Prévia do material em texto
S Y S T EMA T I C R E V I EW The effect of photobiomodulation on hearing loss: A systematic review Yasmin Nikookam1 | Nawal Zia1 | Andrew Lotfallah1 | Jameel Muzaffar1,2 | Jennifer Davis-Manders1 | Peter Kullar2 | Matthew Smith2 | Gemma Bale3,4 | Patrick Boyle5 | Richard Irving1 | Dan Jiang6,7 | Manohar Bance2 1University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK 2University of Cambridge, Department of Clinical Neurosciences, Addenbrooke's Health Campus, Cambridge, UK 3Department of Physics, Cavendish Laboratory, Cambridge, UK 4Electrical Engineering, Cambridge, UK 5Advanced Bionics, Cambridge, UK 6Guy's and St Thomas' NHS Foundation Trust, Hearing Implant Centre, St. Thomas' Hospital, London, UK 7King's College London, Centre for Craniofacial and Regenerative Biology, London, UK Correspondence Manohar Bance, Addenbrookes Hospital, Box 48, ENT Clinic, Hills Road, Cambridge, CB2 0QQ, UK. Email: mlb59@cam.ac.uk Abstract Objectives: To assess outcomes associated with photobiomodulation therapy (PBMT) for hearing loss in human and animal studies. Design: Systematic review and narrative synthesis in accordance with PRISMA guidelines. Setting: Data bases searched: MEDLINE, EMBASE, CENTRAL, ClinicalTrials.gov and Web of Science. No limits were placed on language or year of publication. Review conducted in accordance with the PRISMA 2020 statement. Participants: All human and animal subjects treated with PBMT for hearing loss. Main outcome measures: Pre‐ and post‐PBMT audio metric outcomes. Results: Searches identified 122 abstracts and 49 full text articles. Of these, 17 stud- ies met the inclusion criteria, reporting outcomes in 327 animals (11 studies), 30 humans (1 study), and 40 animal specimens (5 studies). PBMT parameters included 6 different wavelengths: 908 nm (1 study), 810 nm (1 study), 532 & 635 nm (1 study), 830 nm (3 studies), 808 nm (11 studies). The duration ranged from 4 to 60 minutes in a session, and the follow‐up ranged from 5–28 days. Outcomes improved signifi- cantly when wavelengths within the range of 800–830 nm were used, and with greater duration of PBMT exposure. Included studies predominantly consisted of non‐randomized controlled trials (10 studies). Conclusions: Hearing outcomes following PBMT appear to be superior to no PBMT for subjects with hearing loss, although higher level evidence is required to verify this. PBMT enables concentrated, focused delivery of light therapy to the inner ear through a non‐invasive manner with minimal side effects. As a result of heterogene- ity in reporting PBMT parameters and outcomes across the included studies, direct comparison is challenging. K E YWORD S hearing loss, low level light therapy, near infrared light, otoprotection, photobiomodulation Received: 31 May 2023 Accepted: 7 October 2023 DOI: 10.1111/coa.14113 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2023 The Authors. Clinical Otolaryngology published by John Wiley & Sons Ltd. Clinical Otolaryngology. 2024;49:41–61. wileyonlinelibrary.com/journal/coa 41 https://orcid.org/0000-0003-0796-7233 https://orcid.org/0000-0001-5012-3648 https://orcid.org/0000-0001-5161-1192 https://orcid.org/0000-0003-3065-0269 https://orcid.org/0000-0001-7124-6356 https://orcid.org/0000-0001-8147-1549 https://orcid.org/0000-0002-2709-2035 https://orcid.org/0000-0001-7712-5977 https://orcid.org/0000-0003-0013-719X https://orcid.org/0000-0003-1490-6658 https://orcid.org/0000-0001-8050-3617 mailto:mlb59@cam.ac.uk http://creativecommons.org/licenses/by/4.0/ http://wileyonlinelibrary.com/journal/coa http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcoa.14113&domain=pdf&date_stamp=2023-10-26 1 | INTRODUCTION 1.1 | Background and epidemiology Hearing impairment is one of the most common medical conditions,1 affecting approximately 466 million people worldwide.2 Impact can adversely affect employment, communication and social interaction. This can lead to manifold psychosocial burdens,3 as well as significant detrimental economic impacts to the individual and wider society.4 Common rehabilitation options include hearing aids, and surgery such as cochlear implantation, although operative trauma can poten- tially exacerbate existing hearing loss. Current research suggests there may be scope for photobiomodulation therapy (PBMT) to mitigate ototoxic trauma associated with surgery, traumatic noise exposure or from chemical trauma by ototoxic medications such as platinum-based chemotherapy. Photobiomodulation therapy (PBMT), also referred to as ‘low- level laser light (LLLT)’ and ‘near-infrared light’, is a non-invasive ther- apy that uses light energy to enhance or modulate the activities of specific cells to improve or change the function of body tissues. It is increasingly used to treat medical conditions, including skin lesions and neurodegenerative disorders, to reduce pain, and to stimulate the regeneration of body tissues.5–8 1.2 | PBMT mechanism of action Cell damage within the inner ear is a complex combination of inflamma- tory and oxidative stress. The mechanism of PBMT on neural-cell recov- ery and regeneration is yet to be clarified. The prevailing theory focuses on mitochondrial cytochrome c oxidase, a key protein in cellular metab- olism and repair, and one of three major proteins in the human body responding to near infrared wavelength.9 These proteins absorb near- infrared wavelength energy and then modulate biochemical reactions within cells. Cytochrome c oxidase is a large transmembrane protein complex in the mitochondrial electron transport chain that consists of five protein complexes that together produce adenosine 5-triphosphate (ATP).10 This theory is supported by research showing that PBMT enhances ATP production.11 Increased ATP production may lead to enhanced cell metabolism, promoting the damage-repair process. Several studies have shown that PBMT can reduce inflammation within inner ear cells in vitro.12,13 Clinical studies on the use of PBMT to protect against hearing loss, tinnitus, and vestibular dysfunction have been published. To the best of the author's knowledge, there are presently no systematic reviews synthesising the effect of PBMT on hearing loss. 1.3 | Objectives This review is to assess the application of PBMT in the treatment of hearing loss, examining evidence from both animal and human studies. Population: Humans or animals Intervention: Photobiomodulation therapy Comparator: There is no formal comparator or control. Comparators were expected to vary according to the study type. Comparators may include other methods of hearing preservation, for example, administration of drugs via systemic or local routes. Outcomes: Pre- and post-PBMT audiometric outcomes, evidence of inflammation e.g., fibrosis (imped- ance values, histology), measures of neural responses (evoked compound action poten- tials, auditory brainstem evoked potentials), spiral ganglion neuron density and/or number, neo-osteogenesis, and hair cell count. Adverse events associated with PBMT. 2 | METHODS The study protocol was registered in the PROSPERO prospective data- base of systematic reviews (CRD42020210574 and CRD42020212259) and was created according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta Analyses) guidelines.14 2.1 | Study inclusion criteria All human experimental study designs were eligible, including case– control, case series, cohort, randomised controlled trials. Animal stud- ies (live, in vitro) were eligible if they included at least one quantitative outcome measure. There were no restrictions placed on the follow-up length or the study duration. Only studies with full texts available were included. Studies with insufficient* D ay s af te r no is e ex po su re an d th re sh o ld sh if t (d B ) 8 kH z: G ro up 1 :0 (7 ), 4 (1 2 ), 7 (1 2 ), 1 4 (1 8 ), 2 8 (2 0 ) G ro up 2 :0 (7 5 ), 4 (4 5 ), 7 (4 0 ), 1 4 (3 5 ), 2 8 (3 5 ) G ro up 3 :0 (7 5 ), 4 (3 0 ), 7 (2 2 ), 1 4 (2 0 ), 2 8 (2 0 ) G o o d o u tc o m es . P B M ac ti va te s N F -κ B si gn al lin g fo r cy to p ro te ct io n ,a n d th at P B M ca n p ro te ct ag ai n st iN O S- tr ig ge re d R O S/ R N S p ro d u ct io n an d ca sp as e- SY R C LE 's ri sk o f b ia s to o l: Lo w = 7 ; h ig h = 0 ; u n cl ea r = 3 (C o n ti n u es ) NIKOOKAM ET AL. 55 17494486, 2024, 1, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1111/coa.14113 by C apes, W iley O nline L ibrary on [29/10/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense T A B L E 3 (C o nt in ue d) St ud y re fe re nc e St ud y da ta P re -P B M T da ta P o st -P B M T da ta O ve ra ll b en ef it (s u b je ct iv e as se ss m en t) Q u al it y as se ss m en t G ro up 3 :P B M ,n o is e ex po su re an d P B M (n = 5 ) W e al so di vi de d th e an im al s in to th re e gr o up s fo r im m un oh is to ch em is tr y o f iN O S: na ïv e (n = 5 ), no n- tr ea tm en t (n = 5 ), an d P B M (n = 5 ); cl ea ve d ca sp as e- 3 :n aï ve (n = 5 ), no n- tr ea tm en t (n = 5 ), an d P B M (n = 5 ); an d N F -κ B :n aï ve (n = 5 ), no n- tr ea tm en t (n = 5 ), an d P B M (n = 5 ); an d fo r N F -κ B an d p- A kt w es te rn bl o tt in g: na ïv e (n = 3 ), no n- tr ea tm en t (n = 3 ), an d P B M (n = 3 ). In ve st ig at io na ld ev ic e: 8 0 8 -n m co nt in uo us w av e di o de la se r be am (B & W T ek ,N ew ar k, D E ,U SA ) P B M T po w er :2 .9 m W (2 6 J to ta le ne rg y) P B M T po w er de ns it y: 1 6 5 m W /c m 2 P B M T du ra ti o n: 3 0 m in /d ay fo r 5 da ys M ea n ag e o f su bj ec ts :n o t st at ed H ea ri ng lo ss : N o is e- in du ce d ex te rn al au di to ry ca na l. O pt ic al fi br e ti p w as po si ti o ne d 6 m m fr o m th e ri gh t ty m pa ni c m em br an e. A ud io lo gi ca ld at a: A B R s pe rf o rm ed be fo re an d im m ed ia te ly af te r no is e ex po su re . 