Buscar

cap 01 Química Medicinal Barreiro

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 52 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 52 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 52 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

ASPECTOS GERAIS
DA AÇÃO DOS
FÁRMACOS
FASE FARMACODINÂMICA: INTERAÇÕES
ENTRE MICRO E BIOMACROMOLÉCULAS
A interação de um fármaco com o seu sítio de ação no sistema biológico ocorre
durante a chamada fase farmacodinâmica e é determinada por forças intermo-
leculares, isto é, interações hidrofóbicas, eletrostáticas e estéricas.1 Considerando
os possíveis modos de interação entre o fármaco e a biofase, necessários para
promover uma determinada resposta biológica, podemos classificá-los, de manei-
ra genérica, em dois grandes grupos: fármacos estruturalmente inespecíficos e
específicos.
Os fármacos ditos estruturalmente inespecíficos são aqueles que dependem única
e exclusivamente de suas propriedades físico-químicas – por exemplo, coeficiente
de partição (P) e pKa – para promoverem o efeito biológico evidenciado. Os
anestésicos gerais são um exemplo clássico de substâncias que pertencem a esta
classe de fármacos, uma vez que seu mecanismo de ação envolve a depressão
inespecífica de biomembranas, elevando o limiar de excitabilidade celular ou a
interação inespecífica com sítios hidrofóbicos de proteínas do sistema nervoso
central, provocando perda
de consciência.2-4 Neste ca-
so, em que a complexação
do fármaco com macro-
moléculas da biofase ocor-
re predominantemente
através de interações de van
der Walls (forças de dis-
persão de London), a lipos-
solubilidade do fármaco es-
tá diretamente relaciona-
da à sua potência, como
pode ser exemplificado
comparativamente na Fi-
gura 1.1, para os anestési-
cos halotano (1.1) e isoflu-
rano (1.2).2-4
1
C A P Í T U L O
FIGURA 1.1
Correlação entre as
propriedades físico-
químicas e a atividade
biológica dos fármacos
estruturalmente
inespecíficos (1.1) e (1.2).
Barreiro_1.p65 16/5/2008, 11:3119
20 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
Em alguns casos, a alteração das propriedades físico-químicas, em função de
modificações estruturais de um fármaco, pode alterar seu mecanismo de interação
com a biofase. Um exemplo clássico diz respeito à classe dos anticonvulsivantes,
como o pentobarbital (1.3), cuja simples alteração de um átomo de oxigênio por
um átomo de enxofre confere um incremento de lipossolubilidade que altera o
perfil de atividade estruturalmente específico de (1.3) sobre o complexo receptor
GABA ionóforo para uma ação anestésica inespecífica evidenciada para o tiopental
(1.4) (Figura 1.2).4,5
FÁRMACOS ESTRUTURALMENTE ESPECÍFICOS
Os fármacos estruturalmente específicos exercem seu efeito biológico pela interação
seletiva com uma determinada biomacromolécula-alvo que na maioria dos casos
são enzimas, receptores metabotrópicos (acoplados à proteína G), receptores
ionotrópicos (acoplados a canais iônicos) e, ainda, ácidos nucléicos. O reconheci-
mento molecular do fármaco (micromolécula) pela biomacromolécula é depen-
dente do arranjo espacial dos grupamentos funcionais e das propriedades estrutu-
rais da micromolécula, que devem ser complementares ao sítio de ligação locali-
zado na macromolécula, isto é, o sítio receptor. A complementaridade molecular
necessária para a interação da micromolécula com a biomacromolécula receptora
pode ser simplificada ilustrativamente pelo modelo chave-fechadura (Figura 1.3).6
Neste modelo, proposto pelo químico alemão Emil Fischer para explicar a espe-
cificidade da interação enzima-substrato,6 podemos considerar a biomacromo-
lécula como a fechadura, o sítio receptor como o “buraco da fechadura”, isto é,
região da biomacromolécula que interagirá diretamente com a micromolécula
(fármaco), e as chaves como ligantes do sítio receptor. Na aplicação deste modelo,
a ação de “abrir a porta” ou “não abrir a porta” representam as respostas biológicas
decorrentes da interação chave-fechadura.6 A análise da Figura 1.3 permite-nos
evidenciar três principais tipos de chaves: a) chave original, que se encaixa ade-
quadamente com a fechadura, permitindo a abertura da porta, corresponderia
ao agonista natural (endógeno) ou substrato natural, que interage com o sítio
receptor da biomacromolécula localizado respectivamente em uma proteína-re-
ceptora ou enzima, desencadeando uma resposta biológica; b) chave modificada,
a qual tem propriedades estruturais que a tornam semelhantes à chave original
FIGURA 1.2
Influência da modificação
molecular no mecanismo
de ação dos barbituratos
(1.3) e (1.4).
Barreiro_1.p65 16/5/2008, 11:3120
QUÍMICA MEDICINAL 21
e permitem seu acesso à fechadura e conseqüente abertura da porta, correspon-
deria ao agonista modificado da biomacromolécula, sintético ou de origem natu-
ral, capaz de ser reconhecido complementarmente pelo sítio receptor e desenca-
dear uma resposta biológica qualitativamente similar àquela do agonista natural;
c) chave falsa, a qual apresenta propriedades estruturais mínimas que permitem
seu acesso a fechadura, sem, entretanto, ser capaz de permitir a abertura da
porta, corresponderia ao antagonista, sintético ou de origem natural, capaz de
se ligar ao sítio receptor sem promover a resposta biológica e bloqueando a ação
do agonista endógeno e/ou modificado.
Nos três casos em questão, podemos distinguir duas etapas relevantes desde
a interação da micromolécula ligante com a biomacromolécula, que contém a
subunidade receptora, até o desenvolvimento da resposta biológica resultante:
a) interação ligante-receptor propriamente dita – expressa quantitativamente
pelo termo afinidade, traduz a capacidade da micromolécula em se complexar
com o sítio complementar de interação; b) produção da resposta biológica –
expressa quantitativamente pelo termo atividade intrínseca, traduz a capacidade
do complexo ligante-receptor de desencadear uma determinada resposta biológi-
ca. A Tabela 1.1 ilustra estas considerações com o exemplo das substâncias (1.6-
1.8), que atuam como ligantes de receptores benzodiazepínicos, e do fármaco
diazepam (1.5), com ação agonista benzodiazepínico responsável pelo efeito seda-
tivo e anticonvulsivante desta classe terapêutica.7 Cabe destacar que as substân-
cias (1.6-1.8) são ligantes com afinidades distintas, uma vez que são reconhecidas
diferenciadamente pelos sítios complementares de interação localizados no bior-
receptor-alvo. Neste caso, o composto pirrolobenzodiazepínico (1.8) é aquele
que apresenta maior afinidade pelo receptor benzodiazepínico, seguido do deriva-
do imidazolobenzodiazepínico (1.7) e, por fim, a amida correspondente (1.6).
Entretanto, uma maior afinidade não traduz a capacidade do ligante de produzir
uma determinada resposta biológica, como podemos evidenciar pela análise com-
parativa dos derivados (1.7) e (1.6), que apresentam atividades intrínsecas distin-
tas, isto é, antagonista e agonista, respectivamente. Considerando que a ação
terapêutica desta classe é devida à atividade agonista sobre os receptores benzo-
diazepínicos, podemos concluir que o derivado (1.6), apesar de apresentar uma
menor afinidade por este receptor, é um melhor candidato a fármaco ansiolítico
e anticonvulsivante do que o derivado (1.7).
FIGURA 1.3
Modelo chave-fechadura e
o reconhecimento ligante-
receptor.
Barreiro_1.p65 16/5/2008, 11:3121
22 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
INTERAÇÕES ENVOLVIDAS NO RECONHECIMENTO
MOLECULAR: LIGANTE/SÍTIO RECEPTOR
Do ponto de vista qualitativo, o grau de afinidade e a especificidade da ligação
micromolécula-sítio receptor são determinados por interações intermoleculares,
as quais compreendem forças eletrostáticas, de dispersão, hidrofóbicas, ligações
de hidrogênio e ligações covalentes.
FORÇAS ELETROSTÁTICAS
As forças de atração eletrostáticas são aquelas resultantes da interação entre
dipolos e/ou íonsde cargas opostas, cuja magnitude depende diretamente da
constante dielétrica do meio e da distância entre as cargas.
A água apresenta elevada constante dielétrica (ε = 80), devido ao seu momen-
to de dipolo permanente, podendo diminuir as forças de atração e repulsão entre
dois grupos carregados, solvatados. Dessa forma, na maior parte dos casos a
interação iônica é precedida de dessolvatação dos íons, processo que envolve perdas
entálpicas e é favorecido pelo ganho entrópico resultante da formação de molécu-
las de água livres (Figura 1.4). A força da ligação iônica, isto é, ~5 Kcal/mol, é
dependente da diferença de energia da interação íon-íon versus a energia dos
íons solvatados (Figura 1.4).
No pH fisiológico, alguns aminoácidos presentes nos biorreceptores se encon-
tram ionizados (p. ex., aminoácidos básicos: arginina, lisina, histidina, e ami-
noácidos com caráter ácido: ácido glutâmico, ácido aspártico), podendo interagir
com fármacos que apresentem grupos carregados negativa ou positivamente. O
TABELA 1.1
AFINIDADE E ATIVIDADE INTRÍNSECA DE LIGANTES DE RECEPTORES BENZODIAZEPÍNICOS
Substância Afinidade do ligante Atividade intrínseca
Ensaio de binding, IC50 (nM) do ligante
1.6 45 Agonista
1.7 7,2 Antagonista
1.8 0,1 Agonista
IC50 = concentração da substância necessária para produzir interação com 50% dos receptores.
Barreiro_1.p65 16/5/2008, 11:3122
QUÍMICA MEDICINAL 23
flurbiprofeno (1.9), antiinflamatório não-esteróide que atua inibindo a enzima
prostaglandina endoperóxido sintase (PGHS),8 é reconhecido molecularmente
através de interações com resíduos de aminoácidos do sítio receptor, dentre as
quais se destaca a interação do grupamento carboxilato da forma ionizada de
(1.9) especificamente com o resíduo de arginina na posição 120 da seqüência
primária da PGHS (Figura 1.5).8 Cabe destacar que uma ligação iônica reforçada
por uma ligação de hidrogênio, como neste caso, resulta em expressivo incremen-
to da força de interação, ou seja, ~10 Kcal/mol.
