 
 
Existem duas metodologias normatizadas para a definição da finura do cimento: 
 
a) NBR 11579 – Cimento Portland - Determinação da finura por meio da peneira 75 
µm (n° 200) 
 
Consiste em determinar a percentagem retida de uma amostra de cimento em uma peneira 
com abertura de malha de 0,075 mm (peneira de n° 200). Utiliza-se uma amostra de cimento de 
20 gramas, coloca-se esta sobre a peneira n° 200 e se inicia peneiramento mecanizado por um 
período de 3 minutos. 
O índice de finura do cimento é definido através da equação (2.2): 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
23 
𝐹 =
𝑅. 𝐶
𝑀
 .100 (2.2) 
Onde: 
F é o índice de finura (%); 
R é o resíduo de cimento retido na peneira n° 200 (g); 
M é a massa da amostra inicial de cimento (g); 
C é um fator de correção estabelecido em norma, referente à peneira utilizada no ensaio. 
 
Exemplo: Cimentos portland comum da classe CP I – 32 apresentam resíduo retido na 
peneira de n° 200 inferior a 12 %. 
 
b) NBR NM 76 – Cimento Portland – Determinação da finura pelo método de 
permeabilidade ao ar (Método de Blaine) 
 
Consiste em determinar a área específica pelo tempo de passagem de certa quantidade de 
ar através de uma porção de cimento. A determinação da superfície serve, principalmente, para 
checar a uniformidade da moagem de uma fábrica de cimento. 
Este método baseia-se no tempo que determinada quantidade de ar necessita para 
atravessar uma camada de cimento compactada, de dimensões e porosidade especificadas. Em 
condições normatizadas, a superfície específica do cimento é proporcional a t, onde t é o tempo 
necessário para a quantidade de ar atravessar a camada de cimento. 
 
A superfície específica do cimento é expressa em centímetros quadrados por grama (cm²/g) 
ou metro quadrado por quilograma (m²/kg) e é determinada através da equação (2.3): 
 
𝑆 =
𝐾
𝜌
 .
 𝜀3
(1 − 𝜀)
 .
 𝑡
 0,1. ƞ
 (2.3) 
Onde: 
S é a superfície específica do cimento (cm²/g); 
ɛ é a porosidade da camada (ɛ = 0,5 para as condições prescritas na NBR NM 76); 
t é o tempo medido (s); 
ρ é a massa específica do cimento (g/cm³); 
K é a uma constante que depende do aparelho utilizado no ensaio; 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
24 
ƞ é a viscosidade do ar à temperatura de ensaio (Pa.s). 
 
 
Figura 2.20 – Conjunto para determinação da superfície específica do cimento (Aparelho de 
Blaine). 
 
Como exemplo: um cimento portland comum, da classe CP I – 32, apresenta uma área 
específica, determinada através do Método de Blaine, igual ou superior a 240 m²/kg. 
 
2.3.7 – PERDA AO FOGO E RESÍDUO SOLÚVEL 
 
O ensaio de perda ao fogo é determinado com base na norma brasileira NBR NM 18 – 
Análise química – Determinação de perda ao fogo - Consiste, basicamente, na pesagem de 
amostras de cimento Portland a uma temperatura entre 900 e 1000 °C. Este ensaio estabelece a 
perda de massa do cimento após o aquecimento. Esta perda refere-se, em grande parte, ao 
dióxido de carbono presente no fíler calcário, sendo que este ensaio serve como parâmetro de 
estimativa do teor destaadição. Outra parcela da perda ao fogo refere-se à perda de água do 
gesso através do processo de evaporação. Um valor elevado de perda ao fogo caracteriza 
hidratação avançada do cimento e desaconselha sua utilização. O percentual de perda ao fogo é 
determinado pela equação (2.4): 
𝑃𝐹 =
 𝑀𝑄 − 𝑀𝑆 
𝑀𝑆
 𝑥 100 (2.4) 
Onde: 
MS é a massa do cimento seca a 100 °C (g); 
MQ é a massa do cimento submetida à temperatura superior a 900 °C (g); 
PF é a perda ao fogo (%). 
 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
25 
O resíduo insolúvel é estabelecido conforme as recomendações da NBR NM 15 – Análise 
química – Determinação do resíduo insolúvel, indica a quantidade de elementos não hidráulicos 
no cimento. A determinação do resíduo insolúvel é realizada mediante o ataque por ácido 
clorídrico diluído. Este ensaio permite estabelecer o teor de cinzas na massa do cimento. 
Os limites de perda ao fogo e resíduo insolúvel estabelecidos para cada tipo de cimento 
estão apresentados na Tabela 2.5 da página 27. 
 
2.3.8 – MASSA ESPECÍFICA 
 
A massa específica do cimento caracteriza-se pela razão entre a massa do sólido e o 
volume ocupado pelo mesmo. A determinação da massa específica do cimento é realizada com 
base na norma NBR NM 23 – Cimento Portland e outros materiais em pó – Determinação da 
massa específica. Este documento define as condições de ensaio e os equipamentos utilizados. O 
Frasco de Le Chatelier é utilizado para a determinação desta propriedade através da diferença de 
volume. Um determinado líquido (em geral querosene) é introduzido no frasco e tem seu volume 
medido. Após, uma massa previamente conhecida de cimento é colocada neste frasco e a 
variação de volume da mistura é determinada. A massa específica é determinada pela razão entre 
a massa de cimento e a variação de volume proporcionada pela introdução do material sólido. 
 
