Buscar

SISTEMAS RESPIRATÓRIO E CARDIOVASCULAR

Esta é uma pré-visualização de arquivo. Entre para ver o arquivo original

*
SISTEMAS RESPIRATÓRIO E CARDIOVASCULAR
*
*
FISIOLOGIA RESPIRATÓRIA
A função primária do sistema respiratório (SR) é o transporte de O2 e CO2 entre o ambiente e os tecidos.
Apesar das necessidades das trocas gasosas variarem com o metabolismo e poderem aumentar até 40 vezes durante o exercício, elas são conseguidas c/ um gasto de energia pequeno. 
*
Quando os animais apresentam doença respiratória, o custo de energia da respiração aumenta de forma que, há menos energia disponível para o exercício ou ganho de peso. 
Nota-se um desempenho insuficiente do animal (percebido pelo proprietário).
*
O Sistema Respiratório é importante para:
 termorregulação, 
no metabolismo de substâncias e 
na proteção do animal contra poeiras, gases e agentes infecciosos.
*
O processo envolvido na troca gasosa inclui: 
ventilação, 
distribuição do gás dentro do pulmão, 
difusão na membrana alveolocapilar, 
transporte do O2 no sangue e dos pulmões para os capilares teciduais e 
transporte de CO2 na direção inversa. 
*
O consumo de O2 e a produção de CO2 variam c/ a taxa metabólica. Quando os animais se exercitam, o consumo de O2 aumenta até o máximo conhecido como V O2 máximo.
O consumo máx. de O2 no equino é 3 vezes maior do que o de uma vaca de mesmo peso corpóreo.
Cães possuem consumo máx. de O2 mais elevado do que cabras de mesmo tamanho – espécies mais aeróbicas. 
Cão e equino apresentam densidade mitocondrial do músculo esquelético maior do que nas espécies menos aeróbicas.
*
Ventilação pulmonar – é o movimento do gás p/ dentro e fora dos alvéolos, através do espaço morto anatômico (EMA)
O volume de ar inspirado por minuto: ventilação minuto (VE): é determinado pelo volume de cada respiração, volume corrente (VC) e pelo nº. de respirações / min – frequência respiratória (f).
*
Ar flui p/ os alvéolos pelas narinas, cavidade nasal, faringe, laringe, traqueia, brônquios e bronquíolos, estruturas que compreendem as vias respiratórias.
Como as trocas não ocorrem nessas vias, elas são chamadas de espaço morto anatômico. 
A ventilação alveolar é regulada por mecanismos de controle para igualar a captação de O2 e a eliminação de CO2 necessárias p/ o metabolismo.
 
*
Ventilação no espaço morto também pode ocorrer dentro dos alvéolos. 
Esse espaço morto alveolar é o resultado de alvéolos pouco perfundidos pelo sangue, onde a troca gasosa pode não ocorrer. 
*
Espaço morto fisiológico é a expressão usada para descrever a soma do espaço morto anatômico e alveolar.
A ventilação necessita de energia muscular
Durante a inalação, a energia fornecida pelos músculos faz com que o ar entre nos pulmões.
Na exalação, muito da energia que promove a saída do ar dos pulmões é fornecida pela força elástica do pulmão e tórax distendidos. 
*
Em animais de repouso, a inalação é um processo ativo, enquanto que a exalação é um processo passivo.
Durante o exercício ou na presença de doença respiratória, a exalação pode ser auxiliada pela contração muscular.
Diafragma - músculo respiratório primário. 
Durante a contração, é puxado caudalmente e, por isso, alarga a cavidade torácica. 
*
Os músculos intercostais externos que se juntam às costelas, também estão ativos durante a inalação, de forma que a contração move as costelas p/ fora.
No exercício, a atividade dos músculos respiratórios aumenta. Para suprir o substrato metabólico, o fluxo sanguíneo p/ o diafragma aumenta.
Em animais de curso durante o galope e corrida, a ventilação é auxiliada pela sincronização da marcha e respiração.
*
A inspiração ocorre a medida que os membros anteriores são estendidos e os posteriores aceleram o animal para frente. 
A expiração ocorre quando os membros anteriores estão em contato com o solo. 
*
Os músculos respiratórios geram trabalho para dilatar os pulmões e vencer a resistência à fricção para o ar fluir
Ao final da exalação corrente, um volume de ar permanece no pulmão. É denominado capacidade residual funcional. Animais em repouso respiram lentamente, c/ isso, a velocidade de fluxo é baixa.
Quando a taxa respiratória aumenta (exercício), a velocidade do fluxo aumenta, e mais energia é usada p/ gerar fluxo contra a resistência à fricção nas vias respiratórias.
*
A elasticidade pulmonar é devida ao tecido e às forças de tensão superficial
Quando o tórax é aberto e a pressão pleural se torna atmosférica, o pulmão se colaba para seu volume mínimo (pouco ar dentro dos alvéolos). 
*
O pulmão só está livre de ar no feto e poucos segundos após o nascimento, até que aconteça a primeira respiração.
As fibras de elastina formam uma rede ao redor dos alvéolos e vias respiratórias. Na insuflação do pulmão, as fibras se alongam.
A estabilidade dos alvéolos depende da presença de um surfactante pulmonar que reduz a tensão superficial do revestimento alveolar. 
*
A composição desse surfactante é uma mistura de lipídeos e proteínas. 