1 2 kH z: G ro up 1 :0 (2 0 ), 4 (1 0 ), 7 (2 0 ), 1 4 (2 0 ), 2 8 (2 0 ) G ro up 2 :0 (7 5 ), 4 (5 5 ), 7 (5 0 ), 1 4 (4 5 ), 2 8 (4 0 ) G ro up 3 :0 (8 2 ), 4 (2 4 ), 7 (1 8 ), 1 4 (2 0 ), 2 8 (1 6 ) 1 6 kH z: G ro up 1 :0 (1 0 ), 4 (1 0 ), 7 (1 0 ), 1 4 (1 8 ), 2 8 (1 8 ) G ro up 2 :0 (7 5 ), 4 (5 0 ), 7 (5 2 ), 1 4 (4 0 ), 2 8 (3 0 ) G ro up 3 :0 (8 2 ), 4 (2 2 ), 7 (1 8 ), 1 4 (1 8 ), 2 8 (1 8 ) 2 0 kH z: G ro up 1 :0 (1 5 ), 4 (1 0 ), 7 (2 0 ), 1 4 (2 2 ), 2 8 (2 0 ) G ro up 2 :0 (7 5 ), 4 (6 0 ), 7 (5 8 ), 1 4 (5 0 ), 2 8 (4 5 ) G ro up 3 :0 (9 5 ), 4 (1 8 ), 7 (1 6 ), 1 4 (2 2 ), 2 8 (2 2 ) Im m un o fl uo re sc en ce iN O S: A t 1 h af te r no is e ex po su re ,t he re w as st ro ng im m un o re ac ti vi ty fo r iN O S in th e ba sa l, m id dl e an d ap ic al tu rn s o f O H C s in th e su rf ac e pr ep ar at io ns (g ro u p 2 ), w he re as le ss im m un o re ac ti vi ty w as o bs er ve d in gr o up 3 C le av ed ca sp as e- 3 : 8 h af te r no is e ex po su re th er e w as st ro ng im m un o re ac ti vi ty fo r cl ea ve d ca sp as e- 3 in th e ba sa l, m id dl e an d ap ic al pa rt s o f O H C s in th e su rf ac e pr ep ar at io ns (g ro up 2 ), w he re as le ss im m un o re ac ti vi ty w as o bs er ve d in gr o up 3 3 -m ed ia te d ap o p to si s th at o cc u r fo llo w in g N IH L. T h u s, P B M m ay b e a n ew ca n d id at e tr ea tm en t st ra te gy fo r N IH L. 56 NIKOOKAM ET AL. 17494486, 2024, 1, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1111/coa.14113 by C apes, W iley O nline L ibrary on [29/10/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense common.13,19–25,27,28,30,31 All studies, except two, outlined where PBMT was anatomically focussed.12,25 3.5 | Photobiomodulation therapy outcomes Twelve studies summarised all three of wavelength used, duration of PBMT, and follow-up period. Wavelength size of 808 nm was used most frequently (n = 11). PBMT was effective in hearing enhancing recovery, reducing loss of hair cells and reducing the immune inflamma- tory response in the included animal studies. One study found pre- emptive PBMT therapy before noise-induced hearing loss (NIHL) was effective at hearing preservation.18 One study found that pre- treatment using PBMT prior to cochlear implantation resulted in better hearing outcomes.29 Another study found a PBMT power of 165 versus 110 mW/cm2 resulted in a greater preservation of hearing.30 A range of otological insults were used to induce hearing losses in each animal study: noise induced hearing loss (NIHL) (n = 9), gentamicin-induced ototoxicity (n = 4), surgical trauma (n = 1), oubain-induced auditory neuropathy (n = 1) and pre-treatment for CI surgery induced hearing loss (n = 1).12,13,18–31 Direct comparison of differing ototoxic agents was not conducted in any of the studies included. One study assessed the effect of PBMT in combination with anti- oxidants N acetyl-L-cysteine (NAC) or acetyl-L-carnitine (ALCAR).20 This study showed conflicting results on the effectiveness of PBMT, in that the laser in combination with an antioxidant was not superior to the antioxidant alone when comparing ABRs. However, the hair cell count illustrated that PBMT in addition to an antioxidant was superior to the antioxidant alone. Overall, there was a trend toward benefit from PBMT in animal studies, irrespective of delivery method, wavelength and power used or the animal species treated. Audiological outcomes improved in all 16 animal studies following PBMT compared to no PBMT, with statis- tically significant improvement stated in 11 studies.12,13,19,20,22–27,29 In the single human study included, no statistically significant effect of PBMT on hearing was detected.7 Notably, the PBMT wavelength was shorter, and the power used lower compared to all animal studies. No study reported any intra- or post-PBMT adverse events or deaths. 4 | DISCUSSION This systematic review is the first to report outcomes of PBMT on hearing loss. Generally, animal subjects showed improvements in hearing preservation outcomes whereas no statistically significant improvement was detected in the single human study. 4.1 | PBMT versus placebo The only human results from Goodman et al.'s study found none of the three measures of hearing (audiometric thresholds, speech recog- nition test, or otoacoustic emissions) showed statistically significant difference between the treatment, placebo, or control groups.7 There- fore, this study concluded that PBMT was not effective in recovering hearing loss. However, the sample size was small (n = 30) and com- parison with animal studies is difficult as the delivery characteristics differed. In the human study, PBMT was delivered in seven cycles across different anatomical locations, including the temporomandibu- lar joint, spine, ear and top of the head. The duration of therapy ran- ged from 15 to 60 s. Overall duration of therapy was relatively very short, lasting approximately 4 min in total with low power (7.5 mW). In contrast, animal studies that produced positive results from PBMT, typically irradiated through the tympanic membrane for 60 min. More- over, the wavelength used by Goodman et al. was 532 nm constantly, with 635 nmin a pulsed manner.7 Prior evidence suggests that the wavelength with the highest potency of biomodulation is 800– 830 nm.27 This is likely due to the absorption spectrum of cytochrome c oxidase which has a peak of 830 nm, and the penetration of light through tissue is superior at 830 nm than 532 nm.32 Hence, there were duration, power, anatomical site and wavelength differences between the human and animal studies. Goodman et al.'s findings contrast with the 16 animal studies that assessed the effect of PBMT for a range of ototoxic insults. Ten stud- ies assessed ABRs and showed an improvement in hearing, and inner ear elements on histology when compared to the placebo or non-treatment group.18,20,22–25,27,29,30,31 Hearing was better pre- served or maintained in the PBMT group versus non-PBMT group in most studies.12,13,18,20,22,23,25,26,28–31 The effect of PBMT in reducing TABLE 4 Cochrane risk of bias 2 tool. Author(s), year, country 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 S. Goodman et al., 2013, USA Note: Green = low risk of bias; red = high risk of bias; yellow = unclear risk of bias. 1. Was the allocation sequence random? Yes. 2. Was the allocation sequence concealed until participants were enrolled and assigned to interventions? Yes. 3. Did baseline differences between intervention groups suggest a problem with the randomisation processs? No. 4. Were participants aware of their assigned intervention during the trial? No. 5. Were carers and trial personnel aware of participants' assigned intervention during the trial? Yes and No. 6. Deviations that arose because of the trial context? No. 7. Was an appropriate analysis used to estimate the effect of assignment to intervention? Yes. 8. Participants aware of intervention? No. 9. Personnel Aware of intervention? Yes and No. 10. Balanced non-protocol interventions? Yes. 11. Failures in implementation affecting outcome? No. 12. Non-adherence affecting outcome? No. 13. Outcome data for all participants? Yes. 14. Method of measuring the outcome inappropriate? No. 15. Measurement or ascertainment of outcome differ between groups? No. 16. Outcome assessors aware of intervention received? Unsure. 17. Could assessment have been influenced by knowledge of intervention? No. 18. Results selected from multiple outcome measurements and multiple analyses of the data? No. 19. Trial analysed in accordance with a pre-specified plan? Yes. NIKOOKAM ET AL. 57 17494486, 2024, 1, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1111/coa.14113 by C apes, W iley O nline L ibrary on [29/10/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense T A B L E 5 SY R C LE ri sk o f bi as as se ss m en t. A ut ho r( s) ,y ea r, co un tr y 1 2 3 4 5 6 7 8 9 1 0 Se qu en ce ge ne ra ti o n B as el in e ch ar ac te ri st ic s A llo ca ti o n co nc ea lm en t R an do m ho us in g B lin di ng R an do m o ut co m e as se ss m en t B lin di ng In co m p le te o u tc o m e d at a Se le ct iv e o u tc o m e re p o rt in g O th er so u rc es o f b ia s D .B as ta et al ., 2 0 2 0 , G er m an y S. C ha ng et al ., 2 0 1 2 , K o re a S. C ha ng et al ., 2 0 1 6 , K o re a S. C ha ng et al ., 2 0 1 9 , K o re a T .G ua n et al ., 2 0 1 5 J. Le e et al ., 2 0 1 6 , K o re a M .L ee et al ., 2 0 1 6 , K o re a J. Le e et al ., 2 0 1 9 , K o re a C .R he e et al ., 2 0 1 2 , K o re a C .R he e et al ., 2 0 1 2 , K o re a C .R he e et al ., 2 0 1 3 , K o re a C .R he e et al ., 2 0 1 4 , K o re a C .R he e et al ., 2 0 2 1 , K o re a I. St rü bi ng et al ., 2 0 2 0 ,G er m an y A .T am ur a et al ., 2 0 1 5 ,J ap an A .T am ur a et al ., 2 0 1 6 ,J ap an N ot e: 1 .W as th e al lo ca ti o n se qu en ce ad eq ua te ly ge ne ra te d an d ap pl ie d? (* ). 2 .W er e th e gr o up s si m ila r at ba se lin e o r w er e th ey ad ju st ed fo r co nf o u n d er s in th e an al ys is ? 3 .W as th e al lo ca ti o n ad eq u at el y co nc ea le d? (* ). 4 .W er e th e an im al s ra nd o m ly ho us ed du ri ng th e ex p er im en t? 5 .W er e th e ca re gi ve rs an d/ o r in ve st ig at o rs bl in de d fr o m kn o w le dg e w h ic h in te rv en ti o n ea ch an im al re ce iv ed d u ri n g th e ex pe ri m en t? 6 .W er e an im al s se le ct ed at ra nd o m fo r o ut co m e as se ss m en t? 7 .W as th e o ut co m e as se ss o r bl in de d? 8 .W er e in co m pl et e o ut co m e da ta ad eq u at el y ad d re ss ed ? (* ). 9 .A re re p o rt s o f th e st u d y fr ee o f se le ct iv e o ut co m e re po rt in g? (* ). 1 0 .W as th e st ud y ap pa re nt ly fr ee o f o th er pr o bl em s th at co ul d re su lt in hi gh ri sk o f bi as ? (* ). *I te m s in ag re em en t w it h th e it em s in th e C o ch ra n e ri sk o f b ia s to o l. 58 NIKOOKAM ET AL. 17494486, 2024, 1, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1111/coa.14113 by C apes, W iley O nline L ibrary on [29/10/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense inflammation was also supported through histology and immunohisto- chemistry findings, such as increased SGNs, hair cells, and ATP.18,23,25,28 4.2 | PBMT versus systemic therapy One animal study evaluated the added effect of PBMT in addition to systemic antioxidant therapy (NAC and ALCAR).20 This study found combination therapy of NAC and PBMT to significantly improve NIHL when compared to a previous study that assessed the effect of PBMT alone. It appears that NAC may have a role in accelerating hearing improvement with PBMT (improved on the 6th day of irradiation), when compared to PBMT alone (improved on the 10th day of irradia- tion).20,26 Additionally, authors found the antioxidant NAC to be supe- rior to ALCAR, but NAC and ALCAR alone was not superior to combination therapy with PBMT.20 4.3 | PBMT positioning and characteristics In contrast to most animal studies which irradiated in close proximity to the tympanic membrane, Goodman et al.'s human study utilised external irradiation (temporomandibular joint, cervical spine, top of head and external auditory meatus). They state that a transmeatal approach would have resulted in greater penetration but suggest that it would be less practical.7 The positioning of PBMT for optimal delivery varied across stud- ies. Beyer et al. found that irradiation of the mastoid leads to thera- peutically insufficient light doses when compared to irradiation through the tympanic membrane.33 Beyer et al. used a PBMT power and dose similar to Goodman et al. (1 mW, 593 and 633 nm vs. 7.5 mW, 532 and 635 nm in Goodman et al).7 Therefore, for opti- mum dosimetry, evaluation of light transmission factors for chosen irradiation modalities is necessary. The externally applied light dose needs to be calculated according to the tonotopy of the cochlea, as different anatomical landmarks and mediums will transduce different frequencies; this is relevant when considering the anatomical location of the PBMT probe. An excess amount of laser irradiation may lead to destruction rather than promotion.34 Subsequently, determining optimal PBMT parameters is vital and must be balanced against safe PBMT delivery. There are peaks in the typical responsive wavelengths for cytochrome c oxidase (670 and 830 nm).9 Cytochrome c oxidase mediates photo- biomodulation in the far-red and near-infrared range. Although cyto- chrome c oxidase also absorbs strongly at wavelengths less than 630 nm, this is within the visible light range andhas a lower rate of tissue penetrance than wavelengths in the near-infrared range.9 Pene- trance of lasers through the tympanic membrane and other tissue structures of the inner otic capsule is superior in the near infrared range (780–1100 nm).25 Therefore, wavelengths must be carefully selected according to PBMT delivery method and structures the light must pass through to reach the cochlea. Additionally, it is important to ascertain whether shorter, concentrated delivery of PBMT induces a more significant effect on hearing loss when compared to a more pro- longed delivery at lower concentration. 