 
Figura 2.21 – Frasco de Le Chatelier para determinação da massa específica do cimento. 
 
2.4 – ESPECIFICAÇÕES E EXIGÊNCIAS DOS CIMENTOS 
 
Os cimentos Portland possuem características estabelecidas para cada um dos tipos 
produzidos. São partes destas características normatizadas as exigências químicas, físicas e 
mecânicas. A Tabela 2.5 apresenta as especificações estabelecidas em cada uma das normas 
técnicas de referência para os distintos cimentos comercializados no Brasil. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
26 
Tabela 2.5 – Especificações e exigências técnicas dos tipos de cimento Portland brasileiros. 
Especificações Unid 
Norma do 
ensaio 
Tipo de Cimento 
CP I CP I-S CP II-E CP II-Z CP II-F CP III CP IV CP V 
NBR 5732 NBR 11578 NBR 5735 NBR 5736 NBR 5733 
Resíduo insolúvel (RI) % NBR NM 15 ≤ 1,0 ≤ 5,0 ≤ 2,5 ≤ 16,0 ≤ 2,5 ≤ 1,5 - ≤ 1,0 
Perda ao fogo (PF) % NBR NM 18 ≤ 2,0 ≤ 4,5 ≤ 6,5 ≤ 4,5 ≤ 4,5 ≤ 4,5 
Óxido de magnésio (MgO) % NBR NM 14 ≤ 6,5 ≤ 6,5 - ≤ 6,5 ≤ 6,5 
Trióxido de enxofre (SO3) % NBR NM 16 ≤ 4,0 ≤ 4,0 ≤ 4,0 ≤ 4,0 ≤3,5 
Anidrido carbônico (CO2) % NBR NM 20 ≤ 1,0 ≤ 3,0 ≤ 5,0 ≤ 3,0 ≤ 3,0 ≤ 3,0 
 
Limites de Classe 25 32 40 25 32 40 25 32 40 25 32 
Pega 
Início (h) 
h NBR NM 65 
≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 
Fim (h) ≤ 10 ≤ 10,0 ≤ 12,0 ≤ 12,0 ≤ 10,0 
Expansibilidade a 
quente mm 
NBR 11582 
≤ 5 ≤ 5,0 ≤ 5,0 ≤ 5,0 ≤ 5,0 
frio mm ≤ 5 ≤ 5,0 ≤ 5,0 ≤ 5,0 ≤ 5,0 
Finura 
Peneira 75 µm % NBR 11579 ≤ 12,0 ≤ 10,0 ≤ 12,0 ≤ 10,0 ≤ 8,0 ≤ 8,0 ≤ 6,0 
Área específica m²/kg NBR NM 76 ≥ 240 ≥ 260 ≥ 280 ≥ 240 ≥ 260 ≥ 280 - - ≥ 300 
Resistência à 
compressão 
3 dias 
MPa NBR 7215 
≥ 8,0 ≥ 10,0 ≥ 15,0 ≥ 8,0 ≥ 10,0 ≥ 15,0 ≥ 8,0 ≥ 10,0 ≥ 12,0 ≥ 8,0 ≥ 10,0 ≥ 24,014 
7 dias ≥ 15,0 ≥ 20,0 ≥ 25,0 ≥ 15,0 ≥ 20,0 ≥ 25,0 ≥ 15,0 ≥ 20,0 ≥ 23,0 ≥ 15,0 ≥ 20,0 ≥ 34,0 
28 dias ≥ 25,0 ≥ 32,0 ≥ 40,0 ≥ 25,0 ≥ 32,0 ≥ 40,0 ≥ 25,0 ≥ 32,0 ≥ 40,0 ≥ 25,0 ≥ 32,0 - 
91 dias - - - - - - ≥ 32,0 ≥ 40,0 ≥ 48,0 ≥ 32,0 ≥ 40,0 - 
 
 
14
 Exigível a resistência de 14,0 MPa com 1 dia de idade. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
27 
CAPÍTULO 3 – AGREGADOS 
 
3.1 – INTRODUÇÃO 
 
O agregado caracteriza-se como um componente geralmente inerte, desempenhando um 
papel de enchimento; acrescentando volume à pasta de cimento. No aspecto de enchimento, os 
agregados apresentam vantagens econômicas, reduzindo custos de produção do concreto. No 
caráter técnico, os agregados melhoram algumas características importantes do concreto, tais 
como redução da retração
15
, da fluência
16
, abrasão, entre outros. 
A pasta de cimento tem como função envolver as partículas de agregados, preenchendo os 
vazios entre os grãos destes. Os agregados ocupam percentuais entre 60 e 80 % do volume total 
do concreto, variando de acordo com o tipo de traço. 
Existem diversas origens para os agregados; podendo-se destacar as rochas britadas, 
materiais de leitos de rios ou em cavas de resíduos da degradação natural de rochas. 
A classificação dos agregados pode ser realizada segundo distintas características. Entre 
estas se podem destacar: 
 
a) Natureza ou Origem: 
- Natural: encontrados diretamente na natureza no formato em que serão utilizados 
(ex.: areia de rios e cavas, seixos,...). 
- Artificial: necessitam de beneficiamento para serem utilizados como agregado 
(ex.: rochas britadas, areias artificiais, pó de pedra,...). 
b) Dimensões: 
- Agregado Graúdo: são os agregados cujos grãos passam pela peneira com 
abertura de 75 mm e são retidos na peneira com abertura de 4,75 mm. 
- Agregado Miúdo: são aqueles cujos grãos são passantes na peneira # 4,75 mm e 
ficam retidos na peneira # 150 µm, em ensaio realizado segundo a norma NBR NM 
248. 
 