Adicionalmente, as forças de atração eletrostáticas podem incluir dois tipos
de interações, que variam energeticamente entre 1-7 Kcal/mol:
� íon-dipolo, força resultante da interação de um íon e uma espécie neutra
polarizável, com carga oposta àquela do íon;
FIGURA 1.4
Interações iônicas e o
reconhecimento fármaco-
receptor.
FIGURA 1.5
Reconhecimento molecular
do flurbiprofeno (1.9) pelo
resíduo Arg120 do sítio
ativo da PGHS, via
interação iônica.
Barreiro_1.p65 16/5/2008, 11:3123
24 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
� dipolo-dipolo, interação entre dois grupamentos com polarizações de car-
gas opostas (Figura 1.6). Essa polarização, decorrente da diferença de
eletronegatividade entre um heteroátomo (p. ex., oxigênio) e um átomo
de carbono, produz espécies que apresentam um aumento da densidade
eletrônica do heteroátomo e uma redução da densidade eletrônica sobre
o átomo de carbono, como ilustrado na Figura 1.6, para o grupamento
carbonila.
A interação do substrato natural da enzima ferro-heme dependente trombo-
xana sintase (TXS), isto é, endoperóxido cíclico de prostaglandina H2 (PGH2,
1.10), envolve a formação de uma interação íon-dipolo regiosseletiva entre o
átomo de ferro do grupamento heme e o átomo de oxigênio em C-11 da função
ambidente endoperóxido, polarizada adequadamente (Figura 1.7). Esse reconhe-
cimento molecular é responsável pelo rearranjo que permite a transformação da
PGH2 (1.10) no autacóide trombogênico tromboxana A2 (TXA2), e pode ser explo-
rado no planejamento de fármacos antitrombóticos que atuem como inibidores
de TXS (TXSi).9
FIGURA 1.6
Interações íon-dipolo e o
reconhecimento fármaco-
receptor.
FIGURA 1.7
Reconhecimento molecular
da PGH2 (1.10) pelo
resíduo Fe-Heme do sítio
ativo da tromboxana
sintase, via interação íon-
dipolo.
Barreiro_1.p65 16/5/2008, 11:3124
QUÍMICA MEDICINAL 25
FORÇAS DE DISPERSÃO
Estas forças atrativas, conhecidas como forças de dispersão de London ou inte-
rações de van der Walls, caracterizam-se pela aproximação de moléculas apolares
apresentando dipolos induzidos. Estes dipolos são resultado de uma flutuação
local transiente (10-6 s) de densidade eletrônica entre grupos apolares adjacentes,
que não apresentam momento de dipolo permanente. Em geral, essas interações
de fraca de energia, isto é, 0,5-1,0 Kcal/mol, ocorrem em função da polarização
transiente de ligações carbono-hidrogênio (Figura 1.8) ou carbono-carbono (Figu-
ra 1.9).
Apesar de envolverem fracas energias de interação, as forças de dispersão
são de extrema importância para o processo de reconhecimento molecular do
fármaco pelo sítio receptor, uma vez que normalmente se caracterizam por inte-
rações múltiplas que, somadas, acarretam contribuições energéticas significativas.
INTERAÇÕES HIDROFÓBICAS
Como as forças de dispersão, as interações hidrofóbicas são individualmente
fracas (ca. 1 Kcal/mol) e ocorrem em função da interação entre cadeias ou subu-
nidades apolares. Normalmente, as cadeias ou subunidades hidrofóbicas, presen-
tes tanto no sítio receptor como no ligante, se encontram organizadamente sol-
vatadas por camadas de moléculas de água. A aproximação das superfícies hi-
drofóbicas promove o colapso da estrutura organizada da água, permitindo a
interação ligante-receptor à custa do ganho entrópico associado à desorganização
do sistema. Em vista do grande número de subunidades hidrofóbicas presentes
FIGURA 1.8
Interações dipolo-dipolo
pela polarização
transiente de ligações
carbono-hidrogênio.
FIGURA 1.9
Interações dipolo-dipolo
pela polarização
transiente de ligações
carbono-carbono.
Barreiro_1.p65 16/5/2008, 11:3125
26 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
nas estruturas de peptídeos e fármacos, essa interação pode ser considerada
importante para o reconhecimento da micromolécula pela biomacromolécula,
como exemplificado na Figura 1.10 para a interação do fator de ativação plaque-
tária (PAF, 1.11) com o seu biorreceptor, através do reconhecimento da cadeia
alquílica C-16 por uma bolsa lipofílica presente na estrutura da proteína recep-
tora.10
LIGAÇÃO DE HIDROGÊNIO (LIGAÇÃO-H)
As ligações de hidrogênio (ligação-H) são as mais importantes interações não-
covalentes existentes nos sistemas biológicos, sendo responsáveis pela manuten-
ção das conformações bioativas de macromoléculas nobres, essenciais à vida –
α-hélices das proteínas (Figura 1.11) – e das bases purinas-pirimidinas dos ácidos
nucléicos (Figura 1.12).
Essas interações são formadas entre heteroátomos eletronegativos, como oxi-
gênio, nitrogênio, flúor, e o átomo de hidrogênio de ligações O-H, N-H e F-H,
como resultado de suas polarizações (Figura 1.13). Cabe destacar que, apesar de
normalmente a ligação C-H não apresentar polarização suficiente para favorecer
a formação de ligações de hidrogênio, o forte efeito indutivo promovido pela
introdução de dois átomos de flúor pode compensar este comportamento, tornan-
do o grupo diflurometila (F2C-H) um bom aceptor de ligações de hidrogênio
11
(Figura 1.13).
FIGURA 1.10
Reconhecimento molecular
do PAF (1.11) via
interações hidrofóbicas
com a bolsa lipofílica de
seu biorreceptor.
Barreiro_1.p65 16/5/2008, 11:3126
QUÍMICA MEDICINAL 27
Inúmeros exemplos de fármacos que são reconhecidos molecularmente atra-
vés de ligações de hidrogênio podem ser citados: dentre eles, podemos destacar
ilustrativamente a interação do antiviral saquinavir (1.12) com o sítio ativo da
protease do vírus HIV-1 (Figura 1.14).12 O reconhecimento desse inibidor enzi-
mático (1.12) envolve a participação de ligações de hidrogênio com resíduos de
aminoácidosdo sítio ativo, diretamente ou intermediada por moléculas de água
(Figura 1.14).
FIGURA 1.11
Ligações de hidrogênio e a
manutenção da estrutura
terciária de proteínas
(p. ex., calmodulina).
FIGURA 1.12
Ligações de hidrogênio e a
manutenção da estrutura
dupla fita do DNA.
Barreiro_1.p65 16/5/2008, 11:3127
28 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
FIGURA 1.13
Principais grupos
doadores e aceptores de
ligações de hidrogênio.
FIGURA 1.14
Reconhecimento molecular do antiviral saquinavir (1.12) pelo
sítio ativo da protease do HIV-1, via interações de hidrogênio.
Barreiro_1.p65 16/5/2008, 11:3128
QUÍMICA MEDICINAL 29
LIGAÇÃO COVALENTE
As interações intermoleculares envolvendo a formação de ligações covalentes
são de elevada energia, ou seja, 77-88 Kcal/mol. Considerando que, na temperatu-
ra usual dos sistemas biológicos (30-40oC), ligações mais fortes que 10 Kcal/mol
são dificilmente rompidas em processos não-enzimáticos, os complexos fármacos-
receptores envolvendo ligações covalentes são raramente desfeitos, culminando
em inibição enzimática irreversível ou inativação do sítio receptor.
Essa interação, envolvendo a formação de uma ligação sigma entre dois áto-
mos que contribuem cada qual com um elétron, eventualmente ocorre com fár-
macos que apresentam grupamentos com acentuado caráter eletrofílico e bio-
nucleófilos orgânicos. O ácido acetilsalicílico (Aspirina®, 1.13) e a benzilpenicilina
(1.14) são dois exemplos de fármacos que atuam como inibidores enzimáticos
irreversíveis, cujo reconhecimento molecular envolve a formação de ligações co-
valentes.*
O ácido acetilsalicílico (1.13) apresenta propriedades antiinflamatórias e anal-
gésicas decorrentes do bloqueio da biossíntese de prostaglandinas inflamatogê-
nicas e pró-algésicas, devido à inibição da enzima prostaglandina endoperóxido
sintase (PGHS).8,13 Esta interação fármaco-receptor é de natureza irreversível
em função da formação de uma ligação covalente resultante do ataque nucleo-
fílico da hidroxila do aminoácido serina-530 (Ser530) ao grupamento eletrofílico
acetila presente em (1.13) (Figura 1.15), promovendo a trans-acetilação deste
sítio enzimático. Cabe salientar que, atualmente, considera-se que a inibição da
enzima prostaglandina endoperóxido sintase (PGHS) pelo AAS é um processo
pseudo-irreversível, pois o fragmento Ser-530-OAc é hidrolisado de forma tempo-
dependente, regenerando a enzima PGHS.
* No Capítulo 5, detalha-se a ação do AAS.
FIGURA 1.15
Mecanismo de inibição
irreversível da PGHS pelo
ácido acetilsalicílico (AAS,
1.13), via formação de
ligação covalente.
AAS (1.13)
Barreiro_1.p65 16/5/2008, 11:3129
30 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
Um outro exemplo diz respeito ao mecanismo de ação da benzilpenicilina
(1.14) e outras penicilinas semi-sintéticas, classificadas como antibióticos β-
lactâmicos, que atuam inibindo a D,D-carboxipeptidase, enzima responsável pela
formação de ligações peptídicas cruzadas no peptideoglicano da parede celular
bacteriana, através de processos de transpeptidação14 (Figura 1.16).
O reconhecimento molecular deste fármaco (1.14) pelo sítio catalítico da
enzima é função de sua similaridade estrutural com a subunidade terminal D-
Ala-D-Ala do peptideoglicano. Entretanto, a ligação peptídica inclusa no anel β-
lactâmico de (1.14) se caracteriza como um centro altamente eletrofílico, como
ilustra o mapa de “densidade eletrônica” descrito na Figura 1.16. Dessa forma, o
ataque nucleofílico da hidroxila do resíduo serina da tríade catalítica da enzima
ao centro eletrofílico de (1.14) promove a abertura do anel de quatro membros e
a formação de uma ligação covalente, responsável pela inibição irreversível da
enzima (Figura 1.16).