4.4 | PBMT as a pre-treatment therapy Basta et al. assessed the effect of PBMT prior to noise exposure. They found a single pre-treatment dose of PBMT induced statistically sig- nificant protection of cochlear structures based on ABR recording and histological analysis.18 Pre-exposure of 10 min was the optimal dos- ing.18 These findings suggest the scope for the implementation of PBMT as a pre-treatment therapy prior to procedures known to cause inner ear damage and hearing loss, such as cochlear implantation. More research is required to ascertain the true benefits of PBMT as a pre-treatment in hearing preservation. 4.5 | Future of PBMT Overall, results suggest that PBMT could be an effective method for hearing preservation. However, almost all studies to date have been conducted on animal models with only one conducted on human sub- jects. Most studies assessed outcomes over a short duration of time, with the longest period of follow up being 28 days. This precludes comment on the long-term effects PBMT may have on hearing loss, or whether further courses are needed to maintain benefit. Including a longer follow-up period would enable researchers to assess the longer-term effects and complications of PBMT. Thus, enabling researchers to determine the suitability of using PBMT in further human trials. 5 | CONCLUSION Though the evidence base is far from comprehensive, hearing out- comes following PBMT appear to be superior to non-PBMT in animal studies. PBMT theoretically enables a non-invasive mode of delivering therapy which may enable audiological function to be preserved and maintained following injury to inner ear structures. The low-risk pro- file and promising data from animal models suggest PBMT warrants further investigation as an intervention to prevent or treat hearing loss. Further research should focus on optimising PBMT light delivery and dosing for the inner ear to inform future human trials. AUTHOR CONTRIBUTIONS Manohar Bance, Jameel Muzaffar and Peter Kullar conceived the paper and supervised the work undertaken. Searches and data extrac- tion were performed by Yasmin Nikookam, Nawal Zia, Andrew Lotfal- lah and Jennifer Davis-Manders. All authors reviewed the study protocol and were involved in drafting and providing critical edits to the manuscript. All authors agree to be accountable for all aspects of the work presented. NIKOOKAM ET AL. 59 17494486, 2024, 1, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1111/coa.14113 by C apes, W iley O nline L ibrary on [29/10/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense ACKNOWLEDGEMENT None. FUNDING INFORMATION None. CONFLICT OF INTEREST STATEMENT The authors declare no conflicts of interest. PEER REVIEW The peer review history for this article is available at https://www. webofscience.com/api/gateway/wos/peer-review/10.1111/coa.14113. DATA AVAILABILITY STATEMENT Data sharing is not applicable to this article as no new data were cre- ated or analyzed in this study. ORCID Yasmin Nikookam https://orcid.org/0000-0003-0796-7233 Nawal Zia https://orcid.org/0000-0001-5012-3648 Andrew Lotfallah https://orcid.org/0000-0001-5161-1192 Jameel Muzaffar https://orcid.org/0000-0003-3065-0269 Peter Kullar https://orcid.org/0000-0001-7124-6356 Matthew Smith https://orcid.org/0000-0001-8147-1549 Gemma Bale https://orcid.org/0000-0002-2709-2035 Patrick Boyle https://orcid.org/0000-0001-7712-5977 Richard Irving https://orcid.org/0000-0003-0013-719X Dan Jiang https://orcid.org/0000-0003-1490-6658 Manohar Bance https://orcid.org/0000-0001-8050-3617 REFERENCES 1. Adams PF, Hendershot GE, Marano MA. Current estimates from the National Health Interview Survey, 1996. Vital Health Stat 10. 1999; (200):1–203. 2. Cotanche DA. Genetic and pharmacological intervention for treatment/prevention of hearing loss. J Commun Disord. 2008;41(5): 421–43. https://doi.org/10.1016/j.jcomdis.2008.03.004 3. Dalton DS, Cruickshanks KJ, Klein BEK, Klein R, Wiley TL, Nondahl DM. The impact of hearing loss on quality of life in older adults. Gerontologist. 2003;43(5):661–8. https://doi.org/10.1093/ geront/43.5.661 4. Huddle MG, Goman AM, Kernizan FC, Foley DM, Price C, Frick KD, et al. The economic impact of adult hearing loss: a systematic review. JAMA Otolaryngol Head Neck Surg. 2017;143(10):1040–8. https:// doi.org/10.1001/jamaoto.2017.1243 5. Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N, et al. Low- level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg. 2013;32(1):41–52. 6. Hong N. Photobiomodulation as a treatment for neurodegenerative disorders: current and future trends. Biomed Eng Lett. 2019;9(3): 359–66. https://doi.org/10.1007/s13534-019-00115-x 7. Goodman SS, Bentler RA, Dittberner A, Mertes IB. The effect of low- level laser therapy on hearing. ISRN Otolaryngol. 2013;2013:916370. https://doi.org/10.1155/2013/916370 8. Hamblin MR. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017;4(3):337–61. https://doi.org/10.3934/biophy.2017.3.337 9. Wong-Riley MTT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, et al. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxi- dase. J Biol Chem. 2005;280(6):4761–71. https://doi.org/10.1074/ jbc.M409650200 10. Huang Y-Y, Chen AC-H, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response. 2009;7(4):358– 83. https://doi.org/10.2203/dose-response.09-027.Hamblin 11. Oron U, Ilic S, De Taboada L, Streeter J. Ga-As (808 nm) laser irradia- tion enhances ATP production in human neuronal cells in culture. Photomed Laser Surg. 2007;25(3):180–2. https://doi.org/10.1089/ pho.2007.2064 12. Chang S-Y, Lee MY, Chung P-S, Kim S, Choi B, Suh MW, et al. Enhanced mitochondrial membrane potential and ATP synthesis by photobiomodulation increases viability of the auditory cell line after gentamicin-induced intrinsic apoptosis. Sci Rep. 2019;9(1):19248. https://doi.org/10.1038/s41598-019-55711-9 13. Rhee C, Chang S-Y, Ahn J-C, Suh M-W, Jung JY. Effect of LLLT on the level of ATP and ROS from organ of corti cells. Prog Biomed Opt Imaging – Proc SPIE. 2014;8926. https://doi.org/10.1117/12. 2041438 14. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi. org/10.1136/bmj.n71 15. Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes- Hoitinga M, Langendam MW. SYRCLE's risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14(1):43. https://doi.org/10. 1186/1471-2288-14-43 16. Sterne JAC, Savovi�c J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised tri- als. BMJ. 2019;366:l4898. https://doi.org/10.1136/bmj.l4898 17. Oxford centre for evidence-based medicine—levels of evidence (March 2009)-CEBM. https://www.cebm.net/2009/06/oxford- centre-evidence-based-medicine-levels-evidence-march-2009/ 18. Basta D, Gröschel M, Strübing I, Boyle P, FröhlichF, Ernst A, et al. Near-infrared-light pre-treatment attenuates noise-induced hearing loss in mice. PeerJ. 2020;8:e9384. https://doi.org/10.7717/peerj. 9384 19. Chang S-Y, Suh M-W, Bahk CW, Jung JY, Ahn J-C, Chung P-S, et al. The optimal window time to treat noise-induced hearing loss (NIHL) with low level laser therapy (LLLT). Proc. SPIE 8207, Photonic Thera- peutics and Diagnostics VIII, 820727 (9 February 2012). https://doi. org/10.1117/12.912431 20. Chang SY, Lim SK, Lee MY, Lee JH, Jung JY, Rhee CK. Combination therapy using antioxidants and low level laser therapy (LLLT) on noise induced hearing loss (NIHL). In: Choi B, Kollias N, Zeng H, et al., editors. Photonic therapeutics and diagnostics Xii. Vol 9689. Chungnam-do: Proceedings of SPIE, Department of Otolaryngology-HNS, Medical Laser Research Center, College of Medicine, Dankook University; 2016. https://doi.org/10.1117/12.2212380 21. Guan T, Zhu K, Chen F, He Y, Wang J, Wu M, et al. Auditory nerve impulses induced by 980 nm laser. J Biomed Opt. 2015;20(8):88004. https://doi.org/10.1117/1.JBO.20.8.088004 22. Lee MY, Bae S-H, Chang S-Y, Lee JH, Kim SH, Ahn JC, et al. Photo- biomodulation by laser therapy rescued auditory neuropathy induced by ouabain. Neurosci Lett. 2016;633:165–73. https://doi.org/10. 1016/j.neulet.2016.09.039 23. Lee J-H, Chang S-Y, Moy WJ, Oh C, Kim SH, Rhee CK, et al. Simulta- neous bilateral laser therapy accelerates recovery after noise-induced hearing loss in a rat model. PeerJ. 2016;4:e2252. https://doi.org/10. 7717/peerj.2252 24. Lee J-H, Lee MY, Chung P-S, Jung JY. Photobiomodulation using low- level 808 nm diode laser rescues cochlear synaptopathy after acous- tic overexposure in rat. J Biophotonics. 2019;12(11):e201900145. https://doi.org/10.1002/jbio.201900145 25. Rhee C-K, He P, Jung JY, Ahn J-C, Chung P-S, Suh M-W. Effect of low-level laser therapy on cochlear hair cell recovery after 60 NIKOOKAM ET AL. 17494486, 2024, 1, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1111/coa.14113 by C apes, W iley O nline L ibrary on [29/10/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/coa.14113 https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/coa.14113 https://orcid.org/0000-0003-0796-7233 https://orcid.org/0000-0003-0796-7233 https://orcid.org/0000-0001-5012-3648 https://orcid.org/0000-0001-5012-3648 https://orcid.org/0000-0001-5161-1192 https://orcid.org/0000-0001-5161-1192 https://orcid.org/0000-0003-3065-0269 https://orcid.org/0000-0003-3065-0269 https://orcid.org/0000-0001-7124-6356 https://orcid.org/0000-0001-7124-6356 https://orcid.org/0000-0001-8147-1549 https://orcid.org/0000-0001-8147-1549 https://orcid.org/0000-0002-2709-2035 https://orcid.org/0000-0002-2709-2035 https://orcid.org/0000-0001-7712-5977 https://orcid.org/0000-0001-7712-5977 https://orcid.org/0000-0003-0013-719X https://orcid.org/0000-0003-0013-719X https://orcid.org/0000-0003-1490-6658 https://orcid.org/0000-0003-1490-6658 https://orcid.org/0000-0001-8050-3617 https://orcid.org/0000-0001-8050-3617 https://doi.org/10.1016/j.jcomdis.2008.03.004 https://doi.org/10.1093/geront/43.5.661 https://doi.org/10.1093/geront/43.5.661 https://doi.org/10.1001/jamaoto.2017.1243 https://doi.org/10.1001/jamaoto.2017.1243 https://doi.org/10.1007/s13534-019-00115-x https://doi.org/10.1155/2013/916370 https://doi.org/10.3934/biophy.2017.3.337 https://doi.org/10.1074/jbc.M409650200 https://doi.org/10.1074/jbc.M409650200 https://doi.org/10.2203/dose-response.09-027.Hamblin https://doi.org/10.1089/pho.2007.2064 https://doi.org/10.1089/pho.2007.2064 https://doi.org/10.1038/s41598-019-55711-9 https://doi.org/10.1117/12.2041438 https://doi.org/10.1117/12.2041438 https://doi.org/10.1136/bmj.n71 https://doi.org/10.1136/bmj.n71 https://doi.org/10.1186/1471-2288-14-43 https://doi.org/10.1186/1471-2288-14-43 https://doi.org/10.1136/bmj.l4898 https://www.cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/ https://www.cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/ https://doi.org/10.7717/peerj.9384 https://doi.org/10.7717/peerj.9384 https://doi.org/10.1117/12.912431 https://doi.org/10.1117/12.912431 https://doi.org/10.1117/12.2212380 https://doi.org/10.1117/1.JBO.20.8.088004 https://doi.org/10.1016/j.neulet.2016.09.039 https://doi.org/10.1016/j.neulet.2016.09.039 https://doi.org/10.7717/peerj.2252 https://doi.org/10.7717/peerj.2252 https://doi.org/10.1002/jbio.201900145 gentamicin-induced ototoxicity. Lasers Med Sci. 2012;27(5):987–92. https://doi.org/10.1007/s10103-011-1028-5 26. Rhee C-K, Bahk CW, Kim SH, Ahn JC, Jung JY, Chung PS, et al. Effect of low-level laser treatment on cochlea hair-cell recovery after acute acoustic trauma. J Biomed Opt. 2012;17(6):68002. https://doi.org/ 10.1117/1.JBO.17.6.068002 27. Rhee C-K, He P, Jung JY, Ahn JC, Chung PS, Lee MY, et al. Effect of low-level laser treatment on cochlea hair-cell recovery after ototoxic hearing loss. J Biomed Opt. 2013;18(12):128003. https://doi.org/10. 