O surfactante é produzido pelas células alveolares tipo II. Ele é liberado nos espaços alveolares no fim da gestação. 
O nascimento prematuro pode ser seguido por dificuldade respiratória, por causa de surfactante inadequado (sem maturação). 
*
O fluxo de ar é contraposto pela resistência à fricção nas vias respiratórias.
Durante a ventilação, o ar flui pelos tubos das vias respiratórias superiores e árvore traqueobrônquica. 
Ao fluxo, se opõe a resistência à fricção entre as moléculas de ar e as paredes das passagens aéreas, e em menor grau, a resistência viscosa tecidual. 
*
No animal em repouso, a cavidade nasal, faringe e laringe, que aquecem e umidificam o ar, fornecem à respiração 50% da resistência à fricção. 
A resistência nasal pode ser diminuída durante o exercício dilatando as narinas. 
*
Quando a velocidade do fluxo de ar aumenta durante o exercício, ou quando a cavidade nasal está obstruída, os animais respiram pela boca, ultrapassando a alta resistência da cavidade nasal.
A árvore traqueobrônquica possui até 24 ramos recobertos por epitélio secretor ciliado. As grandes vias respiratórias, traqueia e brônquios, são mantidas por cartilagens.
Com exceção da traqueia e início dos brônquios, todas as grandes vias respiratórias são intrapulmonares. 
*
*
Pulmão possui seis lobos, cada um deles garantido por 1 brônquio lobar, que dá origem aos brônquios derivados. 
Em cada divisão dos brônquios, uma via respiratória derivada é mais estreita que sua origem. 
 
*
Consequentemente, a velocidade do fluxo de ar diminui progressivamente da traqueia em direção aos bronquíolos.
Em alta velocidade, o fluxo de ar turbulento na traqueia e nos brônquios produz sons pulmonares audíveis com um estetoscópio.
Vias respiratórias com mais de 5 mm de diâmetro contribuem com até 80% da resistência aérea, os bronquíolos com os restantes 20%. 
*
A resistência é determinada pelo raio e pelo comprimento das vias respiratórias. Elas se dilatam a medida que o pulmão infla.
Um fator que afeta o diâmetro da árvore traqueo-brônquica é a contração da musculatura lisa. 
Há musculatura lisa nas paredes das vias respiratórias a partir da traqueia para os ductos alveolares. Na traqueia, ela forma o músculo traqueal, que liga as terminações das cartilagens. 
*
Nos brônquios, o músculo liso liga as placas cartilaginosas e, nos bronquíolos, circunda as vias respiratórias. 
Ele regula o diâmetro da via respiratória.
*
A inervação parassimpática do músculo é feita pelo nervo vago, cujo estímulo estreita todas as vias respiratórias.
Quando materiais irritantes, como poeira, são inalados os receptores traqueobrônquicos são estimulados, resultando no reflexo de broncoconstrição.
O músculo liso da via respiratória também se contrai em resposta a muitos mediadores inflamatórios, particularmente a histamina. 
*
A distribuição do ar depende das propriedades mecânicas do pulmão e das mudanças da pressão pleural.
A troca ótima de gás requer a chegada de sangue e de ar juntos nos alvéolos, isto é, o equilíbrio da ventilação e do fluxo sanguíneo.
*
O ideal é que cada região do pulmão receba quantidades iguais de ventilação, mas isso nunca ocorre nos animais.
Doenças como pneumonias intersticiais levam a diminuição da complacência. 
Contração da musculatura lisa, leva ao estreitamento da via respiratória. 
*
O enchimento de ar nessas regiões ocorre mais lentamente devido a obstrução da via. 
A região com pneumonia por causa de sua complacência diminuída, atinge um volume menor.
*
A distribuição da ventilação dentro do pulmão é 
afetada por:
Complacência pulmonar
Resistência da via respiratória
Frequência da respiração
Pequenos graus de obstrução da via respiratória que talvez nem causem sinais de dificuldade respiratória no animal em repouso podem resultar em distribuição desigual da ventilação e hipoxemia (insuficiência de oxigênio no sangue) quando o animal se exercita. 
*
*
Hipoxemia
Frequentemente se observa hipoxemia arterial (Pa02<60 mmHg) durante a recuperação anestésica.
PaO2: Pressão parcial de oxigênio no sangue. 
Por outro lado, durante a manutenção da anestesia, apesar da ocorrência de depressão respiratória (hipoventilação), a Pa02 geralmente está elevada devido ao fato de o animal estar inalando oxigênio puro.
*
Hipoxemia
Quando o animal é desconectado do aparelho de anestesia, passa a inspirar aproximadamente 21% de 02 (ar ambiente). 
A diminuição abrupta da concentração de oxigênio inspirado, associada à persistência dos desequilíbrios na relação ventilação/perfusão provocada pela anestesia e o decúbito levam o animal a desenvolver hipoxemia na recuperação.
*
Hipoxemia
Em casos graves, concomitantemente à suplementação de 02 se possível, deve-se posicionar o animal em decúbito external, atenuando, assim, o efeito prejudicial do decúbito nas trocas gasosas pulmonares (TRIM, 1990).
*
A ventilação colateral tende manter a distribuição uniforme da ventilação
Ventilação colateral é o movimento de ar entre as regiões adjacentes do pulmão. 
Movimento colateral ocorre por meio de bronquíolos respiratórios anastomosantes no cão (pequeno grau em equinos e ausentes em bovinos e suínos).