FIGURA 1.16
Mecanismo de inibição
irreversível da
carboxipeptidase
bacteriana pela
benzilpenicilina (1.14), via
formação de ligação
covalente.
Barreiro_1.p65 16/5/2008, 11:3130
QUÍMICA MEDICINAL 31
FATORES ESTEREOQUÍMICOS E CONFORMACIONAIS
ENVOLVIDOS NO RECONHECIMENTO MOLECULAR:
LIGANTE/SÍTIO RECEPTOR
Apesar de o modelo chave-fechadura ser útil na compreensão dos eventos envolvi-
dos no reconhecimento molecular ligante-receptor, caracteriza-se como uma re-
presentação parcial da realidade, uma vez que as interações entre a biomacromo-
lécula (receptor) e a micromolécula (fármaco) apresentam características tridi-
mensionais dinâmicas. Dessa forma, o volume molecular do ligante, as distâncias
interatômicas e o arranjo espacial entre os grupamentos farmacofóricos com-
põem aspectos fundamentais na compreensão das diferenças na interação fár-
maco-receptor. A Figura 1.17 ilustra a natureza 3D do complexo biomacromolé-
cula-micromolécula, com destaque para o arranjo espacial dos aminoácidos que
constituem o sítio ativo.15
FLEXIBILIDADE CONFORMACIONAL DE PROTEÍNAS
E LIGANTES: TEORIA DO ENCAIXE INDUZIDO
As características de complementaridade rígida do modelo chave-fechadura
de Fisher limitam, por vezes, a compreensão e a avaliação do perfil de
afinidade de determinados ligantes por seu sítio molecular de interação,
podendo induzir a erros no planejamento estrutural de novos candidatos a
fármacos.16 Neste contexto, Koshland introduziu os aspectos dinâmicos
que governam o reconhecimento molecu-
lar de uma micromolécula por uma bio-
macromolécula na sua teoria do encaixe
induzido,17 propondo que o acomodamen-
to conformacional recíproco no sítio de in-
teração constitui aspecto fundamental na
compreensão de diferenças na interação
fármaco-receptor (Figura 1.18).18
FIGURA 1.17
Representação
tridimensional do complexo
da acetilcolinesterase
(AChE) com o inibidor
tacrina (1.15, rosa), com
destaque para os resíduos
de aminoácidos que
compõem o sítio receptor
(vermelho).
FIGURA 1.18
Representação
esquemática do processo
de indução e seleção da
conformação bioativa de
ligantes e receptores.
Barreiro_1.p65 16/5/2008, 11:3131
32 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
Esta interpretação pode ser ilustrativamente empregada na compreensão dos
diferentes modos de interação de inibidores da enzima acetilcolinesterase (1.16)
e (1.17), planejados molecularmente como análogos estruturais da tacrina
(1.15),19 primeiro fármaco aprovado para o tratamento da doença de Alzheimer.
Cabe destacar que, a despeito da presença da subunidade farmacofórica tetraidro-
4-amino-quinolina, comum aos três inibidores, suas orientações e conseqüente-
mente seus modos de reconhecimento molecular pelo sítio ativo da enzima são
parcialmente distintos (Figura 1.19), comprometendo análises de relação estrutu-
ra-atividade que levem em consideração apenas a similaridade estrutural entre
estes compostos.
Por outro lado, ao analisar as interações envolvidas no reconhecimento mo-
lecular do derivado peptóide (1.18), capaz de inibir a metaloproteinase-3 de
matriz (MMP-3) com Ki = 5 nM, podemos identificar a importância da subuni-
dade N-metil-carboxamida terminal, que participa diretamente do atracamento
ao biorreceptor-alvo através de duas interações de hidrogênio (Figura 1.20).20
Considerando este perfil de ligação, poderíamos antecipar, a priori, que o derivado
(1.19), análogo estrutural de (1.18), que apresenta um grupamento hidrofóbico
fenila substituindo o grupo N-metil-carboxamida terminal, deveria apresentar
menor afinidade pelo sítio ativo da enzima-alvo, devido à inabilidade desta subu-
nidade estrutural de reproduzir o reconhecimento molecular através de interações
de hidrogênio. Entretanto, a alteração conformacional no sítio ativo de MMP-3
induzida pela presença do composto (1.19), promove a exposição do aminoácidohidrofóbico leucina que passa a participar do reconhecimento da subunidade
FIGURA 1.19
Sobreposição das
conformações bioativas
dos compostos (1.16,
vermelho) e (1.17,
amarelo), análogos
estruturais da tacrina
(1.15, rosa), após
reconhecimento molecular
pelo sítio ativo da AChE.
Barreiro_1.p65 16/5/2008, 11:3132
QUÍMICA MEDICINAL 33
hidrofóbica fenila presente neste inibidor, mantendo sua afinidade pela enzima-
alvo (Ki = 9 nM) (Figura 1.20).
20
Dessa forma, podemos considerar que a interação entre um bioligante e uma
proteína deve ser imaginada como uma colisão entre dois objetos flexíveis. Neste
processo, o choque inicial do ligante com a superfície da proteína deve provocar
o deslocamento de algumas moléculas de água superficiais sem, entretanto, ga-
rantir o acesso imediato ao sítio ativo, uma vez que o transporte do ligante ao
sítio de reconhecimento molecular deve envolver múltiplas etapas de acomoda-
mento conformacional que produzam o modo de interação mais favorável en-
tálpica e entropicamente.16,21,22
CONFIGURAÇÃO ABSOLUTA E ATIVIDADE BIOLÓGICA*
Um dos primeiros relatos da literatura que indicava a relevância da estereoquí-
mica, mais particularmente da configuração absoluta na atividade biológica,
deve-se a Piutti, em 1886,23 que descreveu o isolamento e as diferentes proprieda-
des gustativas dos enantiômeros do aminoácido asparagina (1.20) (Figura 1.21).
Estas diferenças de propriedades organolépticas expressavam modos diferencia-
dos de reconhecimento molecular do ligante pelo sítio receptor, neste caso, locali-
zado nas papilas gustativas, traduzindo sensações distintas.24
Entretanto, a importância da configuração absoluta na atividade biológica25
permaneceu obscura até a década de 1960, quando, hélas, ocorreu a tragédia da
talidomida (1.21), decorrente do uso de sua forma racêmica, indicada para a
* O Capítulo 5 ilustra aspectos particula-
res da importância da configuração ab-
soluta na atividade farmacológica dos
fármacos.
FIGURA 1.20
Estrutura cristalográfica
dos complexos entre os
inibidores peptóides (1.18)
e (1.19) com a
metaloprotease-3 de
matrix.20
Barreiro_1.p65 16/5/2008, 11:3133
34 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
redução do desconforto matinal em gestantes, resultando no nascimento de ca.
12.000 crianças com malformações congênitas. Posteriormente, o estudo do me-
tabolismo de (1.21) permitiu evidenciar que o enantiômero (S) era seletivamen-
te oxidado, levando à formação de espécies eletrofílicas reativas do tipo areno-
óxido,* que reagem com nucleófilos bioorgânicos, induzindo teratogenicidade,
enquanto o antípoda (R) era responsável pelas propriedades sedativas e analgési-
cas (Figura 1.22).
Este episódio foi o marco de nova era no desenvolvimento de novos fármacos.
Neste momento, a quiralidade passou a ter destaque, e a investigação cuidadosa
do comportamento de fármacos quirais27 ou homoquirais28 frente a processos
capazes de influenciar tanto a fase farmacocinética – absorção, distribuição, me-
tabolismo e eliminação – quanto a fase farmacodinâmica – interação fármaco-
receptor – passou a ser fundamental antes de sua liberação para uso clínico.
* Espécies bioformadas pelo metabolismo
hepático (vide infra).
FIGURA 1.21
Estereoisômeros da
asparagina (1.20).
FIGURA 1.22
Estereoisômeros da
talidomida (1.21).
Barreiro_1.p65 16/5/2008, 11:3134
QUÍMICA MEDICINAL 35
O diferente perfil farmacológico de substâncias quirais foi pioneiramente ra-
cionalizado por Easson e Stedman.29 Esses autores propuseram que o reconheci-
mento molecular de um ligante com um único centro assimétrico pelo biorre-
ceptor envolveria a participação de ao menos três pontos. Neste caso, o reconheci-
mento do antípoda correspondente pelo mesmo sítio receptor não seria tão eficaz
devido à perda de um ou mais pontos de interação complementar.30 Esses autores
inspiraram o modelo de três pontos ilustrado na Figura 1.23, que considera o
mecanismo de reconhecimento estereoespecífico do propranolol (1.22) pelos re-
ceptores β-adrenérgicos.30 O enantiômero (S)-(1.22) é reconhecido por esses re-
ceptores por meio de três principais pontos de interação: a) sítio de interação
hidrofóbica, que reconhece o grupamento lipofílico naftila de (1.22); b) sítio
doador de ligação de hidrogênio, que reconhece o átomo de oxigênio da hidroxila
da cadeia lateral de (1.22); c) sítio de alta densidade eletrônica, que reconhece o
grupamento amina da cadeia lateral (ionizado em pH fisiológico), através de
interações do tipo íon-dipolo. Neste caso particular, o enantiômero (R)-(1.22)
apresenta-se praticamente destituído das propriedades β-bloqueadoras terapeu-
ticamente úteis, devido à menor afinidade decorrente da perda do ponto de in-
teração (b), apresentando, por sua vez, propriedades indesejadas relacionadas à
inibição da conversão do hormônio da tireóide tiroxina à triiodotironina.
Assim, de acordo com as regras de nomenclatura recomendadas pela Inter-
national Union of Pure and Applied Chemistry (IUPAC), o enantiômero tera-
peuticamente útil de um fármaco, que apresenta maior afinidade e potência
pelos receptores-alvo, é denominado de eutômero, enquanto seu antípoda, ligante
de menor afinidade pelo biorreceptor; denomina-se distômero.31
FIGURA 1.23
Reconhecimento molecular
dos grupamentos
farmacofóricos dos
enantiômeros do
propranolol (1.22).
Barreiro_1.p65 16/5/2008, 11:3135
36 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
As diferenças de atividade intrínseca de fármacos enantioméricos possuindo
as mesmas propriedades físico-químicas, excetuando-se o desvio do plano da
luz polarizada, é função da natureza quiral dos aminoácidos, que constituem a
grande maioria de biomacromoléculas receptoras e que se caracterizam como
alvos-terapêuticos “oticamente ativos”. Dessa forma, a interação entre os antí-
podas do fármaco quiral com receptores quirais leva à formação de complexos
fármaco-receptor diastereoisoméricos que apresentam propriedades físico-quími-
cas e energias diferentes, podendo, assim, promover respostas biológicas distintas.