15
 Redução do volume do maciço do concreto, sobretudo devido à perda de água da pasta de cimento. 
16
 Deformação lenta do concreto quando o mesmo é submetido a um carregamento permanente. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
28 
 
Figura 3.1 – Peneiras para determinação da composição granulométrica de agregados. 
 
A norma NBR 7211 – Agregados para concreto – Especificação – estabelece os requisitos 
exigíveis para o recebimento e a produção dos agregados miúdos e graúdos destinados a 
produção de concreto de cimento Portland. Este documento define os ensaios de caracterização 
necessários aos dois tipos de agregado, bem como os valores aceitáveis para cada análise. 
Todos os ensaios realizados com os agregados para concreto devem ter as amostras do 
material compostas segundo a norma NBR NM 26 – Agregados – Amostragem. Este documento 
define os procedimentos de formação das amostras desde a extração, passando pela redução, 
armazenamento e transporte. 
 
3.2 – AGREGADO MIÚDO 
 
A NBR NM 52 – Agregado miúdo – Determinação da massa específica e massa específica 
aparente – define agregado miúdo o agregado que passa quase totalmente na peneira 4,75 mm e 
fica retida quase totalmente na peneira de 75 µm. 
Diversos são os ensaios realizados com os agregados miúdos a fim de caracterizá-lo e 
permitir seu uso de forma racional. Dentre estes ensaios de caracterização destacam-se: 
 
3.2.1 – MASSA ESPECÍFICA 
 
Na caracterizaçãodo agregado miúdo devem ser considerados distintos tipos de massa 
específica: massa específica real, massa específica aparente e massa específica relativa. 
 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
29 
a) Massa específica (real): 
- É a massa do agregado seco por unidade de volume excluindo deste os vazios 
permeáveis e os vazios entre os grãos. Sua determinação é realizada através do 
picnômetro ou do frasco de Chapman (Figura 3.2) em uma metodologia similar à 
realizada com o frasco de Le Chatelier. 
Excetuando-se os agregados leves, a massa específica real dos agregados miúdos 
fica em torno de 2,65 kg/dm³. 
 
 
(a) 
 
(b) 
Figura 3.2 – Frasco de Chapman (a); Picnômetro (b). 
 
b) Massa específica aparente: 
- É a massa por unidade de volume incluindo neste os vazios permeáveis ou 
impermeáveis contidos nos grãos. 
c) Massa específica relativa: 
- É a relação entre a massa da unidade de volume de um material, incluindo os 
poros, a uma dada temperatura, e a massa de um volume igual de água destilada, 
livre de ar, a uma temperatura estabelecida. 
 
A norma NBR NM 52 apresenta as especificações de ensaio da massa específica dos 
agregados miúdos, estabelecendo as equações e procedimentos a serem utilizados em cada etapa 
da análise. 
A massa específica aparente do agregado miúdo no estado seco é determinada segundo a 
equação (3.1): 
𝑑1 =
𝑚
𝑉 − 𝑉𝑎
 (3.1) 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
30 
Onde: 
- d1 é a massa específica aparente do agregado seco (g/cm³); 
- m é a massa da amostra seca (g); 
- V é o volume do frasco de ensaio (cm³); 
- Va é o volume de água adicionada ao frasco (cm³), de acordo com a equação (3.2); 
 
𝑉𝑎 =
𝑚2 − 𝑚1
𝜌𝑎
 (3.2) 
Onde: 
- m1 é a massa do conjunto frasco + agregado (g); 
- m2 é a massa total, frasco + agregado + água complementando o volume total (g); 
- ρa é a massa específica da água (g/cm³). 
 
A massa específica do agregado no estado saturado com superfície seca, por sua vez, é 
determinada segundo a equação (3.3): 
 
𝑑2 =
𝑚𝑠
𝑉 − 𝑉𝑎
 (3.3) 
Onde: 
- d2 é a massa específica do agregado saturado com superfície seca (g/cm³); 
- ms é a massa da amostra na condição saturada com superfície seca (g). 
 
A massa específica do agregado na condição seca é determinada pela equação (3.4): 
 
𝑑3 =
𝑚
 𝑉 − 𝑉𝑎 − 
𝑚𝑠 − 𝑚
𝜌𝑎
 
(3.4) 
Onde: 
- d3 é a massa específica do agregado (g/cm³); 
- m é a massa da amostra seca em estufa a temperatura (105 ± 5) °C (g). 
 
Os resultados dos ensaios realizados com a mesma amostra não devem diferir em mais de 
0,02 g/cm³ para a massa específica. Os resultados devem ser apresentados com precisão de 0,01 
g/cm³ 
 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
31 
3.2.2 – TEOR DE UMIDADE E ABSORÇÃO 
 
O conhecimento da umidade de determinada amostra de areia e sua capacidade de 
absorção são fundamentais para a correta dosagem de concretos e argamassas. Na grande 
maioria das vezes, os agregados miúdos são utilizados nas usinas dosadoras e nas obras na 
condição úmida; desta forma faz-se necessária a determinação deste teor de umidade como 
forma de corrigir distorções de peso e da quantidade de água no momento da dosagem. 
Quanto às condições de umidade que podem existir em uma determinada amostra de 
agregado, podem-se classificar quatro distintas, conforme apresentado na Figura 3.3. 
 
