Buscar

Resumo - Fisiologia do Sistema Respiratório - COMPLETO

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 25 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 25 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 25 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
FISIOLOGIA DA RESPIRAÇÃO 
 
A respiração provê oxigênio aos tecidos e remove o dióxido de carbono. A fim de alcançar tais 
objetivos, a respiração pode ser dividida em 4 funções principais: 
 
1) influxo e efluxo de ar entre atmosfera e os alvéolos pulmonares. Ventilação Pulmonar: 
2) . Difusão de oxigênio e dióxido de carbono entre os alvéolos e o sangue
3) e suas Transporte de oxigênio e dióxido de carbono no sangue e nos líquidos corporais 
trocas com as células de todos os tecidos do corpo. 
4) e outros aspectos da respiração. Regulação da Ventilação 
 
 
VIAS AÉREAS 
Da traqueia, via respiratória única, aos alvéolos, há 23 ramificações, sendo as 16 primeiras 
condutoras e as 7 últimas transicionais e de trocas. A estas ramificações, corresponde um 
aumento de área de secção transversa do sistema respiratório e uma consequente lentificação 
da velocidade do fluxo aéreo (velocidade de fluxo= débito/área de secção transversa). 
 
 As vias mais centrais, condutoras, não participam nas trocas, constituindo o espaço 
morto anatómico, que é cerca de 30% em cada ventilação. Entre elas, encontram-se vias de 
maior calibre envolvidas por tecido cartilaginoso, que impede o seu colapso, e vias de menor 
calibre com um forte componente muscular, que lhes permite uma dilatação e constrição 
independente do volume pulmonar -os brônquios. 
 Com as sucessivas ramificações seguem-se vias de calibre inferior a 1mm, que deixam 
de ter cartilagem - os bronquíolos. Estes se encontram incrustados na rede de tecido 
conjuntivo pulmonar, dependendo o seu calibre do volume pulmonar, o que constitui uma 
importante diferença funcional em relação aos anteriores. Os bronquíolos respiratórios, cujas 
paredes são indefinidas, correspondem às aberturas dos alvéolos, sendo por isso designados 
ductos alveolares. 
 Os alvéolos pulmonares são revestidos por um epitélio simples e fino. O tecido alveolar 
ocupa uma fracção mínima do volume total do pulmão, deixando uma grande fracção (40 a 
50%) para uma vasta rede capilar. Como resultado, a distância média entre o gás alveolar e a 
hemoglobina nos eritrócitos é de apenas 1,5µm, o que torna bastante eficientes as trocas. 
Independentemente deste reduzido volume, a área de superfície alveolar interna é 
aproximadamente 1m2/Kg de peso corporal. 
 A unidade funcional do pulmão, para efeitos de trocas, recebe a designação de 
Unidade Respiratória Terminal. É composta por um bronquíolo terminal e respectivos ductos 
alveolares (bronquíolos respiratórios) e alvéolos. Existirão cerca de 60000 destas unidades, 
cada qual com 250 ductos alveolares e 5000 alvéolos anatômicos. 
O epitélio das vias aéreas tem um componente ciliar e secretor ausente a partir dos 
bronquíolos. 
 As fibras musculares brônquicas são predominantemente inervadas pelo 
parassimpático, que tem ação constritora ligeira a moderada. Podem ser ativadas por reflexos 
com origem pulmonar (reflexos da tosse e do espirro), quando há irritação das vias 
respiratórias. Estes reflexos poderão estar hiperativos nos doentes asmáticos. 
 O simpático exerce um fraco controlo direto, visto que há poucas terminações 
nervosas deste sistema a nível brônquico. Contudo, há receptores β2-adrenérgicos que 
respondem a catecolaminas circulantes. O simpático enerva diretamente as glândulas 
submucosas, os gânglios parassimpáticos e o músculo liso vascular. 
 Está descrita, também, uma inervação não-colinérgica e não-adrenérgica com ação 
broncodilatadora mediada pelo VIP (vasoactive intestinal peptide). 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
 As fibras musculares brônquicas parecem, igualmente, ser sensíveis ao arrefecimento, 
respondendo com broncoconstrição; este mecanismo poderá estar na base das crises de asma 
(broncoconstrição) induzidas pelo frio e pelo exercício. 
 
ÁCINO PULMONAR 
A parte do pulmão situada distalmente ao bronquíolo 
respiratório é chamada de ácino pulmonar. O ácino 
pulmonar é constituído de: 
 Bronquíolos respiratórios (RB) 
 Ductos alveolares (AD) 
 Sacos alveolares (AS) 
 Alvéolos. 
Um conjunto de três a cinco ácinos forma um lóbulo 
pulmonar que é envolto por delgado septo conjuntivo denominado septo inter-lobular. 
 