Essas diferenças indicam que, obstruções das vias são mais sérias em bovinos do que em cães. 
*
FLUXO SANGUÍNEO PULMONAR
O pulmão recebe fluxo sanguíneo proveniente de duas circulações:
Circulação pulmonar – recebe o débito total do ventrículo direito, perfunde os capilares alveolares e participa da troca gasosa.
Circulação brônquica – fornece fluxo sanguíneo nutritivo p/ vias e estruturas dentro do pulmão. 
*
Circulação pulmonar
Difere da circulação sistêmica, pois todo o sangue 
passa através de somente um órgão – o pulmão. 
Quando o débito cardíaco aumenta, durante o 
exercício, a circulação pulmonar deve ser capaz 
de acomodar essa elevação no fluxo sanguíneo.
Além disso, deve haver mecanismos de controle p/ 
regular a distribuição do sangue dentro do pulmão. 
*
*
A regulação do fluxo sanguíneo depende da 
musculatura lisa das artérias pulmonares.
Os ramos terminais das artérias pulmonares, as 
arteríolas pulmonares, consistem de endotélio e 
desembocam nos capilares pulmonares. 
*
De maneira que vasos podem ser recrutados c/ o 
aumento no fluxo sanguíneo pulmonar (exercício). 
As veias pulmonares conduzem o sangue dos 
capilares até o átrio esquerdo.
Funcionalmente, vasos sanguíneos pulmonares são classificados em alveolares e extra-alveolares.
Os vasos alveolares são capilares que perfundem o septo alveolar. 
Extra-alveolares (arteríolas, vênulas) são circundados por tecido conjuntivo frouxo.
*
A circulação pulmonar oferece baixa resistência ao fluxo
Apesar de ser baixa no animal em repouso, ela cai 
ainda mais quando se aumenta o fluxo sanguíneo 
pulmonar. 
*
Causas:
Recrutamento de vasos não perfundidos.
Distensão de outros vasos.
Esses 02 fatores provocam a queda da resistência.
A hipóxia alveolar é um potente constritor das pequenas artérias pulmonares
Hipóxia alveolar ocorre em alvéolos pouco ventilados 
e a vasoconstrição hipóxica é um mecanismo para 
redistribuir o sangue para as áreas mais ventiladas. 
*
Bovinos em pastoreio em altitudes elevadas, a 
hipóxia das altitudes causa uma vasoconstrição 
hipóxica pulmonar generalizada.
Isso leva a aumento na pressão arterial pulmonar, 
elevando o trabalho do ventrículo direito.
*
Sob condições de atelectasia, quando não há 
ventilação em uma área colabada do pulmão, o 
fluxo sanguíneo local é muito reduzido por uma 
combinação do fechamento de vasos com o 
colabamento e da vasoconstrição devido a hipóxia. 
ATELECTASIA: falta de expansão dos alvéolos de uma parte do pulmão ou do pulmão inteiro devida a uma ausência de ventilação consecutiva à obstrução total ou parcial de um brônquio.
*
Circulação Brônquica
Sua função é fornecer fluxo nutritivo para as vias 
respiratórias, vasos e pleura visceral. 
 
Ela recebe aproximadamente 2% do débito do VE.
Embora a circulação brônquica forneça fluxo 
sanguíneo p/ as estruturas pulmonares, os pulmões 
não falecem se essa circulação for obstruída.
Extensas anastomoses entre os vasos brônquicos e 
pulmonares provêm fluxo sanguíneo p/ os brônquios. 
*
De forma semelhante, quando a circulação pulmonar é obstruída, a circulação brônquica mantêm o fluxo p/ o pulmão. Isso também ocorre nas pneumonias.
*
TROCAS GASOSAS
Composição de gás alveolar é determinada pela renovação de gás fresco e pela troca de O2 pelo CO2
No alvéolo, a pressão de O2 é menor do que no ar 
inspirado, porque a troca entre O2 e CO2 ocorre 
continuamente.
A tensão de O2 alveolar aumenta durante a 
inspiração e diminui durante a expiração.
*
Só há uma quantidade desprezível de CO2 no ar 
inspirado. Com isso, a tensão de CO2 alveolar é 
determinada pela produção de CO2.
Se a pressão de CO2 aumentar (exercício), a de 
O2 diminuirá e vice-versa.
A hipoventilação alveolar eleva a pressão de CO2 
e diminui a de O2. Isso ocorre quando (causas):
SNC está deprimido
Obstrução das vias respiratórias
Lesão dos músculos respiratórios 
*
Doença pulmonar grave
Na hiperventilação alveolar, a pressão de CO2 
diminui devido ao aumento da ventilação. Com isso, 
a pressão de O2 aumenta. 
A troca de O2 e CO2 entre os alvéolos e capilares sanguíneos pulmonares ocorre por difusão
Difusão - movimento de gases no sentido 
descendente de um gradiente de concentração. 
Ocorre passivamente – não requer energia. 
*
Velocidade de movimento de gás entre os alvéolos e o sangue é determinada por:
Propriedades físicas do gás
Área superficial disponível para difusão
Espessura da barreira ar-sangue
*
A área superficial alveolar disponível p/ a difusão é 
aquela ocupada pelos capilares pulmonares 
perfundidos.
Por causa do recrutamento capilar, a 
área aumenta durante o exercício. 
O equino possui área 
superficial alveolar maior
que a do bovino – isso 
fornece um volume de 
O2 (VO2) maior para o
equino. 