 
Figura 3.3 – Esquema de diferentes graus de umidade de agregados: 
Seco em estufa (a); Seco ao ar (b); Saturado com superfície seca (c) e Saturado (d). 
(adaptado de PETRUCCI, 1978). 
 
O teor de umidade é definido como a relação entre a massa de água contida no agregado e 
sua massa seca. O teor que faz com que o agregado apresente-se no estado saturado com 
superfície seca – SSS (Figura 3.3-c) é denominado de absorção; sendo este o ponto que 
culminam as possibilidades de o agregado absorver água e manter a superfície seca. Absorção é 
o processo pelo qual um liquido é conduzido e tende a ocupar os poros permeáveis de um corpo 
sólido poroso. No efeito sobre o agregado miúdo, considera-se nesta definição o incremento de 
massa de um corpo sólido poroso devido à penetração de água em seus poros permeáveis. Em 
geral, esta absorção apresenta valores inferiores a 2 %. A capacidade de o agregado miúdo 
absorver água é determinada através da norma NBR NM 30 – Agregado miúdo – Determinação 
da absorção de água. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
32 
A quantidade de água que vai além da necessária para levar o grão à condição SSS é 
denominada umidade superficial (Figura 3.3-d). 
A Figura 3.4 apresenta o aumento do volume de uma determinada amostra de agregado 
miúdo em relação ao teor de umidade adicionado à areia com granulometrias fina, média e 
grossa. 
 
Figura 3.4 – Inchamento17 devido à umidade no agregado miúdo (MEHTA e MONTEIRO, 
2008). 
 
A determinação da unidade é realizada segundo distintos métodos, sendo os principais 
citados a seguir: 
a) Secagem por aquecimento ao fogo – Método da Frigideira: 
Consiste em retirar do monte de areia a ser utilizado uma amostra do material, realizar a 
pesagem de 500 g deste material e colocá-lo em uma frigideira, realizando a secagem do 
mesmo. Após a completa secagem, a umidade do material é determinada através da 
equação (3.5). 
𝑈𝑚𝑖𝑑𝑎𝑑𝑒 % =
 500 − 𝑃𝑆 𝑥 100
𝑃𝑆
 (3.5) 
Onde: 
- PS é a massa agregado seco (g). 
 
17
 Ver item 3.2.3 - INCHAMENTO 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
33 
A Tabela 3.1 apresenta a conversão do valor da massa do agregado seco no teor de 
umidade para uma amostra de 500 g. 
 
Tabela 3.1 – Determinação da umidade da areia por meio do método da frigideira para uma 
amostra de 500 gramas. 
 
 
b) Secagem por aquecimento em estufa: 
A metodologia de secagem por estufa é similar ao método da frigideira, consiste em 
realizar a retirada da água presente nos grãos do agregado através de uma secagem em 
estufa à temperatura de 105 ± 5 °C. 
 
c) Frasco de Chapman: 
A norma brasileira NBR 9775- Agregados – Determinação da umidade superficial em 
agregados miúdos por meio do frasco de Chapman – especifica a metodologia de 
determinação do teor de umidade dos agregados miúdos através do frasco de Chapman. 
A operação consiste encher o frasco de Chapman (Figura 3.5) até a marca de 200 cm³, 
colocando os 500 gramas de areia pesados previamente no interior do mesmo. Após, deve-
se proceder a leitura no frasco (areia + água). A equação (3.6) determina o teor de umidade 
da areia: 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
34 
 
Figura 3.5 – Escala normatizada do 
frasco de Chapman (NBR 9775). 
 
𝑈𝑚𝑖𝑑𝑎𝑑𝑒 % =
 500 − 𝐿 − 200 𝑥 𝛾 
𝛾 𝑥 (𝐿 − 700)
𝑥100 (3.6) 
Onde: 
L é a leitura final no frasco(areia + água); 
γ é a massa específica real da areia. 
 
d) Speed Test: 
O speed test apresenta-se como um procedimento de determinação rápida da umidade. Esta 
metodologia utiliza um recipiente vedado, no interior do qual se introduz certa quantidade 
de material (areia) e carbureto de cálcio (CaC2) em pó. O carbureto reage com a água 
presente nos grãos do agregado, produzindo um gás, que exerce pressão no interior do 
recipiente. Um manômetro ligado ao aparelho indica a pressão no interior; esta pressão é 
correlacionada com o teor de umidade. 
 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
35 
 
Figura 3.6 – Conjunto para a determinação rápida do teor de umidade de areias e solos – Speed 
Test. 
 
 O valor do teor de umidade através do Speed test é determinado através da equação (3.7): 
 
ℎ % =
ℎ1
100 − ℎ1
 𝑥 100 (3.7) 
 
Onde: 
 h é o teor de umidade em relação à massa seca (%); 
 h1 é a umidade determinada pelo aparelho em relação à amostra úmida (%). 
 