CONFIGURAÇÃO RELATIVA E ATIVIDADE BIOLÓGICA*
De forma análoga, alterações da configuração relativa dos grupamentos farma-
cofóricos de um ligante alicíclico ou olefínico também podem repercutir direta-
mente no seu reconhecimento pelo biorreceptor, uma vez que as diferenças de
arranjo espacial dos grupos envolvidos nas interações com o sítio receptor impli-
cam em perda de complementaridade e conseqüente redução de sua afinidade e
atividade intrínseca, como ilustra a Figura 1.24.
Um exemplo clássico que ilustra a importância da isomeria geométrica (cis-
trans, E-Z) na atividade biológica de um fármaco diz respeito ao desenvolvimento
do estrogênio sintético, trans-dietilestilbestrol (1.23), cuja configuração relativa
dos grupamentos para-hidroxifenila mimetiza o arranjo molecular do ligante
natural, isto é, hormônio estradiol (1.24), necessário ao seu reconhecimento
pelos receptores de estrogênio intracelulares (Figura 1.25). O estereoisômero cis
do dietilestilbestrol (1.25) possui distância entre estes grupamentos farmacofó-
ricos (7,7 Å) inferior àquela necessária ao reconhecimento pelo biorreceptor e,
* O Capítulo 5 discute em detalhes os as-
pectos conformacionais envolvidos na
atividade farmacológica dos fármacos
FIGURA 1.24
Configuração relativa e o
reconhecimento molecular
ligante-receptor.
Barreiro_1.p65 16/5/2008, 11:3136
QUÍMICA MEDICINAL 37
conseqüentemente, apresenta atividade estrogênica 14 vezes menor do que o
isômero trans correspondente (1.23) (Figura 1.25).
CONFORMAÇÃO E ATIVIDADE BIOLÓGICA*
As variações do arranjoespacial envolvendo a rotação de ligações covalentes
sigma, associadas a energias inferiores a 10 Kcal/mol, caracterizam as conforma-
ções. Este tipo particular de estereoisomeria é extremamente relevante para o
reconhecimento molecular de uma molécula, inclusive endógena (p. ex., dopa-
mina, serotonina, histamina, acetilcolina), e explica as diferenças de atividade
biológica, dependentes da modulação de diferentes subtipos de receptores (p.
ex., D1/D2/D3/D4/D5, 5-HT1/5-HT2/5-HT3, H1/H2/H3, muscarínicos/nicotínicos, res-
pectivamente).32
A acetilcolina (1.26), importante neurotransmissor do sistema nervoso pa-
rassimpático, é capaz de sensibilizar dois subtipos de receptores: os receptores
muscarínicos, predominantemente localizados no sistema nervoso periférico, e os
receptores nicotínicos, localizados predominantemente no sistema nervoso central.
Entretanto, os diferentes efeitos biológicos promovidos por esse autacóide são
decorrentes de interações que envolvem distintos arranjos espaciais dos grupa-
mentos farmacofóricos com o sítio receptor correspondente, isto é, grupamento
acetato e grupamento amôneo quaternário. Eles podem, preferencialmente, ado-
tar uma conformação de afastamento máximo, conhecida como antiperiplanar,
* O Capítulo 5 discute em detalhes os as-
pectos conformacionais envolvidos na
atividade farmacológica dos fármacos.
FIGURA 1.25
Reconhecimento molecular
dos grupamentos
farmacofóricos dos
estereoisômeros trans
(1.23) e cis-
dietilestilbestrol (1.25).
Barreiro_1.p65 16/5/2008, 11:3137
38 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
ou conformações onde estes grupos apresentam um ângulo de 60o entre si, conhe-
cidas como sinclinais (Figura 1.26).33 O reconhecimento seletivo dos bioligantes
muscarina (1.27) e nicotina (1.28) por estes subtipos de receptores permitiu
evidenciar que a conformação antiperiplanar de (1.26) está envolvida na interação
com os receptores muscarínicos, enquanto a conformação sinclinal de (1.26) é a
responsável pelo reconhecimento molecular do subtipo nicotínico.
QUIRALIDADE AXIAL E ATIVIDADE BIOLÓGICA*
Quando variações do arranjo espacial de moléculas envolvendo a rotação de
ligações covalentes sigma estão associadas a barreiras energéticas superiores à
40 Kcal/mol, observamos o “congelamento” de conformações enantioméricas,
que podem ser caracterizadas isoladamente.34 Este tipo particular de estereoiso-
meria, chamada atropoisomerismo,31 foi inicialmente descrita em bifenilas orto-
funcionalizadas (1.29) (Figura 1.27), mas grande número de funções orgânicas
distintas podem apresentar este fenômeno, caracterizado pela presença de pro-
priedades quirais em ligantes que não apresentam centro estereogênico.34
* O Capítulo 5 discute em detalhes os as-
pectos conformacionais envolvidos na ati-
vidade farmacológica dos fármacos.
FIGURA 1.26
Variações conformacionais
da acetilcolina (1.26) e o
reconhecimento molecular
seletivo dos grupamentos
farmacofóricos pelos
receptores muscarínicos e
nicotínicos.
Barreiro_1.p65 16/5/2008, 11:3138
QUÍMICA MEDICINAL 39
Diversos fármacos e substâncias bioativas que apresentam e dependem desta
propriedade estrutural para o reconhecimento molecular pelo biorreceptor-alvo
são conhecidos,34 como os exemplos representados pelo gossipol e pela colchicina,
discutidos nos Capítulos 2 e 3, respectivamente. Cabe destacar também o antibió-
tico atropoisomérico de origem natural vancomicina34,35 (1.30) (Figura 1.28),
que era, até o final da década de 1980, o último recurso terapêutico para o trata-
mento de certas infecções provocadas por bactérias resistentes à penicilina e
seus derivados. O mecanismo de ação deste antibiótico envolve sua complexação,
através de ligações de hidrogênio, com o peptídeo D-Ala-D-Ala precursor do
peptideoglicano que reforça a membrana externa, impedindo sua formação e
provocando a conseqüente morte bacteriana35 (Figura 1.28).
FIGURA 1.27
Atropoisomerismo da
bifenila orto-funcionalizada
(1.29).
FIGURA 1.28
Antibiótico
atropoisomérico
vancomicina (1.30)
complexado à subunidade
D-Ala-D-Ala do
peptídeoglicano
bacteriano.
Barreiro_1.p65 16/5/2008, 11:3139
40 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
PROPRIEDADES FÍSICO-QUÍMICAS
E ATIVIDADE BIOLÓGICA
Como mencionado, as propriedades físico-químicas de determinados grupamen-
tos funcionais são de fundamental importância na fase farmacodinâmica da
ação dos fármacos, etapa de reconhecimento molecular, uma vez que a afinidade
de um fármaco pelo seu biorreceptor é dependente do somatório das forças de
interação dos grupamentos farmacofóricos com sítios complementares da bio-
macromolécula.
Adicionalmente, a fase farmacocinética, que engloba os processos de absorção,
distribuição, metabolização e excreção,* repercutindo diretamente na biodispo-
nibildade e no tempo de meia-vida do fármaco na biofase, também pode ser
drasticamente afetada pela variação das propriedades fisico-químicas de um fár-
maco.
As principais propriedades fisico-químicas de uma micromolécula capazes
de alterar seu perfil farmacoterapêutico são o coeficiente de partição, que expressa
a lipofilicidade relativa da molécula, e o coeficiente de ionização, expresso pelo
pKa, que traduz o grau de contribuição relativa das espécies neutra e ionizada.
Considerando que a grande maioria dos fármacos disponíveis é absorvida
passivamente, tendo de transpor a bicamada lipídica que constitui o ambiente
hidrofóbico das membranas biológicas (Figura 1.29), destaca-se a importância
das propriedades físico-químicas, isto é, lipofilicidade e pKa, para que o fármaco
atinja concentrações plasmáticas capazes de reproduzir o efeito biológico evi-
denciado em experimentos in vitro.
* A fase farmacocinética é referida em li-
vros de língua inglesa como ADME (A =
absorção; D = distribuição; M = meta-
bolismo [vide p. 46]; E = eliminação).
FIGURA 1.29
Bicamada lipídica das
membranas biológicas.
Barreiro_1.p65 16/5/2008, 11:3140
QUÍMICA MEDICINAL 41
LIPOFILICIDADE (Log P)
A lipofilicidade é definida pelo coeficiente de partição
de uma substância entre uma fase aquosa e uma fase
orgânica. O conceito atualmente aceito para coeficien-
te de partição (P) pode ser definido pela razão entre a
concentração da substância na fase orgânica (Corg) e
sua concentração na fase aquosa (Caq) em um sistema
de dois compartimentos sob condições de equilíbrio,
como ilustrado na Figura 1.30.
Os fármacos que apresentam maior coeficiente de
partição, ou seja, têm maior afinidade pela fase orgâni-
ca, tendem a ultrapassar com maior facilidade as bio-
membranas hidrofóbicas, apresentando melhor perfil
de biodisponibilidade, que pode refletir em um melhor
perfil farmacológico. A Tabela 1.2 ilustra como a intro-
dução de grupos funcionais polares (R = OH) altera o
coeficiente de partição e, conseqüentemente, a absorção
gastrintestinal dos fármacos cardiotônicos digitoxina
(1.31) e digoxina (1.32).36
TABELA 1.2
COEFICIENTE DE PARTIÇÃO E A ABSORÇÃO GASTRINTESTINAL DE FÁRMACOS CARDIOTÔNICOS
Fármaco Coeficiente de partição Absorção Tempo de
P [CHCl3 / MeOH:H2O (16:84)] gastrintestinal (%) meia-Vida (h)
Digitoxina (1.31) 96,5 100 144
Digoxina (1.32) 81,5 70-85 38
FIGURA 1.30
Determinação do
coeficiente de partição (P)
de um soluto.
Barreiro_1.p65 16/5/2008, 11:3141
42 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
O coeficiente de partição (P) é tradicionalmente
determinado pelo método de shake flask, empregando
n-octanol como f ase orgânica devido à sua semelhan-
ça estrutural com os fosfolipídeos de membrana. Os
valores do logaritmo do coeficiente de partição(log
P) são normalmente correlacionados com a atividade
biológica, descrevendo em geral um modelo parabólico
bilinear37 (Figura 1.31), que indica haver lipofilicidade
ótima, capaz de expressar requisitos farmacocinéticos
e farmacodinâmicos ideais, cujo incremento leva à pro-
gressiva redução da atividade biológica.