*
A difusão move os gases dentro do plasma, de 
forma que o O2 acaba por entrar em contato c/ o 
eritrócito e a hemoglobina.
*
Além disso, a velocidade do fluxo sanguíneo pelos 
capilares é rápida. Tendo em vista que mais O2 
deve ser transferido em menor tempo, pode não 
ocorrer o equilíbrio de difusão e a tensão de O2 
pode diminuir.
Por causa de sua maior solubilidade, o CO2 é 20 
vezes mais difusível que o O2. Portanto, a 
transferência do CO2 é conseguida com menor 
gradiente de pressão.
*
A troca de gases entre os tecidos e o sangue também ocorre por difusão
O sangue arterial adentra os capilares teciduais c/ 
pressão de O2 de 85 - 100 torr e de CO2 de 40 torr.
A medida que passa pelos capilares, ele é exposto 
aos tecidos que estão consumindo O2 e produzindo 
CO2.
Portanto, o O2 e CO2 se difundem entre o sangue e 
os tecidos até que as pressões sejam iguais. 
*
Tecidos com alta demanda de O2 possuem mais 
capilares por grama de tecido, o que confere uma 
superfície maior de difusão e possuem a distância 
entre o tecido e o capilar menor que nos tecidos 
menos vascularizados.
A quantidade de ventilação alveolar c/ relação ao fluxo sanguíneo capilar, determina as trocas gasosas
Nos espaços aéreos pulmonares, a troca gasosa é 
feita pela estreita aproximação entre ar e o sangue. 
*
Áreas com reduzida ventilação, mas com fluxo 
sanguíneo, o conteúdo de O2 do sangue que sai 
dessa unidade é baixo, e o de CO2 é alto.
Isso ocorre em doença pulmonar onde há obstrução 
de via respiratória ou por fibrose.
Há casos em que o sangue passa pelos alvéolos e 
não recebe ventilação. Isso pode ocorrer na 
pneumonia aguda, onde os alvéolos estão repletos 
de exsudatos inflamatórios. 
*
Outra situação é quando o alvéolo recebe ventilação 
mas não o fluxo sanguíneo. Com isso não ocorre 
troca gasosa. Causa: obstrução vascular (trombo). 
Parte do volume de ar respirado fica retido no espaço morto anatômico – não participa das trocas
*
Esse gás é respiração residual. Além disso, parte 
do gás não perfundido é também ventilação residual.
A ventilação residual total (alveolar + espaço morto 
anatômico) é conhecida – espaço morto fisiológico.
Anormalidades na difusão perturbam a transferência 
de O2 do alvéolo p/ o sangue arterial. 
Exercício extenuante pode-se acompanhar por 
hipoxemia, porque o fluxo sanguíneo pelo pulmão é 
muito rápido para ocorrer o equilíbrio de difusão. 
*
TRANSPORTE DE GASES NO SANGUE
O O2 é transportado em solução no plasma, mas principalmente em combinação c/ a hemoglobina
Quando o sangue flui pelos capilares pulmonares 
e passa pelos alvéolos, o O2 se difunde a partir 
dos alvéolos p/ o sangue.
Parte do O2 se dissolve no plasma, mas a 
hemoglobina é necessária p/ liberar O2 p/ os tecidos. 
*
Uma molécula de hemoglobina pode combinar-se 
de forma reversível com 04 moléculas de O2.
*
A anemia, uma redução no número de eritrócitos 
circulantes (c/ consequente redução na quantidade 
de hemoglobina (Hb) no sangue), diminui a 
capacidade de O2.
Quando o conteúdo de hemoglobina do sangue aumenta, a capacidade de O2 também aumenta.
Isso ocorre em mamíferos (equinos) durante o 
exercício. Contração do baço força mais eritrócitos 
p/ a circulação e aumenta a capacidade de O2. 
*
O sangue perde parte de seu O2 p/ os tecidos. Em 
tecidos que metabolizam rapidamente, mais O2 é 
descarregado do sangue.
O2 que permanece em combinação c/ a Hb forma 
uma reserva que pode ser usada em situações de 
emergência. 
Percentagem de saturação da Hb
Relação entre conteúdo de O2 e capacidade de O2
*
A Hb está acima de 95% saturada de O2 quando 
deixa os pulmões.
A medida que a Hb fica depletada de O2, sua cor 
muda de vermelho brilhante para azulada. 
*
É conhecido como cianose, e pode ser observada 
nas mucosas de animais quando o sangue dos 
capilares fica hipóxico.
Pode ser devida a transferência prejudicada de O2 
do alvéolo para o sangue, mas também devido ao 
fluxo sanguíneo reduzido p/ os tecidos periféricos.
Esse fluxo reduzido pode ocorrer quando os 
animais tem insuficiência cardiovascular ou estão 
muito frios. 
*
O monóxido de carbono, que se liga aos mesmos locais na Hb que o O2, tem 200 vezes mais afinidade pela Hb que o O2.
Exposição ao CO2 pode saturar a Hb e deslocar o O2 
*
Caso clínico 6
*
*
*
*
*
*
QUAIS SÃO OS POSSIVEIS DIAGNÓSTICOS E POR QUE? 
*
*
*
*
*
A inflamação do complexo traqueobrônquico acompanhada de obstrução é uma ocorrência comum nos equinos, especialmente os mantidos em cocheiras por longos períodos com dieta à base de feno. 