3.2.3 – INCHAMENTO 
 
A água livre que se adere aos grãos de areia provoca afastamento entre estes. Este 
afastamento resulta em um inchamento do conjunto. 
A determinação do inchamento de determinada areia é de fundamental importância, visto 
que tende a acarretar grandes variações na massa unitária da mesma; fato que pode tornar 
errônea a dosagem dos concretos e argamassas. 
O inchamento depende da granulometria e do teor de umidade do agregado miúdo, sendo 
que as areias finas apresentam maior grau de inchamento devido à maior superfície específica. 
As areias ainda possuem outros índices de caracterização: umidade crítica e coeficiente 
médio de inchamento. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
36 
A umidade crítica é definida como o teor de umidade acima do qual o inchamento 
permanece praticamente constante. Este valor crítico é determinado conforme apresentado na 
Figura 3.7. 
O coeficiente médio de inchamento apresenta-se como a média dos coeficientes de 
inchamento nos pontos de umidade crítica e máxima. 
 
 
Figura 3.7 – Exemplo de gráfico de inchamento em relação ao teor de umidade e determinação 
das umidades crítica e máxima de areia. 
 
3.2.4 – GRANULOMETRIA 
 
A composição granulométrica ou granulometria de um agregado miúdo é a proporção 
relativa, expressa de forma percentual, dos diferentes tamanhos dos grãos que constituem uma 
determinada amostra. 
A norma brasileira NBR NM 248 – Agregados – Determinação da composição 
granulométrica – estabelece a metodologia de estudo da granulometria dos agregados. 
A NBR NM-ISSO 3310-1 e 3310-2 – Peneiras de ensaio – Requisitos, define um conjunto 
de peneiras sucessivas denominadas série normal e intermediária, com aberturas de malhas 
conforme a Tabela 3.2. 
 
 
 
1
1,1
1,2
1,3
1,4
0 1 2 3 4 5 6 7 8 9
in
ch
am
en
to
 (
%
)
umidade (%)
umidade crítica
umidade máxima
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
37 
Tabela 3.2 – Séries de peneiras, normal e intermediária (NBR NM 248). 
 Série Normal Série Intermediária 
 75 mm - 
 - 63 mm 
 - 50 mm 
 37,5 mm - 
 - 31,5 mm 
 - 25 mm 
 19 mm - 
 - 12,5 mm 
 9,5 mm - 
 - 6,3 mm 
 4,75 mm - 
 2,36 mm - 
 1,18 mm - 
 600 µm - 
 300 µm - 
 150 µm - 
 
A análise granulométrica é realizada conforme as seguintes etapas: 
 
- Coleta-se uma amostra de areia conforme as recomendações da NBR NM 26 – 
Agregados – Amostragem e, em laboratório, dividi-se o material em duas amostras, conforme a 
NBR NM 27 - Agregados – Redução da amostra de campo para ensaios de laboratório. No caso 
dos agregados miúdos, com dimensão máxima característica (DMC)
18
 (ou dos grãos) igual a 
4,75 mm a massa mínima é de 300 gramas; 
- As duas amostras de ensaio deverão ser secas em estufa e após, determinadas as massas 
m1 e m2; 
- As peneiras normatizadas, previamente limpas, deverão ser colocadas em ordem 
crescente de abertura da malha da base para o topo, conforme Figura 3.8; 
 
18
 A abertura da peneira que retém, de forma acumulada, um percentual igual ou imediatamente inferior a 5 
% da amostra ensaiada. 
Agregado 
graúdo 
Agregado 
miúdo 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
38 
- Colocar o material de massa m1 a ser ensaiado no conjunto e proceder a agitação, 
mecânica (Figura 3.8) ou manual; 
 
 
Figura 3.8 – Peneiras redondas normalizadas e mesa vibratória para determinação da 
composição granulométrica. 
 
- Proceder a verificação da quantidade de massa retida em cada uma das peneiras; 
- Repetir o peneiramento para a amostra de massa m2; 
- Calcular os percentuais médios, retidos e acumulados, em cada peneira, com 
aproximação de 1 %. 
A granulometria pode ser expressa pelo material que passa (passante) ou pelo material 
retido; podendo ser por peneira ou de forma acumulada. A Figura 3.9 apresenta um exemplo de 
curva granulométrica expressa em função da porcentagem que passa nas peneiras de forma 
acumulada. Estas curvas são representações gráficas das porcentagens retidas (ou passantes) 
acumuladas em cada peneira em relação à dimensão da abertura da malha. Convenciona-se 
representar a abertura das peneiras (abscissas) em escala logarítmica, enquanto que a 
percentagem de material (ordenadas) é expressa em escala normal. 
 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
39 
 
Figura 3.9 – Exemplo de curva granulométrica de areia em relação ao percentual passante. 
 
Outro conceito de fundamental importância na caracterização dos agregados miúdos é o 
módulo de finura, obtido através da razão da soma das porcentagens retidas acumuladas nas 
peneiras da série normal por 100. 
A norma NBR 7211 especifica os limites de distribuição granulométrica do agregado 
miúdo considerados, ótimo ou utilizável. A Tabela 3.3 apresenta estes valores. Uma areia é 
considerada bem graduada quando estiver contida entre os limites estabelecidos nesta tabela, 
expressos de forma gráfica na Figura 3.10. A Figura 3.11 apresenta as possibilidades de 
composição granulométrica: bem graduada (ideal para o concreto), descontínua ou uniforme. 
 