Além da demonstração das correlações entre a ati-
vidade biológica e parâmetros físico-químicos (p. ex.,
lipofilicidade), os estudos de Hansch e colaboradores
demonstraram que log P é uma propriedade aditiva e
possui um considerável caráter constitutivo. Por analo-
gia à equação de Hammett (1935) utilizando derivados benzênicos substituídos,
eles definiram a constante hidrofóbica do substituinte, πX, (equação 1.1):
πX = Log (PX / PH) eq.1.1
e, então, o coeficiente de partição (Log PX) de um derivado funcionalizado com
um substituinte X apresentando pode ser calculado empregando-se a equação
1.2:
Log PX = Log PH + πX eq.1.2
acrescentando o valor da contribuição da constante hidrofóbica do substituinte
X tabulada (vide Anexos) ao logaritmo do coeficiente de partição do derivado
não substituído (Log PH).
38
Podemos exemplificar o emprego desta equação no cálculo do logaritmo do
coeficiente de partição do analgésico paracetamol (1.33) a partir de valores experi-
mentalmente obtidos para o fenol (1.34), a acetanilida (1.35) e o benzeno (1.36),
como ilustra a Figura 1.32. Deve-se destacar que, em face do caráter aditivo do
parâmetro lipofilicidade em derivados congêneres, qualquer das rotas utilizadas
na predição do Log P do paracetamol (1.33) leva a valores bem próximos daquele
obtido experimentalmente, isto é, 0,46.
A limitação do emprego deste método de predição do coeficiente de partição
está relacionado à impossibilidade de extrapolação dos valores da contribuição
hidrofóbica de radicais monovalentes (p. ex., -CH3) para radicais divalentes (p.
ex., -CH2-) ou trivalentes. Nesses casos, os valores preditos empregando as
constantes πx são normalmente menores do que os valores experimentais cor-
respondentes, fato que pode ser contornado pelo emprego das constantes frag-
mentais de Nys e Rekker.39
FIGURA 1.31
Modelo bilinear usado para
descrever as correlações
entre a atividade biológica
e a lipofilicidade de uma
série de fármacos
congêneres.
Barreiro_1.p65 16/5/2008, 11:3142
QUÍMICA MEDICINAL 43
pKa
A maior parte dos fármacos são ácidos ou bases fracas. Na biofase, fármacos de
natureza ácida (HA) podem perder o próton, levando à formação da espécie
aniônica correspondente (A–), enquanto fármacos de natureza básica (B) podem
ser protonados, levando à formação da espécie catiônica (BH+), como ilustra a
Figura 1.33.
A constante de ionização de um fármaco é capaz de expressar, dependendo
de sua natureza química e do pH do meio, a contribuição percentual relativa das
espécies ionizadas (A– ou BH+) e não-ionizadas correspondentes (HA ou B) (Figu-
ra 1.33). Essa propriedade é de fundamental importância na fase farmacocinética,
uma vez que o grau de ionização é inversamente proporcional à lipofilicidade,
de forma que as espécies não-ionizadas, por serem mais lipofílicas, conseguem
atravessar as biomembranas por transporte passivo; já as espécies carregadas
são polares e normalmente se encontram solvatadas por moléculas de água,
dificultando o processo de absorção passiva (Figura 1.33).
Adicionalmente, essa propriedade físico-química é de fundamental importân-
cia na fase farmacodinâmica, devido à formação de espécies ionizadas que podem
interagir complementarmente com resíduos de aminoácidos do sítio ativo da
biomacromolécula receptora por ligação iônica ou interações do tipo íon-dipolo.
FIGURA 1.32
Uso da equação de Hansch
na predição do Log P do
paracetamol (1.33).
Barreiro_1.p65 16/5/2008, 11:3143
44 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
A equação de Henderson-Hasselbach para a ionização de ácidos fracos deriva
da equação 1.340:
HA + H2O A
– + H3O
+
eq.1.3
onde a constante de ionização Ka pode ser expressa pela relação das concentrações
das espécies ionizadas sobre as espécies não-ionizadas, como ilustra a equação
1.4:
[H3O
+] [A–]
Ka = ____________ eq.1.4
[HA]
então, se considerarmos que:
pKa = –Log Ka e pH = Log [H3O
+] eq.1.5 e 1.6
podemos transformar a equação 1.4 na equação 1.7:
[A–]
–Log Ka = –Log [H3O
+] – Log _____ eq.1.7, onde
[HA]
[espécie ionizada]
pKa = –pH – Log ____________________ eq.1.8
[espécie não-ionizada]
por fim, podemos atribuir à fração ionizada o termo α, de forma que em termos
percentuais a fração não-ionizada corresponderia à 100 – α, chegando então à
equação para cálculo do percentual de ionização de ácidos, descrita a seguir:
FIGURA 1.33
Grau de ionização e a
absorção passiva de
ácidos ou bases fracas.
Barreiro_1.p65 16/5/2008, 11:3144
QUÍMICA MEDICINAL 45
100
% de ionização (α) = 100 – ____________________ eq.1.9
1 + antilog (pH – pKa)
Similarmente, a equação de Henderson-Hasselbach para o cálculo do grau
de ionização de bases pode ser desenvolvida como demonstrado, produzindo a
expressão final:
100
% de ionização (α) = 100 – ____________________ eq.1.10
1 + antilog (pKa – pH)
Sabendo-se que os principais compartimentos biológicos têm pH definidos
(p. ex., mucosa gástrica, pH ~ 1, mucosa intestinal, pH ~ 5 e plasma, pH ~ 7,4),
as equações de Henderson-Hasselbach podem ser empregadas na previsão do
comportamento farmacocinético de substâncias terapeuticamente úteis, isto é,
absorção, distribuição e excreção, podendo em alguns casos permitir a obtenção
de fármacos com propriedades físico-químicas otimizadas, como é o caso do
antiinflamatório não-esteróide piroxicam (1.37).41
O piroxicam (1.37) é um fármaco de natureza ácida devido a presença de
função enólica e à estabilização da base conjugada correspondente (1.38) por
ligação de hidrogênio intramolecular (Figura 1.34). A absorção do piroxicam
(1.37) se dá no trato gastrintestinal, sob a forma não-ionizada, sendo, portanto,
modulada pelo coeficiente de partição (P), que determina as concentrações plas-
máticas efetivas, alcançadas duas horas após a administração oral deste fármaco.
Uma vez absorvido, o piroxicam (1.37) se ioniza fortemente no pH sangüíneo e
cerca de 99,3% é distribuído complexado com proteínas plasmáticas, como a
albumina. No tecido inflamado, existe uma intensa atividade metabólica, contro-
lada pela ação de proteases que acarretam em redução significativa do pH (~5),
condições nas quais mais de 95% do fármaco se encontra na forma não-ionizada,
podendo ser adequadamente absorvido (Figura 1.34).
A adequação das propriedades físico-químicas de (1.37), aliada à sua afinidade
pelo biorreceptor, permite que baixas doses do fármaco – 20 mg/dia – sejam
necessárias para alcançar o efeito terapêutico desejado. Entretanto, em alguns
casos, as diferenças de pKa não são capazes de explicar diferenças no perfil farma-
coterapêutico de determinados fármacos, como é o caso dos antagonistas seletivos
de receptores β1, metoprolol (1.39) e atenolol (1.40), os quais, apesar de apresenta-
rem valores de pKa similares, têm coeficientes de partição bastante distintos em
função da variação dos substituintes da cadeia lateral (-CH2OCH3 vs. CONH2)
(Figura 1.35). Apesar de esses anti-hipertensivos da classe das ariloxipropano-
laminas apresentarem propriedades farmacodinâmicas similares, suas proprieda-
des na fase farmacocinética são distintas, implicando a possibilidade de emprego
clínico diferenciado. O metoprolol (1.39) é um β-bloqueador lipossolúvel (Log P
= 1,88), metabolizado por efeito de primeira passagem,* cujo uso clínico é contra-
indicado para pacientescom distúrbios no sistema nervoso central, devido à
tendência de atravessar a barreira hematoencefálica.
* Vide, a seguir, neste capítulo, os funda-
mentos do metabolismo de fármacos.
Barreiro_1.p65 16/5/2008, 11:3145
46 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
O atenolol (1.40) é um β-bloqueador hidrossolúvel (Log P = 0,16), cujo uso
clínico é contra-indicado para pacientes com distúrbios renais, devido ao estresse
provocado pela excreção renal do fármaco na forma não-modificada.
FUNDAMENTOS DO METABOLISMO DOS FÁRMACOS
O metabolismo dos fármacos compreende os processos enzimaticamente catali-
sados capazes de produzir modificações estruturais no fármaco. Neste contexto,
a classificação de Williams, de 1959, para as fases do metabolismo é ilustrativa.42
Esse autor denominou biotransformação a primeira fase do metabolismo (fase
1) de um fármaco na biofase, englobando reações de oxidação, redução e hidrólise.
A fase 2 do metabolismo compreende a etapa de conjugação, envolvendo reações
de glicuronidação, sulfatação, conjugação com glicina, acilação, metilação e a
formação de aductos com glutatião.
Raramente uma substância orgânica, fármaco ou não, sobrevive à ação catalí-
tica dos diversos sistemas enzimáticos presentes nas células dos organismos
vivos. Considerando-se que o arsenal terapêutico atual compreende uma ex-
pressiva maioria de substâncias orgânicas, pode-se antecipar que dificilmente
FIGURA 1.34
Grau de ionização do
piroxicam (1.37) em
compartimentos biológicos
específicos.