1117/1.JBO.18.12.128003 28. Rhee C-K, Chang S-Y. Combination photobiomodulation/N-acetyl-L- cysteine treatment appears to mitigate hair cell loss associated with noise-induced hearing loss in rats. Lasers Med Sci. 2021;36(9):1941– 7. https://doi.org/10.1007/s10103-021-03304-2 29. Strübing I, Gröschel M, Schwitzer S, Ernst A, Fröhlich F, Jiang D, et al. Neuroprotective effect of near-infrared light in an animal model of CI surgery. Audiol Neurotol. 2020;26:95–101. https://doi.org/10.1159/ 000508619 30. Tamura A, Matsunobu T, Mizutari K, Niwa K, Kurioka T, Kawauchi S, et al. Low-level laser therapy for prevention of noise-induced hearing loss in rats. Neurosci Lett. 2015;595:81–6. https://doi.org/10.1016/j. neulet.2015.03.031 31. Tamura A, Matsunobu T, Tamura R, Kawauchi S, Sato S, Shiotani A. Photobiomodulation rescues the cochlea from noise-induced hearing loss via upregulating nuclear factor kappaB expression in rats. Brain Res. 2016;1646:467–74. https://doi.org/10.1016/j.brainres.2016.06.031 32. Bale G, Elwell CE, Tachtsidis I. From Jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase. J Biomed Opt. 2016;21(9):91307. https://doi.org/10.1117/1.JBO.21.9.091307 33. Beyer W, Baumgartner R, Tauber S. Dosimetric analysis for low- level-lasertherapy (LLLT) of the human inner ear at 593nm and 633nm. In: Bottiroli GF, Karu TI, Lubart R, editors. Effects of low- power light on biological systems IV. Proceedings. Vol 3569. Proceed- ings of the society of photo-optical instrumentation engineers (SPIE); 1998. p. 56–9. https://doi.org/10.1117/12.334384 34. Sommer AP, Pinheiro AL, Mester AR, Franke RP, Whelan HT. Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA's light-emitting diode array system. J Clin Laser Med Surg. 2001;19(1):29–33. https://doi.org/10.1089/ 104454701750066910 SUPPORTING INFORMATION Additional supporting information can be found online in the Support- ing Information section at the end of this article. How to cite this article: Nikookam Y, Zia N, Lotfallah A, Muzaffar J, Davis-Manders J, Kullar P, et al. The effect of photobiomodulation on hearing loss: A systematic review. Clinical Otolaryngology. 2024;49(1):41–61. https://doi.org/ 10.1111/coa.14113 NIKOOKAM ET AL. 61 17494486, 2024, 1, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1111/coa.14113 by C apes, W iley O nline L ibrary on [29/10/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense https://doi.org/10.1007/s10103-011-1028-5https://doi.org/10.1117/1.JBO.17.6.068002 https://doi.org/10.1117/1.JBO.17.6.068002 https://doi.org/10.1117/1.JBO.18.12.128003 https://doi.org/10.1117/1.JBO.18.12.128003 https://doi.org/10.1007/s10103-021-03304-2 https://doi.org/10.1159/000508619 https://doi.org/10.1159/000508619 https://doi.org/10.1016/j.neulet.2015.03.031 https://doi.org/10.1016/j.neulet.2015.03.031 https://doi.org/10.1016/j.brainres.2016.06.031 https://doi.org/10.1117/1.JBO.21.9.091307 https://doi.org/10.1117/12.334384 https://doi.org/10.1089/104454701750066910 https://doi.org/10.1089/104454701750066910 https://doi.org/10.1111/coa.14113 https://doi.org/10.1111/coa.14113 The effect of photobiomodulation on hearing loss: A systematic review 1 INTRODUCTION 1.1 Background and epidemiology 1.2 PBMT mechanism of action 1.3 Objectives 2 METHODS 2.1 Study inclusion criteria 2.2 Search strategy 2.3 Selection of studies 2.4 Data extraction 2.5 Risk of bias quality assessment 3 RESULTS 3.1 Description of studies 3.2 Quality of studies 3.3 Audiological outcomes 3.4 PBMT delivery method 3.5 Photobiomodulation therapy outcomes 4 DISCUSSION 4.1 PBMT versus placebo 4.2 PBMT versus systemic therapy 4.3 PBMT positioning and characteristics 4.4 PBMT as a pre-treatment therapy 4.5 Future of PBMT 5 CONCLUSION AUTHOR CONTRIBUTIONS ACKNOWLEDGEMENT FUNDING INFORMATION CONFLICT OF INTEREST STATEMENT PEER REVIEW DATA AVAILABILITY STATEMENT REFERENCESreporting data on pre-and post-intervention audiometric outcomes and those that did not assess the effect of PBMT on hearing outcomes were excluded. Key points • Photobiomodulation therapy (PBMT) is a potential non- invasive treatment option for hearing loss with minimal adverse effects. • To date, only one human trial has assessed the use of PBMT in the treatment of hearing loss. • This study showed no statistically significant improve- ment in hearing outcomes. • Animal studies utilising longer wavelength PBMT for lon- ger duration of therapy demonstrated improvements in audiological outcomes. • Further human trials are required to determine the effi- cacy and safety of PBMT to treat hearing loss. 42 NIKOOKAM ET AL. 17494486, 2024, 1, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1111/coa.14113 by C apes, W iley O nline L ibrary on [29/10/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense 2.2 | Search strategy The initial search was conducted in September 2020 and repeated in July 2022 to include relevant papers published since the original search. The following electronic databases were searched: MEDLINE, EMBASE, CENTRAL, ClinicalTrials.gov and Web of Science including Web of Science Core collection. No limit was placed on language or publication year. Search strategy terms used are summarised in the Appendix S2. Hand-searching reference lists of the included relevant systematic reviews and citation searches were conducted to identify additional studies missed from the electronic database searches. 2.3 | Selection of studies Initial searches were performed by Yasmin Nikookam and verified by Nawal Zia. The two reviewers independently screened titles and abstracts of the studies from the database search inclusion and to identify duplicates. Full texts were reviewed independently against the inclusion and exclusion criteria. Disagreements at the abstract and full-text screening stages were discussed within the author team (Yasmin Nikookam/Nawal Zia) and where applicable, with a third reviewer (Jameel Muzaffar), and consensus was reached in determin- ing eligible studies. The second search was conducted in the same manner by two authors (Jennifer Davis-Manders/Andrew Lotfallah) and corroborated by a third (Jameel Muzaffar). 2.4 | Data extraction A standardised Microsoft Excel sheet was used for data extraction from the included studies. This was designed and piloted prior to the data extraction phase. The data of interest comprised of study characteristics (study design, location, duration), primary and secondary outcome data and operative adverse events. Missing data were sought, where possible, by email contact with study authors. Any discrepancies were identified and resolved through discussion within the author team. 2.5 | Risk of bias quality assessment Two reviewers (Yasmin Nikookam/Nawal Zia) independently assessed the methodological quality of the included studies. Animal studies were assessed using the SYRCLE tool.15 Human studies were assessed using the Oxford Centre for Evidence Based Medicine (OCEBM) grading system, and the Cochrane Risk of Bias 2 (RoB2) tool for randomised control trials.16,17 Any disagreements were resolved through discussion between the two authors (Yasmin Nikookam/ Nawal Zia), and where necessary, consultation with the third review author (Jameel Muzaffar). The above process was followed for the second search conducted by two authors (Andrew Lotfallah/Jameel Muzaffar). 3 | RESULTS A flowchart detailing study selection according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines is included in Figure 1 (See Supplementary Materials). 3.1 | Description of studies Seventeen studies met the inclusion criteria with a total of 397 sub- jects (30 humans in a single study, 327 animals in 11 studies, and 40 animal specimens in 5 laboratory studies).7,12,13,18–31 Only one study, a randomised controlled trial, assessed the effect of PBMT on humans. Subjects were selected for inclusion using an unspecified screening questionnaire and randomly allocated to a con- trol, treatment and placebo group.7 This study used 532/635 nm com- bination laser, a shorter wavelength than all animal studies. Clinical follow-up period was not stated. Sixteen studies were conducted on animal models, published between 2012 and 2021. From these, 10 were non-randomised con- trolled trials, 4 were in vitro studies, one ex vivo study, and one randomised-controlled trial. Three studies used mouse models, ten used rat models, two used a guinea pig model, and one used a gerbil model. The wavelength used was classified in all studies: 11 used 808 nm, 3 used 830 nm, 1 used 908 nm, 1 used 810 nm. The duration of PBMT ranged from 4 to 60 min in a session. The follow-up duration of PBMT in animals ranged from 5 to 28 days. Table 1 sum- marises study characteristics for both human and animal studies. 3.2 | Quality of studies The methodological quality of included studies was modest, mainly consisting of non-randomised controlled studies (n = 10). All animal studies (n = 16) were prospective, and all studies had a minimum of five animals, or two cell lines which underwent PBMT. The single human study7 comprised a randomised, double-blind con- trolled prospective study that had 30 subjects. This study was OCEBM grade I. Participants were randomly allocated to treatment, placebo and control groups with adjustment to ensure similar baseline characteristics, although the method of randomisation was not described. Double blind- ing of subjects and researchers administering placebo and treatment laser therapy was also implemented to limit potential bias. Heterogeneity of audiological, PBMT duration, power, and wave- length outcomes within and between human (n = 1) and animal (n = 16) studies precluded a meta-analysis. Within the human study, the limitations were the reporting of complications following PBMT and the follow-up duration of patients who had PBMT. Quality assessment of the human studies is summarised in Table 4. Within the animal studies there were limitations in post-treatment observation duration of animals receiving PBMT, audiological data prior to PBMT delivery, age of subjects, housing of animals and PBMT technique. Quality assessment of animal studies is summarised in Table 5. NIKOOKAM ET AL. 43 17494486, 2024, 1, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1111/coa.14113 by C apes, W iley O nline L ibrary on [29/10/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense http://clinicaltrials.gov 3.3 | Audiological outcomes Audiological outcomes in humans are summarised in Table 2. Audio- logical outcome measures were assessed using pure-tone audiome- try, speech perception, and transient evoked otoacoustic emissions. Pre-PBMT hearing status was reported, and all patients recruited had moderate to severe, non-fluctuating hearing loss, with an average pure-tone audiometric score of 39.6 dB HL (SD 15.3 dB).7 The causes of hearing loss were not stated. The PBMT treatment protocol was based on a pilot study conducted by HearingMed (unpublished) showing an improvement of word recognition scores following PBMT.7 Audiological outcomes in animals are summarised in Table 3. A total of 12 different audiological outcomes measures were used with inconsistency of pre- and post-PBMT reporting across all included studies. Twelve studies reported pre-PBMT audiological assessments. Auditory brainstem responses (ABR) were recorded in 12 studies post-PBMT and 11 pre-PBMT, compoundaction potential (CAP) scores were measured in 1 study pre- and post-PBMT, distortion product otoacoustic emissions (DPOAE) were recorded in 1 study post-PBMT, and tympanic membrane assessment in 1 study post- PBMT. Histological analysis and immunohistochemistry were also used to assess several outcome parameters post-PBMT including hair cell count (10 studies), inducible nitric oxide synthase (iNOS) (2 stud- ies), cleaved caspase 3 (2 studies), spiral ganglion cell number (SGN) (1 study), cell viability (1 study), reactive oxygen species (ROS) inten- sity (1 study), morphology of nerve fibres (1 study) and ATP (1 study). 