 
 
 
 
 
 
 
 
 
 
 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
40 
Tabela 3.3 – Limites de distribuição granulométrica do agregado miúdo (adaptado NBR 7211). 
Peneira 
Porcentagem, em massa, retida acumulada 
Limites inferiores Limites superiores 
Zona ótima Zona utilizável Zona ótima Zona utilizável 
9,5 mm 0 0 0 0 
6,3 mm 0 0 0 7 
4,75 mm 0 0 5 10 
2,36 mm 0 10 20 25 
1,18 mm 5 20 30 50 
600 µm 15 35 55 70 
300 µm 50 65 85 95 
150 µm 85 90 95 100 
Notas: 
O módulo de finura da zona ótima varia de 2,20 a 2,90; 
O módulo de finura da zona utilizável inferior varia de 1,55 a 2,20; 
O módulo de finura da zona utilizável superiorvaria de 2,90 a 3,50. 
 
 
Figura 3.10 – Representação gráfica dos limites de distribuição granulométrica do agregado 
miúdo. 
 
 
 
0
10
20
30
40
50
60
70
80
90
100
P
er
ce
n
tu
al
 r
et
id
o
 a
cu
m
u
la
d
o
 (
%
)
Peneiras
Zona utilizável
Zona ótima
Areia Fina
Areia Média
Areia Grossa
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
41 
 
Figura 3.11 – Tipos de composições granulométricas dos agregados (CABRAL, 2008). 
 
3.2.5 – SUBSTÂNCIAS NOCIVAS 
 
Existem determinados materiais encontrados nos agregados miúdos que prejudicam a 
qualidade dos concretos e argamassas produzidos com estes. Dentre as impurezas que, 
porventura, constituem amostras das areias, podem-se destacar os materiais pulverulentos, os 
torrões de argila e materiais friáveis
19
 e as impurezas orgânicas. 
Os materiais pulverulentos são classificados como o material fino que passa através da 
peneira de abertura de malha de 75 µm por meio de lavagem. A norma NBR NM 46 – 
Agregados – Determinação do material fino que passa através da peneira 75 µm, por lavagem – 
especifica as condições de ensaio para a determinação da quantidade de material fino relativa à 
massa do agregado. 
Os materiais finos presentes nas areias são constituídos de partículas de argila (< 0,002 
mm) e silte (0,002 a 0,06 mm). Normalmente as argilas apresentam-se na forma de torrões de 
argila, cuja determinação é realizada por meio de ensaios de peneiramento, através das 
especificações da NBR 7218 – Agregados – Determinação do teor de argila em torrões e 
materiais friáveis. 
A Tabela 3.4 apresenta os limites máximos admissíveis de impurezas nos agregados 
miúdos. 
Os finos formam uma película ao redor dos grãos de areia que, quando não se separam no 
momento da mistura prejudicam a qualidade da argamassa. A necessidade de aumento da água 
 
19
 Materiais friáveis são aqueles que podem ser quebrados ou reduzidos a pó com facilidade. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
42 
de amassamento – e conseqüente redução da resistência mecânica pelo aumento da relação a/c – 
também é relacionada ao teor de material pulverulento. 
Por outro lado, a argila contribui para o preenchimento dos vazios entre os grãos da areia, 
permitindo que o cimento envolva melhor as partículas do agregado, proporcionando uma 
ligação mais forte entre si. 
A lavagem da areia pode eliminar a existência de argilas e siltes. Porém, esta deve ser 
realizada de forma muito cuidadosa para que os grãos mais finos do agregado não sejam 
arrastados; fato que acarreta aumento no índice de vazios do material. 
 
Tabela 3.4 – Limites máximos aceitáveis de substâncias nocivas no agregado miúdo com 
relação à massa do material (adaptado NBR 7211). 
Determinação Método de ensaio 
Quantidade máxima relativa à 
massa do agregado miúdo (%) 
Torrões de argila 
e materiais 
friáveis 
NBR 7218 3,0 
Material 
pulverulento 
NBR NM 46 
Concreto submetido a 
desgaste superficial 
3,0 
Concretos protegidos de 
desgaste superficial 
5,0 
Impurezas 
orgânicas¹ 
NBR NM 49 
A solução obtida no ensaio deve 
ser mais clara do que a solução-
padrão 
NBR 7221 
Diferença máxima 
aceitável entre os 
resultados de resistência à 
compressão comparativos 
10 
¹Quando a coloração da solução obtida no ensaio for mais escura do que a solução-padrão, a utilização do 
agregado miúdo deve ser estabelecida pelo ensaio previsto na NBR 7221 
 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
43 
As impurezas orgânicas são outros elementos que reduzem a qualidade dos agregados 
miúdos. São normalmente formadas por partículas de húmus
20
 e exercem uma ação prejudicial 
sobre as reações de endurecimento das argamassas e concretos. 
A existência de impurezas orgânicas em teores prejudiciais é verificada através das 
especificações da NBR NM 49 – Agregado miúdo – Determinação de impurezas orgânicas. 
Trata-se de um ensaio com a utilização de soluções químicas misturadas à amostra do agregado e 
cuja tonalidade (cor) é posteriormente comparada com uma tabela de cores padrão. Quanto mais 
escura for a mistura, maior é a quantidade de impurezas da amostra. Este ensaio é realizado com 
um conjunto de aparelhos denominado colorímetro (Figura 3.12). 
 
 
Figura 3.12 – Conjunto colorímetro para determinação da existência de impurezas orgânicas 
nos agregados. 
 
