Buscar

relatório fisica pendulo simples

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 7 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 7 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

RELATÓRIO DE ATIVIDADE EXPERIMENTAL V
ACELERAÇÃO DA GRAVIDADE
Determinar experimentalmente a aceleração da gravidade usando o pêndulo simples.
A aceleração gravitacional é, basicamente, a aceleração na qual um corpo de determinada massa fica submetido por algum outro corpo de massa extremamente maior (planeta, lua, estrela – dado o alto valor das massas desses corpos). Sendo assim, a aceleração da gravidade  pode ser definida como o aumento gradativo da velocidade, a cada instante de tempo, que um corpo sofre caso estivesse em queda livre (liberado de um ponto mais alto, a partir do repouso). Neste último caso, apesar de ser considerada constante, será explicado logo mais que a aceleração gravitacional vai variar conforme o movimento do corpo aconteça.
Cálculo da Aceleração Gravitacional
A Lei da Gravitação Universal (teorizada por Isaac Newton) diz que todos os corpos (obviamente, possuindo massa) atraem-se mutuamente. E, essa força de atração é proporcional às massas dos corpos envolvidos e inversamente proporcional ao quadrado da distância que os separa:
�
 
Onde F = força de atração entre os corpos; m1 = massa do primeiro corpo; m2 = massa do segundo corpo; r = vetor posição que representa a distância entre os dois corpos; G = constante universal da gravitação.
Da segunda Lei de Newton: F = m1.A, onde m1 = massa de um corpo qualquer. Sendo A uma constante (de aceleração) calculada a partir de m2 (na fórmula abaixo, representado por m), pois a massa de um astro (como a Terra) não varia significativamente no tempo.
Esse valor A não depende da massa do corpo m1 – pelo simples motivo: a massa do astro m é muito maior que a do corpo, logo, seu valor é desprezado. Entretanto, para dois corpos definidos (por exemplo: a Terra e um único habitante ou duas frutas) utilizando-se no cálculo da constante A a maior massa ou a menor, o valor de F fica o mesmo: uma vez que o produto m1.m2 continua existindo e não modifica a fórmula da força de atração.
Observe que, no caso de uma queda livre, o valor de r² vai variando conforme o corpo se aproxima da superfície, logo o valor de A muda com o tempo. Mas como essa variação é muito pequena, para efeito de cálculo, o valor de A muitas vezes é considerado constante para qualquer que seja a altura de queda.
Ocorrência da Força-Peso
A força-padrão que qualquer corpo mássico está submetido é o peso. Este nada mais é do que a força com que um corpo de dimensões astronômicas atrai outro corpo de dimensões menores. Sendo esta força-peso apenas dependente da constante A e do corpo, para um dado astro comum: como a Terra ou a Lua.
Da segunda Lei de Newton: F = m1.A,
Sendo, F = P (peso), m1 = massa do corpo, e A = g (aceleração gravitacional levando em consideração apenas a massa do astro comum, uma vez que seu valor pode ser aplicado para qualquer corpo atraído por ele):
P = m.g
Pêndulo Simples
Um pêndulo é um sistema composto por uma massa acoplada a um pivô que permite sua movimentação livremente. A massa fica sujeita à força restauradora causada pela gravidade.
Existem inúmeros pêndulos estudados por físicos, já que estes descrevem-no como um objeto de fácil previsão de movimentos e que possibilitou inúmeros avanços tecnológicos, alguns deles são os pêndulos físicos, de torção, cônicos, de Foucalt, duplos, espirais, de Karter e invertidos. Mas o modelo mais simples, e que tem maior utilização é o Pêndulo Simples.
Este pêndulo consiste em uma massa presa a um fio flexível e inextensível por uma de suas extremidades e livre por outra, representado da seguinte forma:
Quando afastamos a massa da posição de repouso e a soltamos, o pêndulo realiza oscilações. Ao desconsiderarmos a resistência do ar, as únicas forças que atuam sobre o pêndulo são a tensão com o fio e o peso da massa m. Desta forma:
A componente da força Peso que é dado por P.cosθ se anulará com a força de Tensão do fio, sendo assim, a única causa do movimento oscilatório é a P.senθ. Então:
No entanto, o ângulo θ, expresso em radianos que por definição é dado pelo quociente do arco descrito pelo ângulo, que no movimento oscilatório de um pêndulo é x e o raio de aplicação do mesmo, no caso, dado por ℓ, assim:
Onde ao substituirmos em F:
Assim é possível concluir que o movimento de um pêndulo simples não descreve um MHS, já que a força não é proporcional à elongação e sim ao seno dela. No entanto, para ângulos pequenos, , o valor do seno do ângulo é aproximadamente igual a este ângulo.
Então, ao considerarmos os caso de pequenos ângulos de oscilação:
Como P=mg, e m, g e ℓ são constantes neste sistema, podemos considerar que:
Então, reescrevemos a força restauradora do sistema como:
Sendo assim, a análise de um pêndulo simples nos mostra que, para pequenas oscilações, um pêndulo simples descreve um MHS.
Como para qualquer MHS, o período é dado por:
e como
Então o período de um pêndulo simples pode ser expresso por:
�
�
�
Liberamos o fio por cerca de 12 cm.
Fizemos um ângulo de aproximadamente 30° a 45° e soltamos, ao mesmo tempo acionamos o cronômetro.
A cada dez oscilações, anotamos o tempo marcado pelo cronômetro.
Repetimos o item anterior cinco vezes e depois anotamos.
Calculamos o período, fazendo T= tmédio/10.
Calculamos o valor para a aceleração da gravidade no local.
Depois comparamos o valor encontrado com o tabelado: g=9,81m;s², através do erro relativo.
Em seguida repetimos o mesmo experimento usando o fio com cerca de 25 cm.
Depois Comparamos o resultado dos dois procedimentos.
Constam aqui TODOS os dados coletados durante o experimento;
(ATENÇÃO: A tabela, transformações de unidades e cálculo NÃO entram aqui!)
Espaço reservado para todos os cálculos de fórmulas e mudanças de unidades necessárias.
O experimento realizado foi de extrema importância, pois com ele podemos comprovar experimentalmente a expressão teórica relacionando o período de oscilação e o comprimento do pêndulo simples: T = 2π.√(L/g) . A partir do experimento realizado com o pêndulo simples, em condições ideais, (sem a interferência de forças externas) podemos verificar que a aceleração da gravidade atua em toda parte e preserva suas características básicas onde quer que aplicadas.
Podemos concluir também que a medida do período do pêndulo sofre influência de diversos fatores, que estão fora do nosso controle, quando acionamos o dedo o cronômetro não é instantâneo devido à mecânica de funcionamento, o reflexo humano não é instantâneo, ou seja, leva um certo intervalo de tempo para o experimentador perceber a passagem do pêndulo pelo ponto desejado, reagir e acionar o botão do cronômetro, a própria definição experimental do período do pêndulo está sujeita a incertezas. Diante de todos esses fatores, fica claro que ao repetirmos a medida do período de oscilação do pêndulo, iremos obter sempre valores diferentes. Consequentemente nos resta decidir qual valor numérico deve ser usado para representar o período de oscilação do pêndulo e como podemos estimar a incerteza dessa medida, a duração do movimento pendular não é afetada pelo peso do corpo suspenso, mas sim pelo tamanho da corda que o suspende.
http://www.infoescola.com/mecanica/aceleracao-da-gravidade/- Acessado dia 13/10/2014
http://www.mundoeducacao.com/fisica/pendulo-simples.htm- Acessado dia 13/10/2014
http://www.sofisica.com.br/conteudos/Ondulatoria/MHS/pendulo. php - Acessado dia 14/10/2014
1.0 - OBJETIVOS
2.0 - INTRODUÇÃO
3.0 – MATERIAIS UTILIZADOS
Conjunto de mecânica arete II
MOD-CIDEPE (005)
Cronômetro MOD-KENKO (KK-613D)
Régua milimetrada MOD- CIDEPE (EQ003A)
4.0 – ROTEIRO DO EXPERIMENTO
5.0 – DADOS COLETADOS
6.0 – CÁLCULOS7.0 – TABELAS E GRÁFICOS
8.0 – ANÁLISE DE RESULTADOS
9.0 – BIBLIOGRAFIA

Outros materiais