Barreiro_1.p65 16/5/2008, 11:3146
QUÍMICA MEDICINAL 47
um medicamento, sintético ou não, de natureza orgânica, resistirá à ação das
enzimas da biofase.43
Um fármaco tem sua utilidade terapêutica medida em função da ação benéfica
que exerce sobre um dado sistema biológico. Esta, por sua vez, depende da quanti-
dade do fármaco administrado capaz de atingir, na concentração necessária, o
sítio de ação desejado. Portanto, o estudo do metabolismo dos fármacos se torna
essencial para o completo conhecimento de fatores farmacocinéticos relevantes
ao seu uso adequado e seguro. Em termos experimentais, o estudo do metabolis-
mo de fármacos exige o emprego de técnicas analíticas sensíveis e eficazes, aliadas
a procedimentos de extração eficientes e quantitativos, de ínfimas quantidades
de substâncias de fluidos biológicos, de maneira a permitir a elucidação inequívo-
ca da estrutura química dos metabólitos de um fármaco, inclusive quanto a
definição de centros estereogênicos, quando presentes. Estes metabólitos, para
serem adequadamente isolados e terem suas estruturas elucidadas, precisam
ser teoricamente previstos, em termos estruturais, antecipando informações sobre
as propriedades físico-químicas, de maneira a permitir a racionalização da escolha
do método de isolamento quali e quantitativamente adequado.44 Por outro lado,
o conhecimento prévio das prováveis mudanças estruturais que um determinado
fármaco pode sofrer na biofase permite que se antecipem dados sobre sua provável
estabilidade ante o método de isolamento escolhido, garantindo sua eficiência
em termos quantitativos. Nessa ótica, o conhecimento das bases teóricas das
etapas de biotransfomação e conjugação, fase 1 e 2, que compreendem o meta-
bolismo dos fármacos, em termos moleculares, torna-se essencial.
As transformações enzimaticamente promovidas na estrutura química dos
fármacos podem acarretar profundas alterações na resposta biológica, uma vez
que modificações moleculares, ainda que singelas, podem alterar significativa-
mente o farmacóforo, dificultando sua interação com o biorreceptor original ou,
ainda, favorecendo novas interações com outras biomacromoléculas, correspon-
dendo a novos e distintos efeitos biológicos, algumas vezes responsáveis pelos
FIGURA 1.35
Perfil comparativo das
propriedades físico-
químicas do metoprolol
(1.39) e do atenolol
(1.40).
Barreiro_1.p65 16/5/2008, 11:3147
48 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
efeitos deletérios de um fármaco. Nesse sentido, a Organização Mundial de Saúde
(OMS) recomenda que os estudos do metabolismo dos fármacos sejam parte
obrigatoriamente integrante dos programas de avaliação pré-clínica e clínica de
quaisquer novos medicamentos.
Em termos estruturais, os fármacos, em sua grande maioria, podem ser consi-
derados como micromoléculas orgânicas, lipossolúveis, polifuncionalizadas. Essas
características contribuem para que apresentem diferentes sítios reativos ante
as inúmeras enzimas da biofase. Como conseqüência dessa reatividade, um deter-
minado fármaco produz, não raramente, distintos metabólitos, visto a diferença
na cinética relativa das diferentes enzimas envolvidas em seu metabolismo. O
estudo molecular do metabolismo dos fármacos permite que se antecipe, à luz
das diferenças de reatividade química dos distintos sítios metabolicamente lábeis,
um nível de hierarquização na formação destes diferentes metabólitos, prevendo-
se, antecipadamente, aqueles majoritários. Por outro lado, o conhecimento das
bases moleculares do metabolismo dos fármacos permite que se introduzam, de
modo racional, determinadas modificações estruturais de maneira a aprimorar
sua biodisponibilidade ou eficácia (pró-fármacos).45
FASES DO METABOLISMO:
BIOTRANSFORMAÇÃO, FASE I
O destino de um fármaco no metabolismo está ilustrado no Quadro 1.1. No
primeiro caso, o fármaco originalmente inativo (pró-fármaco) sofreu uma ati-
vação metabólica, fornecendo, após sua metabolização, a substância terapeuti-
camente útil. No segundo caso, o fármaco originalmente administrado produz
um metabólito de estrutura similar, biologicamente ativo, porém com proprieda-
des farmacológicas distintas do fármaco original, em geral responsáveis pelos
efeitos tóxicos observados com o seu emprego. Essa situação depende da estrutura
original do fármaco administrado, que em função disso pode sofrer biotransfor-
mações que produzam espécies lábeis capazes de reagir covalentemente com
biomacromoléculas da biofase (exemplos dessa situação serão discutidos adian-
te). No terceiro caso ilustrado no Quadro 1.1, o fármaco original conduz a um
metabólito inativo (i.e., bioinativação metabólica) com propriedades adequadas
para a sua eliminação pela via renal. Essa situação representa uma situação
ideal, infelizmente rara.
O estudo do metabolismo dos fármacos permite:
� estabelecer a cinética de formação e as estruturas químicas de seus meta-
bólitos;
QUADRO 1.1
METABOLISMO DE FÁRMACOS
Fármaco inativo Metabólito ativo
(Bioativação)
Fármaco ativo Metabólito ativo (mesma atividade ou não)
(Toxicidade)
Fármaco ativo Metabólito inativo
(Bioinativação)
Barreiro_1.p65 16/5/2008, 11:3148
QUÍMICA MEDICINAL 49
� determinar a velocidade e o sítio de absorção majoritário;
� determinar os níveis de concentração e depósito, plasmático e tissular,
tanto do fármaco como de seus metabólitos, permitindo estabelecer sua
vida-média na biofase;
� determinar a principal via de eliminação;
� determinar os sítios moleculares metabolicamente vulneráveis e correla-
cioná-los com aqueles farmacoforicamente mais relevantes à atividade;
� compreender as interações metabólicas de um determinado fármaco com
outro, administrado simultaneamente ou em associações;
� determinar a toxicidade dos metabólitos e correlacioná-los com a estrutura
química;
� fornecer novos compostos protótipos para atividades farmacológicas distin-
tas daquela do fármaco original.
Os fármacos, assim como outros agentes químicos (solventes industriais, pes-
ticidas, aditivos de alimentos industrializados, etc.) estranhos ao organismo (i.e.,
xenobióticos) são metabolizados por distintos sistemas enzimáticos.Dentre esses,
o principal sistema enzimático envolvido no metabolismo dos fármacos com-
preende as enzimas microssomais hepáticas, em que se destacam uma hemepro-
teína oxidativa – denominada citocromo P450 (CYP450) (Figura 1.36) – e uma
flavoproteína – NADPH-citocromo-C redutase – que, associadas a lipídeos, for-
mam o sistema MFO (mixed function oxidases, oxidases de função mista). Embora
seja o fígado o principal sítio de metabolização dos fármacos, outros órgãos e
tecidos podem metabolizar fármacos (p. ex., trato gastrintestinal, pulmões, rins).
A primeira etapa do metabolismo dos medicamentos – fase 1 – caracteriza-se
por envolver reações redox ou hidrolitícas, responsáveis pela conversão do fár-
maco lipofílico em um primeiro metabólito mais polar. Na maioria das vezes,
FIGURA 1.36
Estrutura do citocromo
P450 (CYP450).
Barreiro_1.p65 16/5/2008, 11:3149
50 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
essa etapa envolve o CYP450 hepático e compreende, basicamente, a inserção de
um átomo de oxigênio, originário de uma molécula de O2, em sua estrutura
(Figura 1.37).
O sistema CYP450 é composto por diversas isoenzimas, codificadas pela super-
família de genes CYP. Esta superfamília é dividida em famílias e subfamílias,46
sendo que as principais subfamílias envolvi-
das com o metabolismo de fármacos são as
CYP 1A, 2A-F e 3A (Figura 1.38).
A biotransformação oxidativa da cafeína
(1.41), por exemplo, é mediada por diferen-
tes isoformas de CYP450 (CYP 1A2 e 3A). A
isoforma 1A2 é responsável pela formação
de paraxantina (1.42), enquanto a isoforma
3A está envolvida com a oxidação da posição
8, levando à formação do ácido 1,3,7-trime-
tilúrico (1.43) (Figura 1.39).
FIGURA 1.37
Mecanismo de
monoxigenação catalisada
por CYP450.
FIGURA 1.38
Principais isoformas de
CYP450 envolvidas no
metabolismo de fármacos.
Barreiro_1.p65 16/5/2008, 11:3150
QUÍMICA MEDICINAL 51
Observa-se ainda a existência de polimorfismo genético neste sistema enzi-
mático, justificando a existência de indivíduos com baixa taxa de metabolização
de certos fármacos, enquanto outros apresentam um comportamento normal.46
Essa diferença pode acarretar uma variação individual nas reações tóxicas a de-
terminado fármaco.
Várias reações de bioconversão de diferentes grupos funcionais podem ocorrer
na fase 1 do metabolismo. Entre os processos microssomais, encontram-se
aqueles descritos no Quadro 1.2, englobando reações oxidativas; já os processos
não-microssomais estão ilustrados no Quadro 1.3.
FIGURA 1.39
Metabolismo oxidativo da
cafeína (1.41).
(Continua)
QUADRO 1.2
PROCESSOS MICROSSOMAIS DE BIOTRANSFORMAÇÃO
Oxidações catalisadas por citocromo P450
Carbono
Hidroxilação alifática
Hidroxilação benzílica
Barreiro_1.p65 16/5/2008, 11:3151
52 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
QUADRO 1.2 (continuação)
PROCESSOS MICROSSOMAIS DE BIOTRANSFORMAÇÃO
Hidroxilação alílica
Hidroxilação α a heteroátomo
Hidroxilação aromática ArH ArOH
Epoxidação
Nitrogênio
Aminas primárias RNH2 RNHOH
Aminas secundárias R1R2NH R1R2NOH
Aminas terciárias R1R2R3N R1R2R3N -O
Amidas RCONHR’ RCON(R)OH
Enxofre
Sulfetos RSR’ RSOR’
Sulfóxidos RSOR’ RSO2R’
Reduções
Azo R-N=N-R’ R-NH2 + R’NH2
Nitro R-NO2 R-NH2
Cetonas RCOR’ RCH(OH)R’
Barreiro_1.p65 16/5/2008, 11:3152
QUÍMICA MEDICINAL 53
Entre os processos oxidativos não-microssomais de fase 1 encontram-se as
oxidações de álcoois por ação de desidrogenases hepáticas (LAD), também pre-
sentes nos pulmões e rins. Por ação dessas enzimas os álcoois primários produzem
aldeídos. Estudos de cinética relativa indicaram que os álcoois primários são
muito mais rapidamente oxidados do que os álcoois secundários, que produzem
compostos cetônicos como produtos (Figura 1.40).
Compostos aldeídicos, por sua vez, são oxidados pelo sistema enzimático não-
microssomal, denominado aldeído-desidrogenase (LDD), produzindo o ácido car-
boxílico correspondente.