Na literatura, há relatos de sua ocorrência em asininos. Essa síndrome de inflamação e obstrução tem recebido diferentes nomenclaturas: bronquite crônica, bronquiolite crônica, doença das pequenas vias áreas, obstrução recorrente das vias áreas (RAO), porém é conhecida mundialmente como doença pulmonar obstrutiva crônica (DPOC).
*
Após constantes esforços de pesquisadores, determinou-se a nomenclatura correta para as doenças inflamatórias das vias aéreas dos equinos. 
Atualmente pode-se fazer a distinção entre a síndrome dos equinos jovens (animais com até cinco anos de idade), de caráter reversível, chamada doença inflamatória das vias aéreas (IAD) e a obstrução crônica das vias áreas, de caráter irreversível, nos equinos adultos (animais com idade superior a oito anos) chamada de asma.
*
Essas alterações podem ser sazonais e mais intensas quando os equinos são mantidos em cocheiras e expostos a feno de qualidade ruim e com muita poeira, esporos fúngicos, vapor de amônia e outros estímulos não específicos. 
O estabulamento de equinos afetados pode levar ao agravamento do quadro clínico em menos de três dias, manifestado principalmente pelo inicio abrupto de episódios frequentes de tosse.
*
Os riscos e danos nas intoxicações por paraquat em animais domésticos
O paraquat é um herbicida de contato não-seletivo. 
É amplamente utilizado na agricultura em mais de 100 países, pois apresenta baixo custo, grande eficácia e não possui efeitos poluentes cumulativos para o solo. 
Porém, ele é um produto muito tóxico para humanos e animais, podendo causar intoxicações fatais, principalmente pela falta de um antídoto eficaz na reversão do quadro clínico. 
O paraquat atua mediante mecanismos de indução do estresse oxidativo, produção aumentada de radicais livres associada à depleção dos sistemas antioxidantes do organismo. 
Sua toxicidade acomete rins, fígado, músculos, cérebro, dentre outros. Os pulmões são considerados os órgãos-alvo deste herbicida, levando a severas injúrias como edema, hemorragia, inflamação intersticial e fibrose pulmonar.
*
Os riscos e danos nas intoxicações por paraquat em animais domésticos
A falência respiratória grave é a causa comum de morte. 
O tratamento da intoxicação, atualmente, é baseado em medidas que diminuam a absorção e aumentem a excreção. 
Entretanto, o uso de agentes antioxidantes e antifibróticos vem sendo estudado, pois há interesse crescente no estudo de substâncias que possam servir como antídoto nas intoxicações, uma vez que o paraquat aumenta os índices de morbidade e mortalidade.
*
FIBROSE PULMONAR MULTINODULAR EM UM EQUINO NO SUL DO BRASIL
Uma égua Puro Sangue de Corrida com 7
anos de idade, pertencente a um haras do estado do Rio Grande do Sul, morreu e foi necropsiada após apresentar emagrecimento e sinais clínicos respiratórios. 
O animal morreu após apresentar um quadro de severa falência respiratória, sem secreção nasal e com tosse ocasional. A dificuldade respiratória resultou em severa anóxia. 
Na auscultação percebia-se que a entrada de ar no parênquima pulmonar estava severamente diminuída. Nas duas últimas semanas de vida o animal perdeu cerca de 100 kg de peso corporal. A temperatura corporal se mantinha normal na maior parte do dia, mas apresentava picos de febre entre à tardinha e as primeiras horas da noite. 
*
FIBROSE PULMONAR MULTINODULAR EM UM EQUINO NO SUL DO BRASIL
As principais alterações hematológicas incluíam leve neutrofilia (10.648 neutrófilos/mm3; normal 2.260-8.580/mm3) com desvio à esquerda (605 bastonetes/mm3; normal 0-100/mm3), linfopenia (726 linfócitos/mm3; normal 1.500-7.700/ mm3) e hiperfibrinogenemia (1.600 mg/dL; normal 100-400 mg/dL).
O tratamento a base de antibióticos e anti-inflamatórios esteroidais e não esteroidais não resultou em qualquer melhora.
Na necropsia havia extrema caquexia. O pulmão não colapsou e tinha a superfície pleural irregular. Distribuídos por todos os lobos havia numerosos nódulos brancos ou beges, multifocais a coalescentes, com tamanhos variando de 2 a 8 cm de diâmetro. 
*
FIBROSE PULMONAR MULTINODULAR EM UM EQUINO NO SUL DO BRASIL
Ao corte os nódulos eram firmes, pouco delimitados e não encapsulados. Separando os nódulos entre si havia escasso tecido pulmonar normal remanescente. 
Histologicamente, as lesões pulmonares consistiam de nódulos formados por marcada expansão intersticial de colágeno maduro e bem organizado, que substituía o parênquima pulmonar normal. No interstício havia moderado infiltrado inflamatório misto, constituído por linfócitos, plasmócitos, macrófagos espumosos e neutrófilos. 
Alguns macrófagos do interior dos espaços alveolares continham inclusão intranuclear, oval, que deslocava a cromatina para a periferia. 
As inclusões eram compatíveis com inclusões virais de herpesvírus. Isso foi confirmado pela detecção de DNA do EHV-5 por PCR. 
*
FIBROSE PULMONAR MULTINODULAR EM UM EQUINO NO SUL DO BRASIL
Fibrose pulmonar multinodular equina (EMPF) é uma doença pulmonar crônica, caracterizada por proliferação de tecido fibroso no interstício do parênquima pulmonar. 