3.4 | PBMT delivery method All 17 studies outlined the PBMT technique. Twelve studies outlined the distance of the optical fibre tip from the PBMT target site, ranging from 1 mm to 8 cm, with a distance of 1 mm most Records identified from: (n = 239) � WEB OF SCIENCE* (n = 139) � EMBASE (n = 54) � MEDLINE (n = 32) � COCHRANE (n = 13) � CLINICALTRIALS.GOV (n = 1) Records removed before screening: Duplicate records removed (n = 117) Records screened (n = 122) Records excluded (n = 73) Reports assessed for eligibility (n = 49) Reports excluded (n = 32) � Study unsuitable e.g. editorial, conference abstract (n = 5) � Could not access full text (n = 9) � Wrong population (n = 5) � No relevant primary or secondary outcomes (n = 12) � Foreign language (n = 1) Studies included in review (n = 17) Identification of studies via databases and registers Id en tif ic at io n Sc re en in g In cl ud ed *WEB OF SCIENCE includes the databases: Web of Science Core collection, BIOSIS, Data Citation Index, Derwent Innovations Index, KCI-Korean Journal Database, MEDLINE, Russian Citation Index, SciELO Citation Index and Zoological Records F IGURE 1 PRISMA flow diagram.16 44 NIKOOKAM ET AL. 17494486, 2024, 1, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1111/coa.14113 by C apes, W iley O nline L ibrary on [29/10/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense T A B L E 1 St ud y ch ar ac te ri st ic s. A ut ho r, ye ar (r ef .) C o un tr y P ar ti ci pa nt ty pe St ud y ty pe P ro sp ec ti ve / re tr o sp ec ti ve N um be r o f pa rt ic ip an ts N um be r o f st ud y gr o up s N um be r o f ea rs P B M T ch ar ac te ri st ic s M ax p o st - P B M T fo llo w - u p (d ) In te rv en ti o n C o nt ro l (s ) P o w er (m W ) W av el en gt h (s )u se d (n m ) D u ra ti o n o f P B M T 1 S. G o o dm an et al ., 2 0 1 3 7 U SA H um an s R C T P ro sp ec ti ve 3 0 3 1 8 4 2 7 .5 5 3 2 & 6 3 5 4 m in - 2 D .B as ta et al ., 2 0 2 0 1 8 G er m an y A ni m al s (m o us e) N o n- R C T P ro sp ec ti ve 7 8 7 5 5 2 3 1 2 0 8 0 8 5 –4 0 m in - 3 S. C ha ng et al ., 2 0 1 2 1 9 K o re a A ni m al s (r at s) N o n- R C T P ro sp ec ti ve 6 4 6 6 1 6 5 8 3 0 6 0 m in /d ay fo r 1 2 d ay s 1 2 4 S. C ha ng et al ., 2 0 1 6 2 0 K o re a A ni m al s (r at s) N o n- R C T P ro sp ec ti ve 1 7 5 1 4 N A C & LL LT (n = 7 ) A LC A R & LL LT (n = 7 ) 1 6 1 6 5 8 0 8 6 0 m in /d ay fo r 1 2 d ay s 1 2 5 S. C ha ng et al ., 2 0 1 9 1 2 K o re a A ni m al s (m o us e H E I- O C 1 ) In vi tr o P ro sp ec ti ve 4 a 4 a 2 a 2 a 1 5 8 0 8 1 5 m in - 6 T .G ua n et al ., 2 0 1 5 2 1 C hi na A ni m al s (g ui ne a pi gs ) In vi vo P ro sp ec ti ve - - - - 0 –2 2 0 0 9 0 8 - - 7 M .L ee et al ., 2 0 1 6 2 2 K o re a A ni m al (g er bi ls ) N o n -R C T P ro sp ec ti ve 3 0 3 1 8 2 9 2 0 0 8 0 8 6 0 m in /d ay fo r 7 d ay s 7 8 J. Le e et al ., 2 0 1 6 2 3 K o re a A ni m al s (r at s) N o n- R C T P ro sp ec ti ve 1 8 3 1 8 6 1 6 5 8 0 8 6 0 m in /d ay fo r 1 5 d ay s 1 5 9 J. Le e et al ., 2 0 1 9 2 4 K o re a A ni m al s (r at s) N o n- R C T P ro sp ec ti ve 1 5 2 7 8 1 6 5 8 0 8 6 0 m in /d ay fo r 7 d ay s 1 4 1 0 C .R he e et al ., 2 0 1 2 2 5 K o re a A ni m al s (r at s) E x vi vo P ro sp ec ti ve 1 9 4 1 6 1 5 8 8 1 0 6 0 m in /d ay fo r 6 d ay s 6 1 1 C .R he e et al ., 2 0 1 2 2 6 K o re a A ni m al s (r at s) N o n- R C T P ro sp ec ti ve 2 2 3 1 6 6 1 0 0 –1 6 5 8 3 0 6 0 m in /d ay fo r 1 2 d ay s 1 2 C .R he e et al ., 2 0 1 3 2 7 K o re a A ni m al s (r at s) In vi vo P ro sp ec ti ve 1 1 2 8 1 4 2 0 0 8 3 0 6 0 m in /d ay fo r 1 0 d ay s 1 0 1 3 C .R he e et al ., 2 0 1 4 1 3 K o re a A ni m al s (m o us e H E I- O C 1 ) In vi tr o P ro sp ec ti ve 6 6 a 3 a 3 a 1 5 8 0 8 1 5 m in - 1 4 C .R he e et al ., 2 0 2 1 2 8 K o re a A ni m al s (r at s) N o n- R C T P ro sp ec ti ve 3 0 7 2 4 6 1 6 5 8 0 8 6 0 m in /d ay fo r 1 2 d ay s 1 2 1 5 I. St rü bi ng et al ., 2 0 2 0 2 9 G er m an y A ni m al s (g ui ne a pi gs ) R C T P ro sp ec ti ve 8 2 8 8 1 2 0 8 0 8 1 5 m in 2 8 1 6 A .T am ur a et al ., 2 0 1 5 3 0 Ja pa n A ni m al s (r at s) N o n- R C T P ro sp ec ti ve 3 4 3 5 1 0 1 0 0 8 0 8 3 0 m in /d ay fo r 5 d ay s 5 1 7 A .T am ur a et al ., 2 0 1 6 3 1 Ja pa n A ni m al s (r at s) N o n- R C T P ro sp ec ti ve 6 9 3 5 1 0 1 6 5 8 0 8 3 0 m in /d ay fo r 5 d ay s 5 N ot e: - C o rr el at es to no t st at ed . a C o rr el at es to nu m be r o f ce ll w el ls us ed . NIKOOKAM ET AL. 45 17494486, 2024, 1, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1111/coa.14113 by C apes, W iley O nline L ibrary on [29/10/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense T A B L E 2 P ri m ar y o ut co m es in hu m an st ud ie s. St ud y re fe re nc e St ud y da ta P re -P B M T da ta P o st -P B M T da ta O ve ra ll b en ef it (s u b je ct iv e as se ss m en t) Q u al it y as se ss m en t S. G o o dm an et al ., 2 0 1 3 , U SA G ro up s: 3 G ro up 1 :l as er tr ea tm en t (n = 9 ) G ro up 2 :p la ce bo (n = 1 0 ) G ro up 3 :c o nt ro l( n = 1 1 ) In ve st ig at io na ld ev ic e: E rc ho ni aE H Ll as er T w o la se r di o de s: 5 3 2 nm w av el en gt h, an d 6 3 5 nm w av el en gt h P B M T po w er :7 .5 m W P B M T du ra ti o n: 4 m in M ea n ag e o f su bj ec ts : 5 2 .8 H ea ri ng lo ss : N o t st at ed ? Se ve re ? P B M T ad m in is tr at io n de ta ils : F o llo w ed a pr o to co lt ha t in cl ud ed 7 st ep s. T he la se r w as pl ac ed in 4 di ff er en t po si ti o ns : 1 ). T em po ro m an di b ul ar jo in t, an te ri o r to th e ex te rn al au d it o ry m ea tu s o f th e ea r, 2 in ch es fr o m th e su rf ac e o f th e sk in . 2 ). M id lin e o f th e ce rv ic al sp in e, 3 in ch es fr o m th e sk in su rf ac e. 3 )T o p o f th e he ad ,2 in ch es fr o m th e sk in su rf ac e. 4 )E xt er na la ud it o ry m ea tu s. A ud io lo gi ca ld at a: P ur e- to ne au d io m et ry , T E O A E an d H IN T co nd uc te d pr et es t. B ef o re en ro lm en t a lis t o f sc re en in g qu es ti o ns de te rm in ed el ig ib ili ty . T hi s w as us ed to ex cl ud e su bj ec ts w ho se he ar in g m ay fl uc tu at e P ur e- T o ne A ud io m et ry :* C al cu la te d as ch an ge in PT A (p os tt es t m in us pr et es t) ,n eg at iv e va lu es in di ca te im pr ov em en t in th re sh ol ds .F ol lo w in g ex pr es se d as a ra ng e: G ro up 1 :� 1 .8 to + 1 .8 G ro up 2 :� 1 .8 to + 1 .8 G ro up 3 :0 to �1 .8 C ha ng e in th e au di om et ri c H FA .C ha ng e ca lc ul at ed aspo st te st m in us pr et es t; ne ga ti ve va lu es in di ca te im pr ov em en t in th re sh ol ds .F ol lo w in g ex pr es se d as a ra ng e: G ro up 1 :� 1 .8 to + 1 .8 G ro up 2 :� 1 .8 to + 2 .5 G ro up 3 :� 1 .8 to + 3 .2 Sp ee ch un de rs ta nd in g: * C ha ng e in C ST sc or es ex pr es se d as ra ti on al is ed ar cs in e un it s (r au ). Fo llo w in g re po rt ed as a ra ng e: G ro up 1 :� 1 3 .0 to + 8 .0 G ro up 2 :� 9 .0 to + 8 .0 G ro up 3 :+ 2 .0 to + 1 0 .0 T ra ns ie nt E vo ke d O to ac o us ti c E m is si o ns :* C ha ng e in TE O A E PT A am pl it ud es (1 –2 kH z) .F ol lo w in g re po rt ed as am pl it ud e di ff er en ce (d B SP L) ra ng e: G ro up 1 :� 2 .0 to + 1 .5 G ro up 2 :� 3 .0 to + 1 .5 G ro up 3 :� 2 .2 to + 1 .5 C ha ng e in TE O A E H FA (2 –8 kH z) am pl it ud es .F ol lo w in g re po rt ed as am pl it ud e di ff er en ce (d B SP L) ra ng e: G ro up 1 :� 1 .6 to + 1 .8 G ro up 2 :� 1 .8 to + 0 .8 G ro up 3 :� 1 .6 to + 0 .2 5 su bj ec ts no t in cl ud ed in th e an al ys is . N o st at is ti ca lly si gn if ic an t ef fe ct o f LL LT o n au d it o ry fu n ct io n w as fo u n d ,a s as se ss ed b y p u re -t o n e au d io m et ry ,s p ee ch u n d er st an d in g, an d T E O A E s. A d d it io n al ly , n o in d iv id u al su b je ct s sh o w ed an y cl in ic al ly si gn if ic an t ch an ge . O C E B M gr ad e: 1 B ra zz el li ri sk o f b ia s ch ec kl is t: lo w = 1 2 , h ig h = 0 ,u n cl ea r = 6 46 NIKOOKAM ET AL. 17494486, 2024, 1, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1111/coa.14113 by C apes, W iley O nline L ibrary on [29/10/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense T A B L E 3 P ri m ar y o ut co m es in an im al st ud ie s. St ud y re fe re nc e St ud y da ta P re -P B M T da ta P o st -P B M T da ta O ve ra ll b en ef it (s u b je ct iv e as se ss m en t) Q u al it y as se ss m en t D .B as ta et al ., 2 0 2 0 , G er m an y G ro up s: G ro up 1 :c o nt ro l, no no is e ex po su re o r N IR pr e- tr ea tm en t (n = 7 ) G ro up 2 :n o is e o nl y, no is e- ex po su re bu t w it ho ut N IR -t re at m en t (n = 1 6 ) G ro up 3 :5 m in N IR -t re at m en t (n = 1 6 ) G ro up 4 :1 0 m in N IR -t re at m en t (n = 1 6 ) G ro up 5 :2 0 m in N IR -t re at m en t (n = 7 ) G ro up 6 :3 0 m in N IR -t re at m en t (n = 8 ) G ro up 7 :4 0 m in N IR -t re at m en t (n = 8 ). In ve st ig at io na ld ev ic e: 8 0 8 nm (D B 8 0 8 -1 2 0 -3 (2 2 � 6 5 ), P ic o tr o ni c, G er m an y) P o w er de ns it y: 3 1 2 m W /c m 2 . P B M T po w er :1 2 0 m W P B M T du ra ti o n: 5 –4 0 m in M ea n ag e o f su bj ec ts :1 0 –1 1 w ee ks H ea ri ng lo ss : N o is e- in du ce d he ar in g lo ss . P B M T ad m in is tr at io n de ta ils : T he la se r m o du le w as pl ac ed at th e o ut er ea r ca na la t ex ac tl y th e an gl e th at al lo w ed a to ta l co ve ra ge o f th e co ch le a w it h th e la se r be am o f ap pr o xi m at el y 7 m m di am et er . N O T E :P B M w as ad m in is te re d be fo re N IH L w as in du ce d. A ud io lo gi ca ld at a: A B R re co rd in gs 2 da ys be fo re an d 2 w ee ks af te r no is e ex po su re . A B R -t hr es ho ld sh if t G ro up s 3 –7 sh o w ed a lo w er gr o up m ea n he ar in g lo ss fo llo w in g th e no is e ex po su re co m pa re d to gr o up 2 . C o ch le ar ha ir ce lls N o lo ss o f in ne r ha ir ce lls co ul d be de te ct ed bi la te ra lly fo r an y o f th e gr o up s. G ro up 2 :a si gn if ic an t de cr ea se in o ut er ha ir ce ll co u n ts w as fo un d fo r bo th ea rs co m pa re d to gr o up 1 . G o o d o u tc o m es . A si n gl e N IR p re -t re at m en t in d u ce s a ve ry ef fe ct iv e p ro te ct