Em nível plasmático, ocorrem reações de metabolização de ácidos alquil-car-
boxílicos por ação de β-oxidases. Essas enzimas são capazes de promover a cisão
oxidativa das ligações C-C sp3 das cadeias alifáticas de ácidos graxos (p. ex., 1.46),
produzindo bis-homólogos inferiores (p. ex., 1.47) (Figura 1.40).
FIGURA 1.40
Reações não-
microssomais envolvidas
na bioinativação da
prostaglandina E2 (1.44).
QUADRO 1.3
PRINCIPAIS BIOTRANSFORMAÇÕES NÃO-MICROSSOMAIS
Fármaco Metabólito
RCH2OH RCHO
RCHO RCO2H
R(CH2)2CO2H RCO2H
RCH2NH2 RCO2H
RCOR’ RCH(OH)R’
RCH=CHR’ RCH2CH2R’
Barreiro_1.p65 16/5/2008, 11:3153
54 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
Um complexo enzimático não-microssomal, cobre-dependente, capaz de pro-
mover a cisão oxidativa da ligação C-N de aminas primárias endógenas ou não,
é a monoaminoxidase (MAO), atualmente identificadas sob duas isoformas, a
saber: MAO-A e MAO-B. Neste processo, ocorre a oxidação do carbono-α ao
heteroátomo, que resulta na formação de um aza-cetal, lábil, que produz o
produto de N-dealquilação, ou X-dealquilação, onde X é um heteroátomo (N, O,
S) (Figura 1.41).
FIGURA 1.41
Processo de X-
dealquilação de fármacos.
Compostos endogénos ou exógenos, isto é, xenobióticos, sofrem o processo
oxidativo mediado pelas enzimas microssomais hepáticas, conforme ilustra o
produto de N-oxidação da nicotina (1.28, Figura 1.42).
FIGURA 1.42
N-oxidação da nicotina
(1.28).
Reações não-oxidativas que ocorrem em nível microssomal compreendem a
redução de grupamentos nitro (NO2) e diazo (N=N). O sistema microssomal
responsável por estas reações não-oxidativas é dependente de NADPH-citocromo
C redutase. Fármacos que possuam grupamentos nitroaromáticos produzem,
por ação desse sistema enzimático, derivados anilínicos, como ilustra a biotrans-
formação do cloranfenicol (1.49, Figura 1.43).
Barreiro_1.p65 16/5/2008, 11:3154
QUÍMICA MEDICINAL 55
Alguns compostos nitrados podem produzir como principal metabólito a cor-
respondente hidroxilamina, substrato para enzimas conjugativas da fase 2 (vide
infra). Embora este produto de metabolização de substâncias nitroaromáticas
seja menos freqüente, interfere na rota metabólica de alguns agentes antibacte-
rianos, como o derivado nitrofurânico funcionalizado, nitrofurazona (1.51), con-
forme ilustrado na Figura 1.44.
 A redução de diazocompostos por ação de enzimas microssomais foi descober-
ta com o estudo das propriedades antibacterianas do prontosil (1.53). Esse com-
posto representa o primeiro pró-fármaco conhecido, portanto inativo in vitro. Essa
substância sofre um processo de bioativação metabólica por ação de azo-redutases
produzindo, in vivo, a sulfanilamida (1.55), responsável pela ação antibacteriana
manifestada por antagonismo competitivo com o ácido para-aminobenzóico
(PABA) na biossíntese do ácido fólico47 (Figura 1.45).
FIGURA 1.45
Bioativação do prontosil
(1.53) produzindo a
sulfanilamida (1.55).
FIGURA 1.43
Metabolismo do
cloranfenicol (1.49).
FIGURA 1.44
Formação da hidroxilamina
(1.52) durante o
metabolismo da
nitrofurazona (1.51).
Barreiro_1.p65 16/5/2008, 11:3155
56 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
As reduções não-microssomais representam rotas secundárias de metaboli-
zação de fármacos, onde intervêm processos de reduções de compostos, aldeídicos,
cetônicos e insaturados (Quadro 1.3).
Além dos processos redox, o metabolismo de fármacos, em sua fase 1, com-
preende ainda reações hidrolíticas que podem ocorrer tanto em nível hepático
quanto plasmático. Essas reações são catalisadas por hidrolases e transformam
ésteres, amidase outras funções derivadas de ácidos carboxílicos (p. ex., ácidos
hidroxâmicos, hidrazidas, carbamatos e nitrilas) em metabólitos mais polares.
 As hidrolases de ésteres, denominadas esterases, estão presentes no trato
gastrintestinal, no plasma, na flora microbiana intestinal e, algumas específicas,
em determinados tecidos (p. ex., acetilcolinesterase no sistema nervoso central).
As esterases plásmaticas têm sido amplamente exploradas na liberação de for-
mas latentes de fármacos derivados de ácidos carboxílicos (p. ex., penicilinas
(1.56), Figura 1.46).48
FIGURA 1.46
Conversão da
sultamacilina (1.56) em
ampicilina (1.57) e ácido
penicilânico-sulfona (1.58).
A exemplo das esterases, as amidases, responsáveis pela hidrólise enzimática
de amidas, encontram-se largamente distribuídas no plasma e trato gastrintes-
tinal, onde desempenham importantes funções na digestão. Ambos os tipos de
enzimas hidrolíticas são sensíveis a efeitos estéricos e eletrônicos, permitindo a
previsão de hidrólises cineticamente favorecidas em função, por exemplo, de
menores restrições estéricas. O estudo da hidrólise de ésteres da cocaína (1.59)
indicou que se pode prever a seletividade da reação enzimática em função do
menor impedimento estérico existente entre dois ésteres de um mesmo substrato.
Esses estudos contribuíram significativamente para o desenvolvimento de novos
agentes anestésicos (Figura 1.47).
Barreiro_1.p65 16/5/2008, 11:3156
QUÍMICA MEDICINAL 57
A meperidina (1.61), um poderoso agente analgésico central sem propriedades
hipnonarcóticas, mostrou-se estável ante as esterases plasmáticas em razão da
natureza neopentílica do éster em sua estrutura. Em contraste, este fármaco
pode ser facilmente hidrolisado por ação de esterases hepáticas inespecíficas,
indicando que tais enzimas são estericamente menos exigentes do que as isoen-
zimas plásmaticas (Figura 1.48).
A hidrólise de amidas, carbamatos, hidrazidas, imidas, ureídas são passos de
biotransformação freqüentes no metabolismo de fármacos e são geralmente mais
lentas do que a dos correspondentes ésteres (cf. Figura 1.47).
Por outro lado, derivados de ácidos hidroxâmicos (RCONHOH) produzem o
ácido carboxílico correspondente, através ação de enzimas hidrolíticas do plasma,
determinando para este grupo funcional uma enorme labilidade metabólica, a
qual depende do eventual impedimento estérico, em função da natureza do subs-
tituinte do átomo de nitrogênio. Diversos derivados de ácidos hidroxâmicos apre-
sentam propriedades inibidoras da enzima 5-lipoxigenase (5-LOX), responsável
pela bioformação de leucotrienos,49 uma classe de icosanóides com importantes
propriedades broncoconstritoras e, conseqüentemente, com potencial terapêutico
para emprego no tratamento da asma.50 Entretanto, em função da labilidade
metabólica, fruto da presença do grupamento ácido hidroxâmico, essencial no
mecanismo de ação desta classe de inibidores de 5-LOX, diminuiu o interesse
dos pesquisadores neste grupo de compostos, embora em 1988 tenha ocorrido a
descoberta do zileuton (1.62, A-64077) pela Abbott,51 apresentando o grupo
N-hidroxiuréia bioisóstero do ácido hidroxâmico (Figura 1.49).
FIGURA 1.48
Estrutura da meperidina
(1.61).
FIGURA 1.47
Hidrólise diferenciada da
cocaína (1.59).
Barreiro_1.p65 16/5/2008, 11:3157
58 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
FIGURA 1.49
Zileuton (1.62), fármaco
antiasmático contendo a
função N-hidroxiuréia.
HIDROXILAÇÃO DE SISTEMAS AROMÁTICOS:
ÓXIDOS DE ARENOS
O estudo do metabolismo de fármacos que possuem anéis aromáticos, especial-
mente grupos fenilas, permitiu identificar a participação de uma espécie interme-
diária lábil, denominada óxido de areno, conforme ilustra o metabolismo do
fenobarbital (1.63). Este barbitúrico, amplamente empregado na terapêutica,
produz, em uma primeira etapa de metabolização hepática, o derivado para-
hidroxilado (1.65). Esse metabólito regiosseletivamente formado se bio-origina
pela oxidação enzimática do anel aromático através do sistema MFO, conduzindo
ao óxido de areno ou epóxido correspondente (1.64). Tal intermediário sofre um
rearranjo regioespecífico de hidreto (NIH-shift), conduzindo ao composto para-
hidroxilado (1.65). O rearranjo NIH é favorecido pela presença de substituintes
que não estabilizem o carbocátion intermediário formado, contribuindo para
sua maior reatividade52 (Figura 1.50).
Uma reação competitiva que pode ocorrer com o óxido de areno intermediário
compreende o ataque de uma hidrolase sobre o anel oxirânico tensionado, produ-
zindo o diol correspondente, como ilustrado para o benzo[a]pireno (1.66), que
produz o derivado (1.67) (Figura 1.51).
Barreiro_1.p65 16/5/2008, 11:3158
QUÍMICA MEDICINAL 59
FIGURA 1.50
Mecanismos e exemplos
de formação de óxidos de
arenos.FIGURA 1.51
Formação de dióis a partir
de óxidos de arenos.
Barreiro_1.p65 16/5/2008, 11:3159
60 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
O mecanismo envolvido na formação do óxido de areno proveniente da oxida-
ção do benzo[a]pireno (1.66) ilustra que a etapa de oxidação inicial é regiossele-
tiva. Outros processos metabólicos apresentam a mesma característica, conforme
é mostrado no metabolismo da papaverina (1.68), derivado isoquinolínico te-
trametoxilado. O produto de O-demetilação (1.69) formado envolve exclusiva-
mente a metoxila indicada em vermelho em sua estrutura (Figura 1.52).
Outro exemplo ilustrativo da regiosseletividade do processo oxidativo de anéis
aromáticos é o produto de oxidação do sistema diarilamina presente no diclofe-
naco (1.70) pela isoforma de CYP2C9.53 O principal metabólito origina-se da
oxidação do anel aromático mais reativo, contendo a subunidade ácido acético
(posição indicada pela seta azul na Figura 1.53).
FIGURA 1.52
Metabolismo da
papaverina (1.68).