Foi descrita pela primeira vez nos Estados Unidos e recentemente relatada na Europa. 
Sua etiologia está associada à infecção por herpesvírus equino tipo 5 (EHV-5) e afeta equinos entre 4-26 anos (média de 14 anos) de idade. 
Os principais sinais clínicos observados são apatia, perda de peso, dificuldade respiratória e febre. 
*
*
Níveis baixos de CO devem ser respirados por um 
tempo, a fim de liberar CO suficiente para saturar 
toda a Hb sanguínea.
Dessa forma, a toxicidade não é imediata. O CO 
reduz o conteúdo de O2 do sangue.
Ocorre metemoglobinemia em intoxicações por nitrito 
Quando o ferro da Hb é oxidado por nitritos, forma- 
se a metemoglobinemia de cor marrom. 
*
Ela não se liga ao O2 por isso, a capacidade do 
mesmo no sangue fica reduzida.
Os ruminantes formam nitrito no rúmen, após a 
ingestão de alimentos ricos em nitratos como o 
capim Sudão. 
Outros animais podem se intoxicar após ingestão de alimentos estragados.
 
*
Em solução no plasma e combinação química. 
Ao contrário do O2 que só se liga a Hb, o CO2 é 
transportado em duas combinações. 
Transporte de CO2 
Como o O2, o CO2 é transportado de duas formas. 
*
O CO2 é produzido nos tecidos, portanto a PCO2 
tecidual é mais elevada que a do sangue que chega 
aos capilares.
Se difunde de acordo c/ o gradiente de concentração 
dos tecidos para o sangue.
5% do CO2 que adentra o sangue são transportados 
em solução. A maior parte do CO2 se difunde para as 
hemácias onde sofrem uma de 02 reações químicas. 
*
Parte do CO2 se combina c/ água e forma o ácido 
carbônico que então se dissocia em íon 
bicarbonato e íon hidrogênio.
H2O + CO2 ↔ H2CO3 ↔ H+ + HCO3 –
A adição de CO2 ao sangue capilar é facilitada pela
desoxigenação da Hb que ocorre nos tecidos.
A formação de compostos carbamino é a 2ª forma 
pela qual o CO2 é transportado no sangue. 
*
Esses compostos são formados acoplando-se o 
CO2 aos grupos –NH das proteínas. Eles são 
responsáveis por 20 – 30% da troca de CO2 que 
ocorre entre os tecidos e pulmões.
Quando o sangue venoso atinge os pulmões, o 
CO2 se difunde p/ dentro dos alvéolos, a partir do 
plasma e dos eritrócitos.
A oxigenação da Hb libera íons H+ que combinam 
c/ HCO3 – para formar H2CO3 e, com isso o CO2. 
*
Transporte de gases durante o exercício
As demandas de transporte de gases no sangue 
não são constantes, variando com o metabolismo.
Exercício extenuante representa a demanda mais 
alta imposta aos mecanismos de transporte de gás
Cavalo a galope, o consumo de O2 pode aumentar 
 30 vezes. 
Parte da demanda é fornecida por um aumento no débito cardíaco.
*
Esse aumento faz c/ que, a quantidade de sangue 
que flui pelos pulmões / minuto aumenta, levando 
maior captação de O2 pelos pulmões.
*
O débito cardíaco é redistribuído, com uma fração 
aumentada indo p/ os músculos em exercício. O 
aumento do débito e a redistribuição do sangue 
aumentam o fluxo de sangue muscular 20 vezes.
O equino obtém maior demanda de O2 c/ aumento 
no nº de eritrócitos circulantes e, portanto, de Hb.
Isso é feito através da contração do baço levando 
ao aumento de hemácias. Com isso aumenta a 
viscosidade do sangue e o trabalho do coração. 
*
O aumento do fluxo sanguíneo muscular e do 
hematócrito ao mesmo tempo aumenta a liberação 
de O2 para o músculo.
O músculo também extrai uma percentagem maior 
de O2 do sangue durante o exercício. 
Os músculos contém um pigmento ligado a O2, a 
mioglobina, que fornece um pequeno estoque de 
O2. 
Como a Hb, é um pigmento que contém ferro, 
mas que contém apenas um grupo heme.
*
A mioglobina só libera O2 qdo a PO2 intracelular é 
baixa. Ao exercício, a maior demanda de O2 é 
obtida por:
*
Modificações no fluxo sanguíneo
Aumento do hematócrito
Extração de O2 a partir do sangue
Menor grau – pelo O2 da mioglobina.
Na anemia, a capacidade de O2 está reduzida, mas 
a liberação de O2 p/ os tecidos pode ser preservada 
por um aumento no débito cardíaco e pela maior 
extração de O2 a partir da Hb. 
*
CONTROLE DA VENTILAÇÃO
O controle respiratório monitoriza:
A composição do sangue
O trabalho dos músculos respiratórios
Presença de corpos estranhos
O controlador central (cérebro, tronco e medula) 
regula a atividade dos músculos respiratórios 
podendo aumentar a ventilação alveolar. 
*
Mudanças nessa ventilação afetam as tensões 
sanguíneas de gás, que são controladas pelos 
quimiorreceptores.
Os sinais voltam ao controlador central e os 
ajustes necessários são feitos na ventilação.