io n o f co ch le ar st ru ct u re s fr o m n o is e ex p o su re .P re -e xp o su re o f 1 0 m in se em s to em er ge as th e o p ti m al d o sa ge fo r o u r ex p er im en ta ls et u p .A sa tu ra te d ef fe ct o cc u rr ed w it h h ig h er d o sa ge - tr ea tm en ts .T h es e re su lt s ar e re le va n t fo r p ro te ct io n o f re si d u al h ea ri n g in o to n eu ro su rg er y su ch as co ch le ar im p la n ta ti o n . SY R C LE 's ri sk o f b ia s to o l: Lo w = 7 ; h ig h = 0 ; u n cl ea r = 3 S. C ha ng et al ., 2 0 1 2 ,K o re a G ro up s: 2 G ro up 1 :L LL T 3 da ys po st no is e ex po su re G ro up 2 :L LL T 7 da ys po st no is e ex po su re G ro up 3 :c o nt ro le ar s (r ig ht ea rs fr o m gr o up 1 ) G ro up 4 :c o nt ro le ar s (r ig ht ea rs fr o m gr o up 2 ) In ve st ig at io na ld ev ic e: 8 3 0 nm di o de la se r P B M T po w er :1 6 5 m W /c m 2 (5 9 4 J/ cm 2 ) P B M T du ra ti o n: 6 0 m in fo r 1 2 da ys M ea n ag e o f su bj ec ts :n o t st at ed H ea ri ng lo ss : N o is e- in du ce d — su bj ec ts ex po se d to na rr o w ba nd no is e, 1 2 0 dB ,1 6 kH z, 6 h P B M T ad m in is tr at io n de ta ils : Le ft ea rs w er e ir ra di at ed fr o m gr o up s 1 an d 2 . La se r fi br e w as de liv er ed th ro ug h a ho llo w tu be in to th e ex te rn al au di to ry ca na ls o th at th e di st an ce fr o m th e ti p o f th e fi br e to th e su rf ac e o f th e ty m pa ni c m em br an e w as ap pr o xi m at el y Im m . A ud io lo gi ca ld at a: N o t st at ed . A B R T hr es ho ld Sh if ts kH z ar e in o rd er o f 4 ,8 ,1 2 ,1 6 ,3 2 . A ft er th e 1 2 th ir ra di at io n: G ro up 1 :2 2 ± 4 .2 ,3 0 ± 3 .5 ,6 5 ± 1 1 .9 , 3 0 ± 1 2 .9 an d 2 5 ± 2 .2 dB SP L G ro up 2 :3 2 .5 ,4 1 .3 ,6 0 .0 ,5 7 .5 ,a nd 4 5 .0 dB SP L G ro up 3 :7 0 ± 2 2 .9 ,8 5 ± 1 5 .8 ,9 0 .3 ± 2 2 .9 , 8 0 ± 1 6 .8 an d 7 5 .8 ± 2 1 .4 dB SP L G ro up 4 :2 5 .0 ,3 7 .5 ,5 2 .5 ,3 8 .8 ,a nd 2 6 .3 dB SP L. G o o d o u tc o m es . T re at in g ea rs w it h LL LT so o n er (g ro u p 1 )v er su s la te r (g ro u p 2 )l ea d s to b et te r o u tc o m es an d b et te r h ea ri n g re co ve ry . SY R C LE 's ri sk o f b ia s to o l: Lo w = 2 ; h ig h = 0 ; u n cl ea r = 1 0 S. C ha ng et al ., 2 0 1 6 ,K o re a N um be r o f pa rt ic ip an ts :1 7 G ro up s: 5 G ro up 1 :C o nt ro l( no is e o nl y) (n = 6 ea rs ). G ro up 2 :N A C (N = 6 ea rs ). G ro up 3 :A LC A R (N = 4 ea rs ). G ro up 4 :N A C pl us La se r (N = 7 ea rs ). G ro up 5 :A LC A R pl us La se r (N = 7 ea rs ). In ve st ig at io na ld ev ic e: 8 0 8 -n m di o de la se r (W O N -T E C H ,K o re a) . [in se rt th e de ta ils o f th e P B M T de vi ce e. g. th e w av el en gt h us ed ] P B M T ad m in is tr at io n de ta ils : P B M T de liv er ed 1 da y af te r no is e in su lt . D el iv er ed vi a o pt ic fi br e (c o re fi br e 6 2 .5 μm / cl ad di ng 1 2 5 μm ) in se rt ed in to th e ex te rn al ac o us ti c ca na l th ro ug h a ho llo w tu be . T ip o f fi br e po si ti o ne d A ud it o ry br ai ns te m re sp o ns e (A B R ) Th re sh ol d of 6t h la se r ir ra di at io n: G ro up 1 :8 kH z = 6 9 .2 ± 8 .9 ;1 6 kH z = 6 0 .8 ± 7 .1 ; 3 2 kH z = 5 3 .3 ± 8 .0 G ro up 2 :8 kH z = 6 1 .7 ± 1 1 .9 ;1 6 kH z = 5 0 .8 ± 5 .0 ; 3 2 kH z = 4 7 .5 ± 3 .8 . G ro up 3 :8 kH z = 5 9 .0 ± 1 5 .1 ;1 6 kH z = 4 3 .0 ± 8 .7 ; 3 2 kH z = 4 1 .0 ± 7 .1 G ro up 4 :8 kH z = 5 9 .2 ± 1 4 .6 ;1 6 kH z = 5 0 .0 ± 8 .0 ; 3 2 kH z = 4 5 .0 ± 7 .8 G o o d o u tco m es . N A C in co m b in at io n w it h LL LT w as m o re ef fe ct iv e at im p ro vi n g N IH L ea rl ie r th an LL LT al o n e. H o w ev er ,t h is ad d it iv e o r sy n er gi st ic ef fe ct w as n 't as ef fe ct iv e at im p ro vi n g N IH L w h en co m p ar ed to LL LT al o n e af te r 1 2 d ai ly th er ap y. SY R C LE 's ri sk o f b ia s to o l: Lo w = 7 ; h ig h = 0 ; u n cl ea r = 3 (C o n ti n u es ) NIKOOKAM ET AL. 47 17494486, 2024, 1, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1111/coa.14113 by C apes, W iley O nline L ibrary on [29/10/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense T A B L E 3 (C o nt in ue d) St ud y re fe re nc e St ud y da ta P re -P B M T da ta P o st -P B M T da ta O ve ra ll b en ef it (s u b je ct iv e as se ss m en t) Q u al it y as se ss m en t P B M T po w er :1 6 5 m W (5 9 .4 J) . P B M T du ra ti o n: 6 0 m in a da y o ve r 1 2 da ys . M ea n ag e o f su bj ec ts :n o t st at ed . H ea ri ng lo ss : N o is e- in du ce d he ar in g lo ss . R at s ex po se d to o ne -t im e ex po su re to a na rr o w ba nd no is e o f 1 1 6 dB SP L ce nt er ed at a fr eq ue nc y o f 1 6 kH z (b an dw id th 1 kH z) fo r 5 h. 1 –2 m m aw ay fr o m th e ty m pa ni c m em br an e. A ud io lo gi ca ld at a: A B R s w er e m ea su re d be fo re no is e ex po su re fo r gr o up 1 o nl y. P ri o r to P B M T al l pa rt ic ip an ts w er e de em ed to ha ve N IH L. A B R re ad in gs fr o m gr o up s 2 –5 fo llo w in g P B M T w er e co m pa re d to gr o up 1 . G ro up 5 :8 kH z = 5 7 .0 ± 1 2 .1 ;1 6 kH z = 4 9 .0 ± 8 .2 ; 3 2 kH z = 4 3 .8 ± 6 .6 Th re sh ol d of 1 2 th la se r ir ra di at io n: G ro up 1 :8 kH z = 7 5 .0 ± 3 .8 ;1 6 kH z = 6 0 .0 ± 1 0 .0 ; 3 2 kH z = 5 5 .0 ± 7 .7 G ro up 2 :8 kH z = 7 5 .0 ± 1 1 .9 ;1 6 kH z = 5 0 .0 ± 1 1 .5 ; 3 2 kH z = 4 2 .5 ± 8 .7 G ro up 3 :8 kH z = 5 2 .5 ± 2 .9 ;1 6 kH z = 3 5 .0 ± 4 .5 ; 3 2 kH z = 3 0 .0 ± 5 .3 G ro up 4 :8 kH z = 6 5 .0 ± 8 .8 ;1 6 kH z = 5 0 .0 ± 7 .7 ; 3 2 kH z = 4 6 .7 ± 6 .8 G ro up 5 :8 kH z = 6 1 .7 ± 2 .6 ;1 6 kH z = 4 5 .0 ± 4 .5 ; 3 2 kH z = 4 0 .0 ± 3 .8 H ai r ce ll co un t A pi ca l: G ro up 1 :8 2 .4 ± 5 .8 G ro up 2 :8 1 .8 ± 4 .1 G ro up 3 :8 8 .9 ± 2 .3 G ro up 4 :8 4 .8 ± 1 .4 G ro up 5 :8 4 .3 ± 2 .9 M id dl e: G ro up 1 :7 2 .0 ± 6 .9 G ro up 2 :8 0 .6 ± 2 .2 G ro up 3 :8 5 .1 ± 1 .5 G ro up 4 :8 0 .8 ± 2 .5 G ro up 5 :8 0 .6 ± 3 .2 B as al : G ro up 1 :6 1 .2 ± 9 .7 G ro up 2 :8 1 .0 ± 1 .2 G ro up 3 :8 2 .4 ± 3 .6 G ro up 4 :7 1 .6 ± 8 .6 G ro up 5 :7 5 .8 ± 2 .5 S. C ha ng et al ., 2 0 1 9 ,K o re a G ro up s: 4 G ro up 1 :c o nt ro l( no G M an d no P B M ) G ro up 2 :P B M o nl y G ro up 3 :G M o nl y G ro up 4 :G M an d P B M In ve st ig at io na ld ev ic e: 8 0 8 nm ne ar -i nf ra re d di o de la se r (W o nT ec h, D ae je o n, R ep ub lic o f K o re a) P B M T po w er :1 5 m W fo r 1 5 m in (t o ta le ne rg y de ns it y: 1 3 .5 J/ cm 2 ) P B M T du ra ti o n: 1 5 m in P B M T ad m in is tr at io n de ta ils : St ar te d 0 .5 –9 h af te r G M tr ea tm en t. A ud io lo gi ca ld at a: N o t st at ed . A T P le ve ls :* R el at iv e A TP le ve li n 1 0 6 ce lls fo llo w in g PB M : G ro up 1 :i m m ed ia te ly = 1 .0 0 ;+ 1 h = 0 .9 8 ;+ 2 h = 1 .0 0 G ro up 2 :i m m ed ia te ly = 1 .1 9 ;+ 1 h = 1 .1 2 ;+ 2 h = 1 .0 0 G ro up 3 :i m m ed ia te ly = 0 .5 5 ;+ 1 h = 0 .6 8 ;+ 2 h = 0 .8 2 G ro up 4 :i m m ed ia te ly = 0 .9 2 ;+ 1 h = 0 .8 2 ;+ 2 h = 0 .8 4 C el lv ia bi lit y: In cr ea se d ce ll vi ab ili ty o f au di to ry ce lls by P B M af te r G M - in du ce d o to to xi ci ty ,w hi ch ca n ca us e pe rm an en t h ai r ce ll da m ag e an d se ns o ri ne ur al he ar in g lo ss ,b y in cr ea si n g A T P le ve ls an d M M P G o o d o u tc o m es . LL LT im p ro ve d ce ll vi ab ili ty o f au d it o ry ce lls an d in cr ea se s A T P im m ed ia te ly af te r ex p o su re .H o w ev er ,i t re ac h es co n tr o l( gr o u p 1 le ve ls )a ft er 2 h o f ex p o su re to P B M . SY R C LE 's ri sk o f b ia s to o l: Lo w = 6 ; h ig h = 0 ; u n cl ea r = 4 48 NIKOOKAM ET AL. 17494486, 2024, 1, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1111/coa.14113 by C apes, W iley O nline L ibrary on [29/10/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense T A B L E 3 (C o nt in ue d) St ud y re fe re nc e St ud y da ta P re -P B M T da ta P o st -P B M T da ta O ve ra ll b en ef it (s u b je ct iv e as se ss m en t) Q u al it y as se ss m en t M ea n ag e o f su bj ec ts :n o t st at ed H ea ri ng lo ss : G en ta m ic in -i nd uc ed o to to xi ct y T .G ua n et al ., 2 0 1 5 ,C hi na G ro up s: un cl ea r In ve st ig at io na ld ev ic e: 9 8 0 -n m di o de la se r P B M T po w er :0 to 2 .2 W P B M T du ra ti o n: un cl ea r O th er :c al cu la te d ra di an t ex po su re s ra ng ed fr o m 0 to 5 3 .2 m J/ cm 2 at a pu ls e du ra ti o n o f 5 0 μs M ea n ag e o f su bj ec ts :n o t st at ed H ea ri ng lo ss : Su rg er y to de af en th e an im al . P B M T ad m in is tr at io n de ta ils : T he en d o f th e o pt ic al fi br e w as pl ac ed in pr o x- im it y to th e ro un d w in do w m em br an e an d w as vi su al ly o ri en te d to w ar d th e sp ir al ga ng lio n ce lls in R o se nt ha l's ca na li n th e ba sa lt ur n. T he di st an ce be tw ee n th e en d o f th e fi br e an d th e sp ir al ga ng lio n ce lls in th e R o se nt ha l's ca na li s ap pr o xi - m at el y 1 .0 3 m m an d th e sp o t si ze is ab o ut 0 .2 1 m m 2 in si de th e co ch le ar . A ud io lo gi ca ld at a aC A P : T he am pl it ud e o f th e aC A P be tw ee n N 1 –P 1 is m o re th an 4 0 0 μV be fo re de af en in g, w hi le af te r su rg er y no o bv io us aC A P s w er e ev o ke d by ac o us ti c st im ul i. o C A P s: W it h di ff er en t ra di an t ex po su re s: P o w er at th e en d o f th e o pt ic al fi br e w as gr ad ua lly in cr ea se d fr o m 1 .5 2 to 2 1 9 0 m W ,w it h th e co rr es po nd in g ra di at io n ex po su re ra ng in g fr o m 0 .0 3 7 to 5 3 .2 m J/ cm 2 at a pu ls e du ra ti o n o f 5 0 μs . T he am pl it ud e o f o C A P s di d no t o bv i- 2 ho ur ly in cr ea se w he n th e ra di an t ex po su re w as ab o ve 3 0 m J/ cm W it h di ff er en t st im ul us ra te : St im ul at io n ra te s fr o m 1 8 2 to 1 0 0 0 H z w it h a co ns ta n t pu ls e w id th o f 5 0 μs . N 2 in th e o C A P s w as ev id en t at st im ul at io n ra te s o f le ss th an 4 0 0 H z, ho w ev er ,a t st im ul at io n ra te s ab o ve 6 6 7 H z, o nl y N 1 an d P 1 ca n be se en . aC A P s: G o o d o u tc o m es . St im u la ti o n w it h a la se r o f 9 8 0 n m w av el en gt h ca n su cc es sf u lly in d u ce C A P s o u ts id e th e co ch le a. T h is sh o w ed th at sh o rt er - w av el en gt h n ea r- in fr ar ed p u ls ed la se r (9 8 0 n m )c an el ic it C A P fr o m a d ea fe n ed gu in ea p ig co ch le a, su gg es ti n g th e u se o f a sh o rt -w av el en gt h n ea r- in fr ar ed la se r as an al te rn at iv e st im u lu s fo r co ch lea im p la n ts . SY R C LE 's ri sk o f b ia s to o l: Lo w = 0 ; h ig h = 3 ; u n cl ea r = 7 M .L ee et al ., 2 0 1 6 ,K o re a G ro up s: 3 G ro up 1 :c o nt ro l( n = 1 1 ) G ro up 2 :o ua ba in o nl y gr o up (n = 1 8 )G ro up 3 : o ua ba in pl us la se r gr o up (n = 1 8 ) In ve st ig at io na ld ev ic e: 8 0 8 -n m di o de la se r (W O N T E C H C o ., Lt d, K o re a) P B M T po w er :2 0 0 m W P B M T du ra ti o n: 1 h/ da y fo r 7 da ys M ea n ag e o f su bj ec ts :4 –6 m o nt hs H ea ri ng lo ss : A ud it o ry ne ur o pa th y in du ce d by o ub ai n ad m in is tr at io n P B M T ad m in is tr at io n de ta ils : O pt ic fi br e (c o re si ze : 6 2 .5 m m )w as de liv er ed th ro ug h a ho llo w tu be in to th e ex te rn al ac o us ti c ca na l. La se r w as ir ra di at ed to th e ty m pa ni c m em br an e. La se r en er gy w as ex pe ct ed to be de liv er ed to th e co ch le a, sp ec if ic al ly sp ir al ga ng lio n (R o se nt ha l A B R B as el in