Caso a mistura apresente uma cor de intensidade diferente do padrão, este agregado deve 
ser ensaiado conforme especificações da NBR 7221 – Agregados – Ensaio de qualidade de 
agregado miúdo. 
 
3.3 – AGREGADO GRAÚDO 
 
3.3.1 – MASSA ESPECÍFICA E ABSORÇÃO DE ÁGUA 
 
As definições de massa específica real e massa específica aparente foram apresentadas na 
seção 3.2.1 deste documento. As especificações para a determinação destas propriedades do 
agregado graúdo são feitas pela norma NBR NM 53 – Agregado graúdo – Determinação de 
massa específica, massa específica aparente e absorção de água. 
 
20
 Húmus é a matéria orgânica depositada no solo, resultante da decomposição de vegetais e animais. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
44 
A absorção de água dos agregados graúdos é determinada por esta mesma norma, através 
da equação (3.8) 
𝐴 % =
𝑚𝑠 − 𝑚
𝑚
 𝑥 100 (3.8) 
Onde: 
A é a absorção de água (%); 
ms é a massa ao ar da amostra na condição saturada superfície seca (g); 
m é a massa ao ar da amostra seca (g). 
 
3.3.2 – GRANULOMETRIA 
 
A composição granulométrica do agregado graúdo, à exemplo do que ocorre no agregados 
miúdo, é determinada conforme especificações da NBR NM 248 – Agregados – Determinação 
da composição granulométrica. A NBR 7211 estabelece os limites da granulometria do agregado 
graúdo para cada uma das zonas granulométricas
21
, conforme a Tabela 3.5. 
 
Tabela 3.5 – Limite da composição granulométrica do agregado graúdo (adaptado NBR 7211). 
Peneiras com 
abertura de malha 
[mm] 
Percentagem, em massa, retida acumulada 
Zona granulométrica d 
4,75 / 12,5 9,5 / 25 19 / 31,5 25 / 50 37,5 / 75 
75 - - - - 0 – 5 
63 - - - - 5 – 30 
50 - - - 0 – 5 75 – 100 
37,5 - - - 5 – 30 90 – 100 
31,5 - - 0 – 5 75 – 100 95 – 100 
25 - 0 – 5 5 – 25 87 – 100 - 
19 - 2 – 15 65 - 95 95 – 100 - 
12,5 0 - 5 40 - 65 92 - 100 - - 
9,5 2 – 15 80 – 100 95 – 100 - - 
6,3 40 – 65 92 – 100 - - - 
4,75 80 – 100 95 – 100 - - - 
2,36 95 - 100 - - - - 
 
21
 Zonas granulométricas correspondem à menor e à maior dimensão do agregado graúdo. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
45 
A Tabela 3.6 e a Figura 3.13 apresentam um exemplo de determinação da composição 
granulométrica de uma brita classificada comercialmente como Brita 01, extraída da região de 
Capão do Leão – RS e amplamente utilizada nas obras portuárias da regiãode Rio Grande – RS. 
A Tabela 3.6 apresenta os percentuais de material retidos nas peneiras das séries, normal e 
intermediária, conforme especificações da NBR NM 248. A Figura 3.12 mostra a representação 
gráfica da curva granulométrica, com a zona granulométrica na qual a amostra está inserida. 
 
Tabela 3.6 – Exemplo de determinação da composição granulométrica. 
Peneiras 
(mm) 
Média retida 
(%) 
Média retida 
acumulada 
(%) 
Módulo de 
Finura 
Dimensão máxima 
característica 
(mm) 
75* 0 0 
6,89 19,0 
63 0 0 
50 0 0 
37,5* 0 0 
31,5 0 0 
25 0 0 
19* 4 4 
12,5 59 63 
9,5* 22 85 
6,3 14 99 
4,75* 1 100 
2,36* 0 100 
1,18* 0 100 
0,6* 0 100 
0,3* 0 100 
0,15* 0 100 
Resíduo 0 100 
Totais 100 - 
Soma para o cálculo do módulo de finura 689 
* Conjunto de peneiras da série normal 
 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
46 
 
Figura 3.13 – Exemplo de composição granulométrica e zona de classificação. 
 
Comercialmente, os agregados graúdos são nomeados como brita 0, 1, 2, e assim por 
diante. Esta denominação permite uma maior facilidade de diferenciação entre os mesmos por 
parte dos usuários. Como exemplo, as britas 0, 1 e 2 apresentam dimensão máxima característica 
igual a 9,5; 19,0 e 25,0 mm, respectivamente. 
 
 
(a) 
 
(b) 
 
(c) 
Figura 3.14 – Classificação comercial de agregados graúdos: brita 0 (a); brita 1 (b) e brita 2 (c). 
 