Os mecanorreceptores nos pulmões monitorizam 
o grau de distensão dos pulmões e mudanças nas 
vias respiratórias e vasos. 
*
Receptores de estiramento - músculos respiratórios 
(proprioceptores) monitoram o esforço de respirar.
*
Controle central da respiração
Ritmo respiratório origina na medula, é modificado 
por centros cerebrais e impulsos provenientes de 
receptores periféricos.
A transecção entre a medula e o bulbo interrompe 
a respiração. A secção entre o bulbo e a ponte 
provoca uma respiração ofegante.
Esse experimentos mostraram que: 
*
O ritmo respiratório se origina na medula,
mas é 
sintonizada por centros na ponte. A ponte pode ser 
o local de um interruptor que pára a respiração. 
*
As hipóteses atuais sugerem que a respiração 
rítmica resulta não da inibição recíproca dos 
neurônios inspiratório e expiratório, mas por 
inibição da atividade inspiratória.
O término da inspiração pode ser resultado de 
impulsos dos receptores de estiramento pulmonar 
ou de um interruptor central.
Quando a inalação termina, os neurônios inspiratórios 
são inibidos. 
*
Isso leva a expiração passiva como resultado do 
encolhimento do pulmão e parede torácica.
Há atividade em neurônios inspiratórios no começo 
da inspiração levando a um “breque” na expiração 
e regulando a velocidade do fluxo aéreo. 
Na expiração, o “breque” é removido.
*
Receptores pulmonares e das vias respiratórias
Foram identificados 03 tipos de receptores com 
aferentes vagais dentro do pulmão:
Receptores de estiramento
Adaptação lenta
Receptores de irritação
Estiramento e adaptação lenta são terminações 
nervosas associadas a musculatura lisa de 
traquéia e brônquios.
*
São estimulados pela deformação da parede das 
vias respiratórias durante a insuflação do pulmão. 
Eles são tidos como responsáveis pela inibição da 
respiração causada pela insuflação pulmonar.
Acredita-se que receptores de irritação sejam 
terminações nervosas que se ramificam entre as 
células na laringe, traqueia, grandes brônquios e 
vias respiratórias intrapulmonares.
São estimulados pela irritação mecânica na 
superfície das vias respiratórias. 
*
Gases irritantes, poeiras – ativam esses receptores 
Esses estímulos levam a tosse, broncoconstrição, 
secreção de muco e respiração rápida (hiperpnéia).
Respostas protetoras para remover materiais 
irritantes do SR. 
*
Além dos receptores intrapulmonares, há receptores 
no SR superior. Estímulo de receptores na cavidade
nasal provocam fungadas e espirros, ao passo que 
estímulos dos receptores faríngeos causam tosse.
Receptores de estiramento dos músculos monitoram o esforço dos músculos respiratórios 
O diafragma possui poucos receptores musculares, 
mas os intercostais são bem providos. 
*
Quimiorreceptores 
Monitorizam a concentração de O2, CO2 e íons H+ 
em diversas partes do organismo. Pequenas 
mudanças na P CO2 e na concentração de H+ 
produzem mudanças na ventilação, ao passo que 
modificações na P O2 – exercem pouco efeito. 
*
Os quimiorreceptores periféricos estão nos corpos 
carotídeos e aórticos, e sua remoção elimina a 
resposta respiratória a hipóxia.
Corpos carotídeos estão localizados nas artérias 
carótidas interna e externa e os corpos aórticos ao 
redor do arco aórtico. 
Quimiorreceptores periféricos são os únicos que monitorizam os níveis de O2 no sangue 
*
São inervados pelo nervo vago e um ramo do 
glossofaríngeo. Fibras desses nervos – aferentes.
Qdo os corpos carotídeos
são perfundidos por sangue
c/ baixa P O2 e P CO2 alta,
as velocidades de disparo
nos aferentes nervosos 
aumentam. 
*
A medida que a P CO2 aumenta, há um aumento na 
ventilação. Com a P O2 diminuída, esse aumento 
ocorre também.
Ascensão a uma altitude elevada se acompanha de decréscimo na tensão de O2 inspirado e, com isso, hipoxemia, que aumenta a ventilação.
 
A resposta ventilatória a hipóxia da altitude varia, 
dependendo se essa demorar menos de uma hora 
ou períodos mais prolongados (diversos dias).
*
A hipóxia aguda na primeira ascensão a altitude 
elevada provoca hiperventilação - quimiorreceptores
Depois de vários dias, a ventilação permanece um 
pouco elevada. Residência prolongada leva a perda 
da hiperventilação observada durante a aclimatação
O aumento da ventilação após exercício é no início, 
rápida, depois mais lenta, e, após o trabalho 
permanece constante, atingindo um estado estável 
dentro de poucos minutos ( ± 4). 
*
FUNÇÕES PULMONARES NÃO RESPIRATÓRIAS
Mecanismos de defesa do SR
A extensa superfície de troca gasosa do pulmão de 
um animal é protegida por mecanismos de defesa 
específicos e inespecíficos.
Quando um animal está em uma área rural, o ar 
contém poucas partículas prejudiciais e gases 
poluidores.
*
Entretanto, se os animais estão confinados ou 
vivem em grandes centros, o ar pode ser rico em 
partículas como esporos, bactérias, vírus, assim 
como gases (amônia, fumaça).
O SR possui várias defesas. As inespecíficas 
protegem contra várias substâncias inaladas. 