e: G ro up 1 :4 kH z = 2 3 .0 ± 1 2 .3 ;8 kH z = 2 2 .3 ± 1 2 .3 ; 1 2 kH z = 2 5 .7 ± 1 4 .0 ;1 6 kH z = 2 3 .0 ± 1 4 .1 ; 3 2 kH z = 2 5 .9 ± 1 2 .7 dB SP L G ro up 2 :4 kH z = 3 0 .6 ± 1 7 .4 ;8 kH z = 2 2 .2 ± 1 1 .3 ; 1 2 kH z = 2 5 .3 ± 1 3 .2 ;1 6 kH z = 2 3 .1 ± 1 1 .9 ; 3 2 kH z = 2 5 .0 ± 1 3 .2 dB SP L G ro up 3 :4 kH z = 3 2 .6 ± 1 2 .3 ;8 kH z = 2 7 .1 ± 1 0 .0 ;1 2 kH z = 2 6 .5 ± 1 0 .7 ; 1 6 kH z = 2 6 .2 ± 1 0 .5 ;3 2 kH z = 2 9 .4 ± 9 .8 dB SP L 1 da y af te r ou ba in ap pl ic at io n: G ro up 2 :4 kH z = 8 0 .0 ± 0 .0 ;8 kH z = 7 8 .9 ± 2 .2 ; 1 2 kH z = 7 8 .9 ± 2 .2 ;1 6 kH z = 7 7 .2 ± 3 .6 ; 3 2 kH z = 7 7 .2 ± 3 .6 dB SP L G o o d o u tc o m es . P h o to b io m o d u la ti o n al le vi at ed th e h ea ri n g lo ss ca u se d b y o u ab ai n in d u ce d au d it o ry n eu ro p at h y. P h o to b io m o d u la ti o n ef fe ct o n h ea r- in g re sc u e w as re la te d w it h p re se rv ed n u m b er s o f sp ir al ga n gl io n ce lls th ro u gh o u t th e co ch le ar tu rn ,s yn ap ti c p u n ct a, an d n er ve fi b re s. SY R C LE 's ri sk o f b ia s to o l: Lo w = 6 ; h ig h = 0 ; u n cl ea r = 4 (C o n ti n u es ) NIKOOKAM ET AL. 49 17494486, 2024, 1, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1111/coa.14113 by C apes, W iley O nline L ibrary on [29/10/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense T A B L E 3 (C o nt in ue d) St ud y re fe re nc e St ud y da ta P re -P B M T da ta P o st -P B M T da ta O ve ra ll b en ef it (s u b je ct iv e as se ss m en t) Q u al it y as se ss m en t ca na l) w hi ch is lo ca te d w it hi n th e co ch le a. A ud io lo gi ca ld at a: A B R s m ea su re d be fo re ,o n da y 1 an d da y 7 af te r o ua ba in ad m in is tr at io n . G ro up 3 :4 kH z = 7 8 .8 ± 3 .5 ;8 kH z = 7 6 .9 ± 4 .6 ; 1 2 kH z = 8 0 .0 ± 0 .0 ;1 6 kH z = 7 8 .8 ± 2 .3 ; 3 2 kH z = 7 7 .5 ± 3 .8 dB SP L 7 da ys af te r ou ba in ap pl ic at io n: G ro up 2 :4 kH z = 7 8 .1 ± 4 .2 ;8 kH z = 7 7 .5 ± 4 .6 ; 1 2 kH z = 7 6 .4 ± 4 .8 ;1 6 kH z = 7 5 .0 ± 6 .2 ; 3 2 kH z = 7 0 .0 ± 8 .4 dB SP L G ro up 3 :4 kH z = 6 9 .7 ± 7 .2 ;8 kH z = 6 4 .4 ± 6 .8 ;1 2 kH z = 6 5 .3 ± 8 .6 ; 1 6 kH z = 6 1 .5 ± 7 .5 ;3 2 kH z = 5 7 .9 ± 8 .1 dB SP L D P O A E B as el in e: G ro up 1 :4 kH z = 6 5 .9 ± 4 .8 ;8 kH z = 3 7 .7 ± 5 .5 ; 1 2 kH z = 3 9 .1 ± 5 .0 ;1 6 kH z = 3 5 .7 ± 5 .0 dB SP L G ro up 2 :4 kH z = 6 4 .2 ± 9 .3 ;8 kH z = 3 8 .9 ± 7 .0 ; 1 2 kH z = 3 6 .7 ± 5 .7 ;1 6 kH z = 3 9 .4 ± 8 .2 dB SP L G ro up 3 :4 kH z = 6 5 .0 ± 7 .7 ;8 kH z = 3 9 .7 ± 4 .8 ; 1 2 kH z = 3 7 .1 ± 5 .0 ;1 6 kH z = 3 5 .0 ± 4 .7 dB SP L A t 7 da ys : G ro up 1 :4 kH z = 6 8 .9 ± 6 .9 ;8 kH z = 3 7 .3 ± 4 .0 ; 1 2 kH z = 3 7 .5 ± 4 .6 ;1 6 kH z = 3 7 .3 ± 5 .5 dB SP L G ro up 2 :4 kH z = 6 7 .5 ± 5 .8 ;8 kH z = 3 9 .2 ± 6 .0 ; 1 2 kH z = 3 9 .4 ± 4 .5 ;1 6 kH z = 3 9 .7 ± 5 .0 dB SP L G ro up 3 :4 kH z = 6 7 .6 ± 5 .0 ;8 kH z = 4 1 .5 ± 4 .6 ; 1 2 kH z = 4 1 .5 ± 5 .5 ;1 6 kH z = 3 9 .7 ± 6 .5 dB SP L N o si gn ifi ca nt di ff er en ce M o rp ho lo gi es o f ne rv e fi br es an d sy na pt ic pu n ct a G ro up 1 :p er ip he ra ln er ve fi br es w er e vi si bl e as a de n se m es hw o rk o f ne ur o na lp ro ce ss es m ed ia lt o IH C (IH C s w er e co nt ac te d by ro ug hl y 1 0 af fe re nt ne rv e fi br es ). G lu R 2 pu nc ta co un t = 1 7 2 ± 1 2 .7 . G ro up 2 :t hi n an d lo o se m es h- w o rk o f ne ur o na lp ro ce ss w as ev id en t (IH C s w er e co nt ac te d by ab o ut th re e af fe re nt ne rv e fi br es )a nd m ar ke dl y fe w er po st sy n ap - ti c pu nc ta w er e o bs er ve d co m pa re d to th e co nt ro l gr o up .G lu R 2 pu nc ta co un t = 4 0 ± 6 .1 . G ro up 3 :p un ct a w er e re du ce d in nu m be r co m pa re d to th e co nt ro lg ro up bu t w er e m o re nu m er o us th an in th e o ua ba in o nl y gr o up .G lu R 2 pu nc ta co un t = 1 0 4 ± 1 3 .1 . M o rp ho lo gy an d de ns it y o f SG N s G ro up 2 :s ig ni fi ca nt de cl in e o f SG N de ns it y, bu t th er e w as no ch an ge in IH C s an d O H C s in th e lo w ba sa l, hi gh ba sa l, lo w m id - dl e, an d hi gh m id dl e re gi o n. G ro up 3 :S G N co un ts si gn if ic an tl y hi gh er in lo w ba sa l, h ig h ba sa l, lo w m id dl e, an d hi gh m id dl e re gi o ns co m pa re d to th e o ua ba in gr o up ,b ut le ss th an gr o up 1 (w it ho ut st at is ti ca ls ig ni fi ca nc e) . 50 NIKOOKAM ET AL. 17494486, 2024, 1, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1111/coa.14113 by C apes, W iley O nline L ibrary on [29/10/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense T A B L E 3 (C o nt in ue d) St ud y re fe re nc e St ud y da ta P re -P B M T da ta P o st -P B M T da ta O ve ra ll b en ef it (s u b je ct iv e as se ss m en t) Q u al it y as se ss m en t J. Le e et al ., 2 0 1 6 , K o re a G ro up s: 3 G ro up 1 :c o nt ro l, no is e o nl y (n = 6 ) G ro up 2 :u ni la te ra ll as er (n = 6 ) G ro up 3 :b ila te ra ll as er (n = 6 ) In ve st ig at io na ld ev ic e: 8 0 8 nm di o de la se r (W o nt ec ,S eo ul ,S o ut h K o re a) P B M T po w er :1 6 5 m W /c m 2 (5 9 4 J) P B M T du ra ti o n: 6 0 m in s fo r 1 5 da ys M ea n ag e o f su bj ec ts :n o t st at ed H ea ri ng lo ss : N o is e- in du ce d (a cu te ac o us ti c tr au m a) . P B M T ad m in is tr at io n de ta ils : O pt ic al fi br e w as at ta ch ed to a ho llo w tu be an d pl ac ed in to th e ex te rn al ea r ca na lw hi le le av in g a di st an ce o f 1 m m be tw ee n th e fi br e ti p an d ty m pa ni c m em br an e. A ud io lo gi ca ld at a: A B R pe rf o rm ed . A B R A re in o rd er o f 4 ,8 ,1 2 ,1 6 ,3 2 kH z. B as el in e: G ro up 1 :1 8 .3 3 ,1 5 .8 3 ,1 5 ,1 4 .1 7 ,1 5 .8 3 G ro up 2 :2 0 ,1 5 ,2 0 ,1 5 .8 3 ,1 7 .5 G ro up 3 :1 7 .5 ,1 7 .5 ,1 5 .8 3 ,1 8 .3 3 ,1 5 .8 3 A ft er no is e ex po su re : G ro up 1 :4 8 .3 3 ,5 6 .6 7 ,5 7 .5 ,6 3 .3 3 ,6 1 .6 7 G ro up 2 :5 3 .3 3 ,6 3 .3 3 ,6 0 ,6 2 .5 ,6 0 G ro up 3 :5 1 .6 7 ,5 3 .3 3 ,6 3 .3 3 ,63 .3 3 ,6 0 A ft er 6t h la se r ir ra di at io n: G ro up 1 :4 3 .3 3 ,5 2 .5 ,6 0 .8 3 ,6 3 .3 3 ,6 1 .6 7 G ro up 2 :4 2 .5 ,4 9 .1 7 ,5 5 .8 3 ,6 2 .5 ,5 6 .6 7 G ro up 3 :3 6 .6 7 ,4 0 ,5 1 .5 7 ,5 1 .6 7 ,4 6 .6 7 A ft er 1 5 th la se r ir ra di at io n: G ro up 1 :3 8 .3 3 ,4 2 .5 ,5 0 ,4 8 .3 3 ,4 7 .5 G ro up 2 :2 5 .8 3 ,3 5 ,3 1 .6 7 ,3 0 ,3 2 .5 G ro up 3 :2 2 .5 ,2 5 ,2 4 .1 7 ,2 5 .8 3 ,2 1 .6 7 H ai r ce ll co un t A ve ra ge O H C s at th e: A pe x: G ro up 1 :7 0 .3 3 G ro up 2 :7 2 G ro up 3 :7 3 .6 7 M id dl e: G ro up 1 :7 3 G ro up 2 :7 2 .6 7 G ro up 3 :7 1 B as al tu rn : G ro up 1 :5 9 G ro up 2 :6 7 .5 G ro up 3 :7 2 .6 7 G o o d o u tc o m es . G re at er p o si ti ve ef fe ct s o f b ila te ra ll as er th er ap y af te r n o is e- in d u ce d h ea ri n g lo ss . B ila te ra ll as er th er ap y re su lt ed in fa st er h ea ri n g th re sh o ld re co ve ry th an d id u n ila te ra l la se r th er ap y. SY R C LE 's ri sk o f b ia s to o l: Lo w = 4 ; h ig h = 0 ; u n cl ea r = 6 J. Le e et al ., 2 0 1 9 ,K o re a G ro up s: 2 G ro up 1 :n o is e o nl y (n = 8 ) G ro up 2 :P B M (n = 7 ) In ve st ig at io na ld ev ic e: 8 0 8 nm di o de la se r (W o nt ec ,D ae je o n, So ut h K o re a) P B M T po w er :1 6 5 m W /c m 2 (5 9 4 J) P B M T du ra ti o n: 6 0 m in fo r 7 da ys M ea n ag e o f su bj ec ts :5 –6 w ee ks H ea ri ng lo ss : N o is e- in du ce d P B M T ad m in is tr at io n de ta ils : T he o pt ic al fi br e w as at ta ch ed to a ho llo w tu be an d pl ac ed in to th e ex te rn al ea r ca na l1 m m fr o m th e ty m pa ni c m em br an e. A ud io lo gi ca ld at a: T he A B R s w er e m ea su re d w it h ea ch to ne st im ul ia t th e le ft ea r to id en ti fy ch an ge s in th e he ar in g A B R * C ha ng es in th re sh ol d (d B )a ft er no is e ex po su re (d ay [d B ]) *: 1 2 kH z: G ro up 1 :1 [2 0 ], 3 [1 0 ], 7 [1 2 ], 1 4 [7 ] G ro up 2 :1 [2 0 ], 3 [4 ], 7 [5 ], 1 4 [2 ] 1 6 kH z: G ro up 1 :1 [3 8 ], 3 [2 5 ], 7 [2 2 ], 1 4 [8 ] G ro up 2 :1 [3 5 ], 3 [1 3 ], 7 [1 1 ], 1 4 [4 ] 3 2 kH z: G ro up 1 :1 [3 3 ], 3 [2 3 ]. 7 [1 6 ], 1 4 [1 0 ] G ro up 2 :1 [3 8 ], 3 [1 7 ], 7 [1 6 ], 1 4 [7 ] A B R re co ve ry th re sh ol d (m s) * G ro up 1 :5 .5 G o o d o u tc o m es . P B M h ad a p ro te ct iv e ef fe ct o n sy n ap ti c ri b b o n s an d th e A B R re co ve ry th re sh o ld , su gg es ti n g th at th e P B M ca n ta rg et n o t o n ly th e H C le ve l b u t al so th e su b ce llu la r le ve l, su ch as sy n ap ti c ri b b o n s. SY R C LE 's ri sk o f b ia s to o l: Lo w = 5 ; h ig h = 0 ; u n cl ea r = 5 (C o n ti n u es ) NIKOOKAM ET AL. 51 17494486, 2024, 1, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1111/coa.14113 by C apes, W iley O nline L ibrary on [29/10/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense T A B L E 3 (C o nt in ue d) St ud y re fe re nc e St ud y da ta P re -P B M T da ta P o st -P B M T da ta O ve ra ll b en ef it (s u b je ct iv e as se ss m en t) Q u al it y as se ss m en t th re sh o ld be fo re an d af te r no is e ex po su re . G ro up 2 :2 .7 5 C o nt ro l: 3 .5 Im m un o fl uo re sc en ce an al ys is N um be r o f ri bb o ns /I H C s* A pe x: G ro up 1 :1 2 .5 G ro up 2 :1 4 M id dl e: G ro up 1 :1 1 G ro up 2 :1 6 B as e: G ro up 1 :7 G ro up 2 :1 7 C .R he e et al ., 2 0 1 2 ,K o re a G ro up s: G ro up 1 :C o nt ro le ar s (C ,n = 6 ) G ro up 2 :N o is e o nl y ea rs (N ,n = 1 6 ) G ro up 3 :N o is e an d la se r ea rs (N L, n = 1 6 ) In ve st ig at io na ld ev ic e: A n 8 3 0 -n m di o de la se r (H i- T ec h O pt o el ec tr o n ic s, B ei jin g, C hi na ) P o w er de ns it y: 1 0 0 –1 6 5 m W /c m 2 P B M T du ra ti o n: 6 0 m in fo r 1 2 co ns ec ut iv e da ys M ea n ag e o f su bj ec ts :n o t st at ed H ea ri ng lo ss : T he ra ts w er e pl ac ed in sm al l, se pa ra te ca ge s to pr ev en t de fe ns iv e be ha vi o ur s su ch as bl o ck ag e o f th e ea rs an d w er e se t in si de th e no is e bo x. T he ra ts w er e gi ve n a o ne -t im e ex po su re to a na rr o w ba nd no is e o f 1 1 6 dB SP L ce nt re d at a fr eq ue nc y o f 1 6 kH z (b an dw id th 1 kH z) fo r 6 h P B M T ad m in is tr at io n de ta ils : T he fo llo w in g da y af te r th e no is e ex po su re ,t he ra ts w er e ir ra di at ed at th ei r le ft ea rs fo r 6 0 m in at an en er gy de ns it y o f 1 0 0 to 1 6 5 m W /c m 2 fo r 1 2 da ys in a ro w .T he o pt ic fi br e (c o re fi br e 6 2 .5 μm /c la dd in g 1 2 5 μm )w as de liv er ed th ro ug h a ho llo w tu be in to th e ex te rn al ac o us ti c ca na ls o th at th e di st an ce fr o m th e ti p o f th e fi br e to th e su rf ac e o f th e ty m pa ni c m em br an e w as ar o un d 1 m m .L as er ir ra di at io n w as do ne o nl y in th e le ft ea r (N L ea r) an d th e ri gh t ea r (N ea r) se rv ed as th e co nt ro l. A ud io lo gi ca ld at a: A B R s w er e re co rd ed us in g to ne -b ur st au di to ry st im ul i, de liv er ed th ro ug h a tu be in to th e ra t's ea r ca na lw it h m ea su re m en ts ta ke n at 4 ,8 ,1 2 ,1 6 an d 3 2 kH z. A B R th re sh o ld sh if t: A t 2 4 h Po st N oi se G ro up 2 (N ea rs )— 5 8 .3 ± 8 .7 ,5 5 .0 ± 1 4 .9 ,7 1 .3 ± 1 6 .3 , 6 0 .6 ± 6 .8 an d 5 5 .3 ± 1 1 .2 dB at 4 ,8 ,1 2 ,1 6 an d 3 2 kH z re sp ec ti ve ly G ro up 3 (N L ea rs )— 5 4 .4 ± 8 .8 ,5 2 .2 ± 1 1 .5 ,7 0 .9 ± 6 .4 , 6 0 .6 ± 6 .3 an d 5 2 .5 ± 8 .0 dB at 4 ,8 ,1 2 ,1 6 an d 3 2 kH z re sp ec ti ve ly A ft er 1 2 th