FIGURA 1.53
Regiosseletividade do
metabolismo de fármacos
aromáticos, ilustrada pelo
diclofenaco (1.70). A seta
azul indica a posição
ativada. À direita, visão
estérica de sua estrutura,
mostrando, em sombras
vermelhas, os sítios
estericamente impedidos.
Barreiro_1.p65 16/5/2008, 11:3160
QUÍMICA MEDICINAL 61
A labilidade da posição benzílica, fruto de sua maior reatividade, permite
que se antecipe o principal sítio de oxidação do celecoxibe (1.71), representante
da segunda geração de fármacos antiinflamatórios não-esteróides,54 lançado no
Brasil em 1999. A posição benzílica correspondente ao grupo metila (em vermelho
na Figura 1.54) permite a formação do álcool e, posteriormente, do ácido carbo-
xílico correspondente.
FIGURA 1.54
Estrutura do celecoxibe
(1.71), indicando em
vermelho o principal sítio
de oxidação metabólica. À
direita, visão estérica da
estrutura do celecoxibe
(1.71), indicando a metila
(com sombra branca) e o
grupamento trifluormetila
em C-3 do sistema
pirazólico (sombra verde).
ETAPA DE CONJUGAÇÃO:
FASE 2 DO METABOLISMO
De maneira geral, os metabólitos de fase 1 apresentam um coeficiente de partição
(P) inferior ao do fármaco original, dependendo do nível de variação estrutural
do fármaco, inclusive quanto ao peso molecular. Entretanto, a maior polaridade
desses metabólitos de fase 1 não é suficiente para assegurar sua eliminação pela
principal via de excreção dos fármacos, a renal. Portanto, esses metabólitos sofrem
reações enzimáticas subseqüentes, chamadas de conjugação, formando conjuga-
dos mais hidrossolúveis, que são excretados na urina, preferencialmente, ou na
bile.
O Quadro 1.4 ilustra as principais reações de conjugação envolvidas no meta-
bolismo dos fármacos. Cabe destacar que as reações de metilação e acetilação
não aumentam a polaridadedo metabólito, contribuindo, em geral, para sua
bioinativação. Quando essa via de conjugação predomina na fase 2 do metabolis-
mo de um fármaco, ocorre, como conseqüência, aumento de sua vida-média.
Outra reação de fase 2 relevante compreende a conjugação com glutatião, um
tripeptídeo sulfidrílico (GSH), que promove reações de bioinativação de eletrófilos
biológicos (vide infra).
Cabe mencionar que a presença de funções lábeis às enzimas que participam
da fase 2 do metabolismo em um determinado fármaco, permite que a etapa de
conjugação ocorra independentemente da fase 1, o que, geralmente, reduz a
meia-vida deste fármaco. Quando este processo ocorre, diz-se que o fármaco em
questão sofre efeito de primeira passagem.
Barreiro_1.p65 16/5/2008, 11:3161
62 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
IMPORTÂNCIA DO METABOLISMO
PARA A TOXICIDADE DOS FÁRMACOS
O estudo do metabolismo das acetanilidas analgésicas e antipiréticas, tais como
paracetamol (1.33) e fenacetina (1.72), ilustra a importância do conhecimento
das etapas de biotransformação que um fármaco sofre na biofase, em relação
aos efeitos adversos que pode causar. Esses analgésicos apresentam efeitos adver-
sos distintos em nível hepático, embora sejam estruturalmente semelhantes. O
paracetamol (1.33) causa agudas e graves necroses ao tecido hepático, detectadas
desde 1966, e integra a fórmula de cerca de 11 formulações farmacêuticas no
Brasil. A fenacetina (1.72), embora seja o derivado éter correspondente ao para-
cetamol (1.33), é responsável por graves nefropatias, denominadas nefrites analgé-
QUADRO 1.4
REAÇÕES DA FASE 2 DE CONJUGAÇÃO
Reação de fase 2 Grupo funcional presente no metabólito
(Conjugação) de fase 1 ou no fármaco Conjugado bioformado
Glicuronidação OH, COOH, NH2, SH
Sulfatação OH, NH2 R-OSO3H, R-NHSO3H
Conjugação com glicina COOH
Conjugação com glutatião Grupos eletrofílicos (óxidos de
(nucleofílico) areno, epóxidos, carbocátions
transientemente formados,
enonas, etc.)
Acetilação OH, NH2 R-OAc, R-NHAc
Metilação OH, NH2, SH, N-heterociclo R-OMe, R-NHMe, R-SMe
N-Me-heterociclo
Barreiro_1.p65 16/5/2008, 11:3162
QUÍMICA MEDICINAL 63
sicas, razão pela qual foi proscrita em alguns países. Considerando-se que estes
fármacos são geralmente empregados por automedicação, em que a dose e a
freqüência de utilização não são sujeitas à posologia determinada, os efeitos
adversos podem se manifestar mais gravemente. O estudo do metabolismo desses
fármacos indica a importância do conhecimento da estrutura e mecanismo de
formação de todos os intermediários participantes da biotransformação dos fár-
macos, de maneira a permitir determinar-se, em nível molecular, aqueles respon-
sáveis, eventualmente, por efeitos benéficos e tóxicos. O paracetamol ou acetami-
nofeno (1.33) produz, por ação da isoforma 2E de CYP450, a iminoquinona (1.73),
cujo mecanismo de formação foi objeto de intensa polêmica entre os especialistas
em metabolismo de fármacos. Resultados iniciais do estudo do metabolismo
permitiram que fosse proposta uma transformação de um derivado N-hidroxilado
(1.75), que por desidratação subseqüente produziria (1.73). Posteriormente, foi
verificado que esta hipótese não era correta, sendo hoje aceito que o mecanismo
para a formação de (1.73) envolve a transferência de dois elétrons. Esse mecanis-
mo explica inclusive a formação de outros metabólitos do paracetamol (1.33)
como o catecol (1.74) (Figura 1.55).
FIGURA 1.55
Metabolismo do
paracetamol (1.33).
Barreiro_1.p65 16/5/2008, 11:3163
64 capítulo 1 ASPECTOS GERAIS DA AÇÃO DOS FÁRMACOS
Foi demonstrado que a iminoquinona (1.73) pode sofrer reações de conjugação
envolvendo bionucleófilos presentes no fígado, especialmente com o glutatião.
O ataque nucleofílico deste sobre as espécies eletrofílicas transientes, como a
iminoquinona (1.73), conduz a formação do aducto glutatião-paracetamol (1.76,
Figura 1.55). A principal razão da toxicidade hepática do paracetamol (1.33)
reside no estresse causado em relação aos hepatócitos, conduzindo a um signifi-
cativo aumento das reações de peroxidação lipídica e alteração da homeostase
de íons Ca++ , por redução dos níveis de GSH. Foi ainda observado, com relação
a toxicidade hepática do paracetamol (1.33), que algumas enzimas envolvidas
na regulação da concentração de Ca++ intracelular podem reagir com a imino-
quinona (1.73), formando aductos irreversíveis que agravam a toxicidade deste
fármaco. A compreensão deste mecanismo de toxicidade permitiu a proposta de
obtenção de novos análogos mais seguros (1.77).
Outro analgésico da classe das acetanilidas é a fenacetina (1.72), que possui
em sua estrutura a função para-hidroxila presente no paracetamol (1.33), sob a
forma do éter etilíco correspondente. Esta sutil diferença estrutural é suficiente
para eliminar a hepatotoxicidade, visto que não se formam
diretamente espécies reativas transientes, como a imino-
quinona (1.73). Entretanto, a proteção do principal sítio
de metabolização envolvido na hepatotoxicidade favorece
um novo caminho metabólico, o qual envolve a bioforma-
ção de substâncias nefrotóxicas como a para-fenetidina
(1.78) (Figura 1.56).
Esse exemplo demonstra que o bloqueio de uma rota
metabólica identificada como toxicofórica em um fármaco
não assegura, no novo derivado estruturalmente relaciona-
do, sua inocuidade, indicando que alterações estruturais
guiadas pelo metabolismo exigem prudência quando de
seu emprego como estratégia de modulação do perfil far-
macoterapêutico de um fármaco. Cabe destacar que, no
caso da fenacetina (1.72), conforme ilustram as reações
de biotransformações do Quadro 1.2, pode haver a forma-
ção do próprio paracetamol (1.33), através da reação de
O-dealquilação catalisada pelo sistema CYP450.
A IMPORTANCIA TERAPÊUTICA DO
ESTUDO DO METABOLISMO DOS FÁRMACOS
O estudo do metabolismo dos fármacos evidenciou que podem ocorrer certos
desvios metabólicos devido às variações diversas da função hepática dentre os
indíviduos, dependendo do estado de saúde de cada paciente. Dessa forma, em
determinadas infecções ou infestações que causam comprometimento da função
hepática, o uso de quimioterápicos com baixo índice terapêutico deve ser feito
criteriosamente, de forma a prevenir o agravamento do comprometimento da
função hepática do paciente.
Por outro lado, o emprego continuado de medicamentos, estratégia terapêutica
comum no controle de diversos quadros patológicos crônicos, pode induzir altera-
ções da função hepática de determinado paciente, resultando em respostas de
indução enzimática, em que a atividade metabólica torna-se exacerbada, ou,
contrariamente, de inibição da função enzimática hepática. Ambas as possibilida-
FIGURA 1.56
Metabolismo da fenacetina
(1.72).
Barreiro_1.p65 16/5/2008, 11:3164
QUÍMICA MEDICINAL 65
des resultam em efeitos indesejáveis,
visto alterarem a fisiologia hepática, po-
dendo modificar a capacidade de produ-
ção de hormônios esteroidais. Estes são
essenciais no controle de diversas fun-
ções fisiológicas normais, além de resul-
tarem em modificações imprevisíveis na
velocidade de metabolização dos medi-
camentos, alterando significativamente
o tempo de meia-vida na biofase. Como
ilustração, citamos o emprego do feno-
barbital (1.63), usado em certos qua-
dros de epilepsia menor. Cavé, Lafont e
colaboradores, em 1968, identificaram
o composto (1.79) como principal me-
tabólito do fenobarbital (1.63) em pacientes intoxicados pelo uso continuado
deste fármaco. Esses autores racionalizaram a formação da fenilbutirolactona
(1.79) como decorrência das propriedades indutoras de enzimas hepáticas que o
fenobarbital (1.63)

Outros materiais

Materiais relacionados

Perguntas relacionadas

Perguntas Recentes