As específicas envolvem o sistema imunológico e 
são dirigidas contra agentes infecciosos 
específicos (bactérias). 
*
Os mecanismos de defesa respiratória são várias 
vezes oprimidos pelos estresses do manejo 
intensivo. Isso torna os animais mais susceptíveis 
às doenças respiratórias.
A deposição das partículas sobre o sistema mucociliar depende do tamanho das mesmas e ocorre por impactação, sedimentação e difusão.
O material prejudicial é inalado tanto suspenso no 
ar (aerossóis), quanto na forma de gases. 
*
As partículas são removidas do ar quando entram 
em contato com a superfície epitelial úmida da 
árvore traqueobrônquica.
Profundidade de penetração de partículas depende 
do tamanho das mesmas. Grandes partículas, com 
mais de 5 μm (micrómetros) entram em contato com a parede das vias respiratórias por impactação.
Elas são conduzidas em alta velocidade e não 
controlam as mudanças de direção.
*
Esses locais são providos de tecido linfóide.
A medida que o fluxo de ar diminui conforme se 
aprofunda no pulmão, as partículas entre 0,5 μm 
e 5 μm sofrem sedimentação.
Partículas diminutas (abaixo de 0,5 μm) alcançam 
os alvéolos, onde, por difusão, entram em contato 
com a superfície epitelial.
A deposição de partículas é influenciada pelo 
padrão de respiração. 
*
*
Respirações lentas e profundas transportam 
partículas mais profundamente no pulmão, 
enquanto as rápidas e superficiais aumentam a 
deposição nas vias respiratórias maiores.
A deposição dos gases tóxicos depende de sua 
concentração. Gases em baixa concentração são 
removidos pelas cavidades nasais, porém em 
altas concentrações, penetram no pulmão.
Gases tóxicos estimulam a hipersecreção de 
muco, a tosse e os espirros. 
*
SR é revestido por uma cobertura mucociliar que consiste de epitélio ciliado recoberto de muco
As partículas depositadas na superfície epitelial do 
SR são transportadas através da “escada rolante 
mucociliar” até a faringe, onde são deglutidas ou 
fagocitadas pelos macrófagos ou outras células. 
O sistema mucociliar consiste de muco sobre as 
células epiteliais. Possui movimento rítmico do 
interior para o exterior, prevenindo dessa forma, o 
acúmulo de muco na traqueia. 
*
A secreção de muco está sob controle do SNA. 
Alterações na viscosidade do muco ocorrem em 
resposta a vários estímulos e podem ser a causa 
ou resultado de doença respiratória.
A tosse faz parte do mecanismo de remoção do 
SR, sendo iniciada pela estimulação dos 
receptores de irritação.
Podem ser estimulados por deformação mecânica 
(corpo estranho) ou quando o epitélio está lesado por 
vírus (influenza, rinotraqueíte).
*
Os macrófagos alveolares fagocitam as partículas depositadas sobre a superfície alveolar
MACRÓFAGOS tem origem na medula óssea como monócitos e se diferenciam
durante a sua passagem do sangue para o alvéolo.
Opsoninas e lisozimas presentes nas secreções do 
SR ajudam os macrófagos na morte de partículas - bactéria
Como os macrófagos se adaptaram aos altos níveis de O2 dos alvéolos, a fagocitose é deprimida pela hipóxia.
*
A supressão dos macrófagos pelos corticóides é causa de doença respiratória em animais com stress.
Os macrófagos alveolares são a primeira linha de defesa. 
Quando um grande número de partículas é inalado, os macrófagos são auxiliados por outros fagócitos vindos da corrente circulatória, e as enzimas liberadas por essas células podem lesar o tecido pulmonar.
Troca pulmonar de líquidos 
*
A pressão hidrostática capilar aumenta na IC 
esquerda. Por isso, animais com essa patologia 
tendem a desenvolver edema pulmonar.
Esse edema também pode resultar de uma 
hipoproteinemia ou administração IV excessiva de 
líquidos.
Aumento da permeabilidade vascular ocorre nas 
pneumonias, devido aos produtos dos macrófagos e neutrófilos sobre o endotélio – lesionam. 
*
*
Líquido rico em proteínas extravasa p/ o interstício, 
elevando a pressão oncótica e causando atração 
osmótica de água do leito vascular.
O líquido espumoso típico do edema pulmonar é 
resultado da mistura do ar e líquido do edema. Os 
linfáticos drenam o líquido.
O acúmulo de líquido na cavidade pleural ocorre 
quando se aumentam as pressões capilares ou quando a permeabilidade vascular está aumentada (pleurite) 
*
*
Se a fibrina se acumular na pleura, os linfáticos 
podem ser obstruídos, e a drenagem do espaço 
pleural, prejudicada. Grandes volumes podem 
acumular-se entre os pulmões e a caixa torácica.
*
Funções metabólicas do pulmão
O pulmão remove alguns hormônios e toxinas da 
corrente circulatória e inativa muitos outros. 
Por receber o débito cardíaco total, o leito capilar 
pulmonar, c/ sua vasta superfície endotelial, possui 
localização ideal p/ limpar o sangue de substâncias 
produzidas em outras partes do corpo.
A serotonina é quase toda removida pelas células 
do endotélio. A noradrenalina também é removida 
em certo grau. 
*
*
2 artigos!

Teste o Premium para desbloquear

Aproveite todos os benefícios por 3 dias sem pagar! 😉
Já tem cadastro?

Outros materiais