ir ra di at io n G ro up 2 (N ea rs )— 4 6 .7 ± 1 6 .2 ,4 5 .3 ± 1 7 .3 ,5 9 .1 ± 1 8 .5 , 5 0 .6 ± 1 2 .6 an d 4 5 .6 ± 1 2 .0 dB at 4 ,8 ,1 2 ,1 6 an d 3 2 kH z re sp ec ti ve ly G ro up 3 (N L ea rs )— 2 7 .2 ± 4 .4 ,2 6 .9 ± 7 .3 ,3 8 .1 ± 1 4 .6 , 3 0 .0 ± 9 .3 an d 2 9 .7 ± 6 .2 dB at 4 ,8 ,1 2 ,1 6 an d 3 2 kH z re sp ec ti ve ly C o ch le ar ha ir ce lls : G ro up 1 (C ea rs )— 1 7 6 .5 ± 1 6 .3 ,1 4 6 .0 ± 5 .6 an d 1 5 4 .8 ± 6 .7 at ap ic al ,m id ,a nd ba sa lt ur ns re sp ec ti ve ly G ro up 2 (N ea rs )— 1 1 0 .3 ± 2 1 .1 ,9 5 .2 ± 2 1 .7 an d 1 0 1 .1 ± 3 2 .4 at ap ic al ,m id ,a nd ba sa lt ur ns re sp ec ti ve ly G ro up 3 (N L ea rs )— 1 4 7 .2 ± 4 1 .1 ,1 3 6 .2 ± 3 3 .5 an d 1 1 4 .7 ± 3 8 .7 at ap ic al ,m id ,a nd ba sa lt ur ns re sp ec ti ve ly G o o d o u tc o m e: LL LT m ay h av e a p o si ti ve ef fe ct o n h ai r- ce ll re co ve ry af te r ac u te ac o u st ic tr au m a. T h e h ea ri n g th re sh o ld b ec am e lo w er af te r re p ea te d la se r ir ra d ia ti o n ,a n d th e fi n al h ea ri n g re su lt w as si gn if ic an tl y b et te r th an th at o f th e u n tr ea te d ea rs SY R C LE 's ri sk o f b ia s to o l: H ig h = 1 , Lo w = 4 , U n cl ea r = 5 52 NIKOOKAM ET AL. 17494486, 2024, 1, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1111/coa.14113 by C apes, W iley O nline L ibrary on [29/10/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense T A B L E 3 (C o nt in ue d) St ud y re fe re nc e St ud y da ta P re -P B M T da ta P o st -P B M T data O ve ra ll b en ef it (s u b je ct iv e as se ss m en t) Q u al it y as se ss m en t C .R he e et al ., 2 0 1 2 ,K o re a G ro up s: G ro up 1 :c o nt ro l( n = 8 ) G ro up 2 :l as er -o nl y (n = 8 ) G ro up 3 :g en ta m ic in o nl y (n = 8 ) G ro up 4 :g en ta m ic in + la se r (n = 7 ) In ve st ig at io na ld ev ic e: 8 1 0 -n m di o de la se r (L A S- 3 0 A ,T N L, In ch eo n, K o re a) P B M T po w er :8 m W /c m 2 (0 .4 8 J/ cm 2 ) P B M T du ra ti o n: 6 da ys M ea n ag e o f su bj ec ts :n o t st at ed . H ea ri ng lo ss : G en ta m ic in -i nd uc ed he ar in g lo ss / o to to xi ci ty - in du ce d. P B M T ad m in is tr at io n de ta ils : St ar te d o n da y 5 . A ud io lo gi ca ld at a: N o t co m pl et ed . H ai r ce ll co un t: G ro up 1 :D ay 5 = 6 7 .5 ± 1 8 .6 ;d ay 8 = 5 9 .9 ± 3 1 .6 ;d ay 1 1 = 5 4 .0 ± 2 5 .9 (p er 2 0 0 μm ) G ro up 2 :d ay 5 = 7 0 .9 ± 2 8 .4 ;d ay 8 = 7 7 .1 ± 3 2 .0 ;d ay 1 1 = 8 0 .0 ± 2 9 .2 (p er 2 0 0 μm ) G ro up 3 :d ay 5 = 2 7 .3 ± 1 3 .2 ;d ay 8 = 2 3 .8 ± 5 .6 ;d ay 1 1 = 2 5 .0 ± 9 .1 (p er 2 0 0 μm ) G ro up 4 :d ay 5 = 3 7 .3 ± 1 2 .9 ;d ay 8 = 3 6 .0 ± 2 3 .7 ;d ay 1 1 = 5 8 .6 ± 2 7 .8 (p er 2 0 0 μm ) G o o d o u tc o m es . Si gn if ic an t ef fe ct o f LL LT in gr o u p 4 co m p ar ed to gr o u p 3 .L LL T w as ef fe ct iv e fo r ge n ta m ic in -i n d u ce d o to to xi ci ty . SY R C LE 's ri sk o f b ia s to o l: Lo w = 7 ; h ig h = 0 ; u n cl ea r = 3 C .R he e et al ., 2 0 1 3 ,K o re a G ro up s: G ro up 1 :u nt re at ed G ro up 2 :G M G ro up 3 :G M + la se r In ve st ig at io na ld ev ic e: 8 3 0 -n m di o de la se r (H i- te ch O pt o el ec tr o ni cs , B ei jin g, C hi na ) P B M T po w er :2 0 0 m W T o ta lr ad ia nt en er gy :3 5 6 –4 2 8 J P o sw er de ns it y: 9 0 0 m W /c m 2 (1 6 2 –1 9 4 J) P B M T du ra ti o n: M ea n ag e o f su bj ec ts :8 w ee ks H ea ri ng lo ss : O to to xi c he ar in g lo ss — ge nt am ic in /f ur o se m id e in du ce d he ar in g lo ss . P B M T ad m in is tr at io n de ta ils : La se r w as o nl y pe rf o rm ed in th e ri gh t ea r. D is ta nc e fr o m th e ti p o f th e fi br e to th e su rf ac e o f ty m pa ni c m em br an e = 1 m m . La se r w as pe rf o rm ed af te r da y 2 . A ud io lo gi ca ld at a: A ni m al s w er e tr ea te d da ily by ge nt am ic in 1 0 0 m g/ kg in tr av en o us ly (i. v. )f o llo w ed 1 0 m in la te r by fu ro se m id e 9 0 m g/ kg i.v .f o r 2 da ys . 4 8 h af te r ge nt aa m ic in + fu ro se m id e tr ea tm en t, he ar in g lo ss w as co nf ir m ed w it h cl ic ke d A B R . H ea ri ng th re sh o ld w as no rm al in al la ni m al s be fo re :re le ve l( SP L) o f 1 1 6 dB . P B M T ad m in is tr at io n de ta ils : 1 da y af te r no is e ex po su re th e le ft ea r o f ra ts in th e P B M gr o up s (G ro up s 3 & 5 )w er e ir ra di at ed fo r 1 h at an en er gy de ns it y o f 1 6 5 m W cm 2 da ily fo r 1 2 da ys .A n o pt ic fi br e w as pl ac ed th ro ug h a ho llo w tu be in to th e ex te rn al ea r ca na lw it h th e ti p ap pr o xi m at el y 1 m m fr o m th e ty m pa ni c m em br an e. A ud io lo gi ca ld at a: A B R s w er e m ea su re d us in g to ne -b ur st fr eq ue nc y- sp ec if ic st im ul i. T o ne bu rs t st im ul io f 8 ,1 6 an d 3 2 kH z w er e de liv er ed vi a a tu be in se rt ed in to th e le ft ea r ca na l. A B R m ea su re m en ts ta ke n be fo re an d af te r no is e ex po su re bu t pr ec is e ti m in g no t st at ed . A B R th re sh o ld sh if t: Pr e- no is e G ro up 1 :8 kH z– 1 0 .0 ± 0 .0 ,1 6 kH z– 1 0 .6 ± 1 .7 ,3 2 kH z– 1 1 .3 ± 2 .2 G ro up 2 :8 kH z– 1 0 .8 ± 2 .0 ,1 6 kH z– 1 2 .5 ± 4 .0 ,3 2 kH z– 1 1 .7 ± 2 .5 G ro up 3 :8 kH z– 1 2 .5 ± 4 .0 ,1 6 kH z– 1 2 .5 ± 4 .0 ,3 2 kH z– 1 0 .0 .3 ± 0 .0 G ro up 4 :8 kH z– 1 0 .8 ± 2 .0 ,1 6 kH z– 1 2 .0 ± 2 .5 ,3 2 kH z– 1 0 .8 ± 2 .0 G ro up 5 :8 kH z– 1 0 .8 ± 2 .0 ,1 6 kH z– 1 0 .8 ± 2 .0 ,3 2 kH z– 1 2 .0 ± 2 .5 Po st no is e G ro up 1 :8 kH z– 7 3 .1 ± 9 .6 ,1 6 kH z– 6 9 .4 ± 4 .8 ,3 2 kH z- 6 1 .2 ± 4 .3 G ro up 2 :8 kH z– 7 1 .7 ± 1 2 .7 ,1 6 kH z– 6 5 .0 ± 8 .0 ,3 2 kH z– 5 7 .5 ± 4 .0 G ro up 3 :8 kH z – 6 5 .8 ± 1 7 .4 ,1 6 kH z – 6 1 .7 ± 5 .8 , 3 2 kH z- 5 7 .5 .3 ± 4 .0 G ro up 4 :8 kH z– 7 3 .1 ± 9 .6 ,1 6 kH z– 6 5 .6 ± 5 .4 ,3 2 kH z- 6 0 .0 ± 5 .2 G ro up 5 :8 kH z– 7 0 .0 ± 1 5 .1 ,1 6 kH z– 6 4 .2 ± 6 .3 ,3 2 kH z- 5 9 .2 ± 4 .7 C o ch le ar ha ir ce lls : T he m o rp ho lo gy in th e P B M /N A C gr o up sh o w ed le ss h ai r ce ll lo ss th an th e o th er gr o up s. G o o d o u tc o m e: P B M /N A C co m b in at io n th er ap y m ay p re ve n t h ea ri n g lo ss m o re ef fe ct iv el y th an P B M al o n e. SY R C LE 's ri sk o f b ia s to o l: H ig h = 1 , Lo w = 1 , U n cl ea r = 8 54 NIKOOKAM ET AL. 17494486, 2024, 1, D ow nloaded from https://onlinelibrary.w iley.com /doi/10.1111/coa.14113 by C apes, W iley O nline L ibrary on [29/10/2025]. See the T erm s and C onditions (https://onlinelibrary.w iley.com /term s-and-conditions) on W iley O nline L ibrary for rules of use; O A articles are governed by the applicable C reative C om m ons L icense T A B L E 3 (C o nt in ue d) St ud y re fe re nc e St ud y da ta P re -P B M T da ta P o st -P B M T da ta O ve ra ll b en ef it (s u b je ct iv e as se ss m en t) Q u al it y as se ss m en t I. St rü bi ng et al ., 2 0 2 0 , G er m an y G ro up s: 2 G ro up 1 :P B M T (n = 8 ea rs ) G ro up 2 :C o nt ro l( n = 8 ea rs ) In ve st ig at io na ld ev ic e: 8 0 8 -n m di o de la se r P B M T po w er :1 2 0 m W P B M T du ra ti o n: 1 5 m in M ea n ag e o f su bj ec ts :2 8 –3 2 w ee ks H ea ri ng lo ss : N o t ap pl ic ab le /n o t st at ed P B M T ad m in is tr at io n de ta ils : B ef o re co ch le a im pl an ta ti o n, vi a th e o pe n bu lla a ra nd o m ly se le ct ed co ch le a w as pr et re at ed w it h P B M T . A ud io lo gi ca ld at a: 2 w ee ks be fo re su rg er y A B R pe rf o rm ed . A B R — av er ag e he ar in g lo ss G ro up 1 :1 8 .4 ± 5 .8 dB G ro up 2 :3 3 .5 ± 5 .1 dB P ro te ct iv e ef fe ct o f P B M T :1 0 .7 –2 1 .4 dB H ai r C el lC o un t IH C :n o lo ss bi la te ra lly O H C :s ta ti st ic al ly si gn if ic an t di ff er en ce be tw ee n gr o u p 1 an d 2 .A ve ra ge lo ss : G ro up 1 :8 8 .7 ± 7 .3 ce lls G ro up 2 :1 2 9 .3 ± 7 .8 ce lls G o o d o u tc o m es . Si n gl e P B M T p re tr ea tm en t b ef o re C Is u rg er y ap p ea rs to b e n eu ro p ro te ct iv e. SY R C LE 's ri sk o f b ia s to o l: Lo w = 3 ; h ig h = 0 ; u n cl ea r = 7 A .T am ur a et al ., 2 0 1 5 ,J ap an G ro up s: 3 G ro up 1 :n o n- tr ea tm en t (n o is e ex po su re o nl y) (n = 5 ) G ro up 2 :L LL T 1 1 0 m W /c m 2 (n = 6 ) G ro up 3 :L LL T 1 6 5 m W /c m 2 (n = 5 ). N o te : A ni m al s w er e al so di vi de d in to th re e gr o up s fo r im m un o hi st o ch em is tr y o f iN O S: na iv e (n = 3 ), no n- tr ea tm en t (n o is e ex po su re o nl y) (n = 3 )a nd LL LT (1 6 5 m W /c m 2 ,n = 3 )a nd fo r im m un o hi st o ch em is tr y o f cl ea ve d ca sp as e- 3 :n aï ve (n o no is e ex po su re )( n = 3 ), no n- tr ea tm en t (n o is e ex po su re o nl y) (n = 3 ) an d LL LT (1 6 5 m W /c m 2 ,n = 3 ). In ve st ig at io na ld ev ic e: 8 0 8 nm C W di o de la se r be am (B & W T ek -I nc ., N ew ar k, D E ,U SA ) P B M T po w er :1 1 0 m W /c m 2 (n = 6 0 o r 1 6 5 m W /c m 2 (n = 5 ) P B M T du ra ti o n: 3 0 m in M ea n ag e o f su bj ec ts :n o t st at ed H ea ri ng lo ss : N o is e- in du ce d he ar in g lo ss . In du ce d he ar in g lo ss — ex po se d to 1 o ct av e ba nd no is e ce nt er ed at 4 kH z fo r 5 h (1 2 1 dB so un d pr es su re le ve l) in a ve nt ila te d so un d ex po su re ch am be r. P B M T ad m in is tr at io n de ta ils : T ra ns m it te d th ro ug h an o pt ic al fi br e w as ap pl ie d to th e ri gh t ty m pa ni c m em br an e th ro ug h th e ex te rn al au di to ry ca na l. O pt ic al fi br e ti p w as po si ti o ne d 6 m m aw ay fr o m th e ri gh t ty m pa ni c m em br an e. A ud io lo gi ca ld at a: A B R ta ke n be fo re , im m ed ia te ly af te r, an d at 2 ,4 ,7 ,1 4 an d 2 8 da ys af te r no is e ex po su re . T hr es ho ld s o bt ai ne d im m ed ia te ly be fo re no is e ex po su re w er e us ed as th e ba se lin e fo r es ti m at in g no is e- in du ce d th re sh o ld sh if ts . A B R Lo w er in gr o up s 2 –3 . Im m un o hi st o ch em is tr y iN O S 1 h af te r no is e ex po su re ,s tr o ng im m un o re ac ti vi ty fo r iN O S w as o bs er ve d in gr o up 1 in th e o rg an o f C o rt ia n d in th e fi br o cy te s o f th e la te ra lw al l. Le ss im m un o re ac ti vi ty w as o bs er ve d in gr o up s 2 –3 . C le av ed ca sp as e- 3 8 h af te r no is e ex po su re ,s tr o ng im m un o re ac ti vi ti es fo r cl ea ve d ca sp as e- 3 w er e o bs er ve d in th e o rg an o f C o rt i an d in th e fi br o cy te s o f th e la te ra lw al l. Le ss im m un o re ac ti vi ty w as o bs er ve d in gr o up s 2 –3 . O H C s IH C s in gr o up s 1 –3 w er e w el lp re se rv ed af te r so un d ex po su re . 2 8 da ys af te r no is e ex po su re ,a ve ra ge O H C lo ss es in : B as al tu rn G ro up 1 = 2 0 .0 % G ro up 2 = 2 .0 % G ro up 3 = 2 .2 % M id dl e tu rn G ro up 1 = 3 0 .2 % G ro up 2 = 2 .8 % G ro up 3 = 2 .2 % A pi ca l G ro up 1 = 3 2 .7 % G ro up 2 = 4 .6 % G ro up 3 = 8 .3 % T h is st u d y h as sh o w n th at LL LT p re ve n ts co ch le a d am ag e if st ar te d w it h in 1 h o f n o is e ex p o su re SY R C LE 's ri sk o f b ia s to o l: Lo w = 7 ; h ig h = 0 ; u n cl ea r = 3 A .T am ur a et al ., 2 0 1 6 ,J ap an G ro up s: 3 A ss es se m en t of au di to ry fu nc ti on : G ro up 1 :c o nt ro l, no no is e ex po su re (n = 5 ) G ro up 2 :n o n- tr ea tm en t, no is e ex po su re o nl y (n = 5 ) P B M T ad m in is tr at io n de ta ils : In it ia te d w it hi n 1 h af te r no is e ex po su re .A pp lie d to th e ri gh t ty m pa ni c m em br an e th ro ug h th e A B R