3.3.3 – FORMA DOS GRÃOS 
 
O formato dos grãos que compõem determinado lote de agregado influencia de forma 
bastante acentuada nas propriedades do concreto, sobretudo na trabalhabilidade
22
. 
Para o estudo das formas dos grãos de um agregado graúdo convenciona-se: 
 
22
 Termo classificado pela maioria dos pesquisadores como a facilidade com que o concreto flui sem perda de 
homogeneidade por segregações. 
0
10
20
30
40
50
60
70
80
90
100
75 63 50 37,5 31,5 25 19 12,5 9,5 6,3 4,75 2,36
P
er
ce
n
tu
al
 r
et
id
o
 a
cu
m
u
la
d
o
 [
%
]
Peneiras
Limites Especificados (NBR 7211)
Dados Amostrais
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
47 
- comprimento de um grão (c): maior dimensão possível de ser medida em qualquer 
direção do grão; 
- espessura de um grão (e): menor distância possível entre planos paralelos entre si em 
qualquer direção do grão; 
- índice de forma do agregado: média da relação entre o comprimento e a espessura dos 
grãos do agregado, ponderada pela quantidade de grãos de cada fração granulométrica o compõe. 
 A determinação do índice de forma dos agregados é determinada segundo a norma 
brasileira NBR 7809 – Agregado graúdo – Determinação do índice de forma pelo método do 
paquímetro – Método de ensaio. Este documento especifica a realização de ensaio de 
granulometria com as peneiras das séries, normal e intermediária. Cada fração obtida na análise 
granulométrica deve ser quarteada segundo a NBR NM 27 – Agregados – Redução da amostra 
de campo para ensaios em laboratório – até a obtenção de um número de grãos obtidos através da 
equação (3.9): 
𝑁𝑖 =
200
 𝐹𝑖
𝑛
𝑖=1
 (3.9) 
Onde: 
200 é o número de grãos necessários para a realização do ensaio; 
Ni é o número de grãos a serem medidos na fração i; 
Fi é a porcentagem de massa retida individual da fração i. 
 
O número de grãos determinado pela equação (3.9) deve ser medido com auxílio de um 
paquímetro. O índice de forma de cada uma das frações ensaiadas é determinado pela média 
ponderada – de acordo com o resultado da equação (3.9) – das relações entre o comprimento e a 
espessura (c/e) de todos os grãos medidos. 
Por experiência, pode se dizer que a forma do grão que melhor se adapta à produção do 
concreto é a forma cúbica, quando se trata de britas e, esférica, quando se refere a seixos. O 
formato lamelar
23
 tende a provocar problemas, tais como, segregações devidas às armaduras, 
bolhas por aprisionamento de ar e menor resistência sob cargas em algumas direções. 
 
3.3.4 – SUBSTÂNCIAS NOCIVAS 
 
 
23
 Sólido de espacial no qual uma das dimensões apresenta maior ordem de grandeza em relação às demais. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
48 
Os agregados não devem conter substâncias nocivas ou impurezas que prejudiquem as 
reações químicas dos aglomerantes e a qualidade dos concretos. Os torrões de argila presentes 
nos agregados geralmente são encontrados em agregados naturais de mineração. São prejudiciais 
à qualidade do material visto que apresentam resistência mecânica reduzida, absorvem água 
demasiadamente e originam vazios com sua desagregação. 
Os limites máximos aceitáveis são expostos na Tabela 3.7 para cada condição de utilização. 
Um dos prejuízos causados pelos materiais pulverulentos é a perda de aderência do 
agregado, causada pelo recobrimento feito por estes aos grãos. Como estes materiais 
pulverulentos apresentam grande área específica, exigem uma maior quantidade de água de 
amassamento; fato que acarreta elevação da relação água/cimento e conseqüente redução da 
resistência mecânica do concreto 
 
Tabela 3.7 – Limites máximos aceitáveis de substâncias nocivas no agregado graúdo com 
relação à massa do material (adaptado NBR 7211). 
Determinação Método de ensaio 
Quantidade máxima relativa à 
massa do agregado graúdo [%] 
Torrões de 
argila e 
materiais 
friáveis 
NBR 7218 
Concreto aparente 1,0 
Concreto sujeito a 
desgaste superficial 2,0 
Outros concretos 
Material 
pulverulento
1 
NBR NM 46 1,0 
1
Para agregados produzidos a partir de rochas com absorção de água inferior a 1 %, determinados conforme a 
ABNT NBR NM 53, o limite de material fino pode ser alterado de 1 para 2 % 
 
3.3.5 – RESISTÊNCIA AO DESGASTE POR ABRASÃO 
 
A determinação do índice de desgaste por abrasão dos agregados possui grande 
importância na qualificação de determinado lote deste material. Este ensaio é especificado 
segundo a norma NBR NM 51 – Agregado graúdo – Ensaio de abrasão “Los Angeles”, 
apresentando os requisitos de equipamentos para a análise que prevê o comportamento do 
agregado quando submetido à abrasão; como por exemplo, a proporcionada pelo tráfego de 
veículos pesados em pisos ou pavimentos de concreto. 
IFRS – Materiais Componentes do Concreto – Especificações e ensaios 
http://academico.riogrande.ifrs.edu.br/~fabio.magalhaes 
 
49 
 
Figura 3.14 – Máquina para ensaio de agregados por abrasão “Los Angeles”. 
 
O ensaio consiste basicamente em adicionar uma amostra de agregado juntamente com um 
material abrasivo
24
 em um tambor que propicie o tombamento dos materiais à medida que este 
gira e uma velocidade entre 30 e 33 rpm. Após, deve-se retirar o material do tambor e peneirá-lo 
na peneira com abertura de malha de 1,70 mm. A parcela de material retida na peneira deve ser 
seca em estufa e ter sua massa verificada. O percentual de perda por abrasão é dada pela equação 
(3.10): 
𝑃 =
𝑚 − 𝑚1
𝑚
 𝑥 100 (3.10) 
Onde: 
m é a massa da amostra seca antes do início do ensaio (g); 
m1 é a massa do material retido na peneira com abertura

Outros materiais