UNIDADE ALVÉOLO-CAPILAR 
 Os alvéolos são grupamentos 
parecidos com ‘uvas’ nas extremidades dos 
bronquíolos. Sua principal função é a troca 
gasosa entre o ar no alvéolo e o sangue. 
Cada alvéolo é composto por uma camada 
simples e fina de troca. Dois tipos de células 
epiteliais são encontrados nos alvéolos, os 
Pneumatócitos, sendo eles: 
 
 : são Células Alveolares TIPO 1
maiores e mais finas de modo que 
os gases podem se difundir 
rapidamente através delas. 
(envolvidos nos processos de troca) 
 são menores, mas sintetizam e secretam o SURFACTANTE. Células Alveolares TIPO 2: 
O Surfactante mistura-se com o fluido do alvéolo para facilitar a expansão dos pulmões 
durante a respiração. 
 Os vasos sanguíneos cobrem cerca de 80-90% da superfície alveolar, formando uma 
lâmina quase contínua de sangue que está em contato com os alvéolos cheios de ar. 
A troca de gases do pulmão ocorre pela difusão através das células alveolares TIPO 1 com os 
capilares. Na maior parte da área de troca, a membrana basal que cobre o epitélio pulmonar 
fundiu-se com o endotélio, e somente uma pequena quantidade de fluido intersticial está 
presente. A proximidade dos capilares sanguíneos com o ar nos alvéolos é essencial para a 
troca rápida dos gases. 
 
HISTOLOGIA DO TECIDO PULMONAR 
 
 
 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
A membrana respiratória é formada por membranas basais e epitélio. É o espaço entre o ar e o 
sangue. É bidirecional. 
 
ESPAÇO MORTO ANATÔMICO E FISIOLÓGICO 
Parte do ar que a pessoa respira nunca alcança 
as áreas de trocas gasosas, por simplesmente 
preencher as vias respiratórias onde essas trocas 
nunca ocorrem, tais como o nariz, a faringe e a 
traquéia. Esse ar é chamado AR DO ESPAÇO 
MORTO, por não ser útil para as trocas gasosas. 
Na expiração, o ar do espaço morto é expirado 
primeiro, antes de qualquer ar dos alvéolos 
alcançar a atmosfera. Portanto, o espaço morto 
é muito desvantajoso para remover os gases 
expiratórios dos pulmões. 
 
500ml é o volume corrente, ou seja, os ares inspirados a cada respiração normal, destes 
500ml, 150ml estão no espaço morto anatômico (área onde não ocorre qualquer troca gasosa) 
então estes 150ml são denominados ar do espaço morto anatômico. 
 
500ml – 150ml = 350ml, renovação do ar sendo este o que faz as trocas gasosas. 
 
Quando o espaço morto alveolar é incluido na medida total do espaço morto, ele é chamado 
ESPAÇO MORTO FISIOLÓGICO, em contraposição ao espaço morto anatômico. Ele ventila e não 
perfunde. O ar dos alvéolos sem perfusão não faz trocas gasosas e é considerado espaço 
morto (sem função). 
Espaço morto fisiológico: é na realidade a soma do espaço morto anatômico com outros 
volumes gasosos pulmonares que não participam da troca gasosa. 
 
-Por exemplo: determinada área do pulmão é ventilada, mas não perfundida e os gases que 
chegaram aos alvéolos nestas regiões não podem participar das trocas gasosas e é 
funcionalmente morto. 
-Também pode ocorrer o contrario onde ocorre a perfusão, mas não ocorre a ventilação, o que 
resulta em um sangue que não pode fazer as trocas gasosas e a este sangue o chamamos de 
sangue shunt por sua incapacidade de realizar as trocas gasosas. 
-O espaço morto fisiológico é maior que o anatômico. 
 
CIRCULAÇÃO PULMONAR (Trocas Gasosas) E BRÔNQUICA (Parênquima Pulmonar) 
Na circulação pulmonar o sangue do coração manda pro pulmão fazer as trocas e o sangue fica 
arterializado. Na circulação brônquica, há a nutrição da parede dos brônquios, bronquíolos.FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
VENTILAÇÃO TOTAL E ALVEOLAR 
A ventilação total é o volume de ar que entra ou sai das vias aéreas a cada movimento 
respiratório ou num minuto. Pode ser avaliado por espirometria.Em repouso, o volume 
mobilizado, em cada ciclo ventilatório, designa-se por volume corrente (média no adulto: 
500mL). Varia com a idade, sexo, posição corporal e actividade metabólica. Para umvolume 
corrente de 500mL e uma frequência respiratória normal de 12 a 15/minuto, a ventilação total, 
é de 6 a 8L/min. Num esforço ventilatório máximo, a ventilação total designa-se por 
capacidade vital. 
A ventilação alveolar corresponde ao volume de ar renovado que chega aos alvéolos a cada 
ventilação ou a cada minuto, e que participa efetivamente nas trocas gasosas. Pode 
considerar-se que a ventilação alveolar é a parte da ventilação total obtida após a exclusão do 
espaço morto anatômico. 
 
(ventilação total) VT= Vc x FR 
(volume espaço morto) VEM= VEM x F 
(ventilação alveolar) VA= (Vc – VEM) x FR 
 
MECÂNICA RESPIRATÓRIA 
-Forças Elásticas e Resistivas- 
 
A pleura pulmonar é uma fina camada membranosa formada por dois folhetos: 
 Pleura Parietal que recobre internamente a parede costal da cavidade toráxica 
 Pleura Visceral que recobre os pulmões, o mediastino (pleura mediastinal) e o 
diafragma (pleura diafragmática). 
A cavidade pleural é o espaço virtual entre os dois folhetos da pleura, que é ocupado pelo 
líquido pleural para a lubrificação das pleuras, facilitando os movimentos dos pulmões durante 
a mecânica da respiração pulmonar. 
 
-Musculos da Respiração- 
: ao se contrairem, produzem aumento do volume da caixa toráxica. Músculos Inspiratórios
 
Primários  Músculos Paraesternais, Escalenos e Externos. 
Características: Resistência à fadiga, Alto fluxo sanguíneo, Maior capacidade oxidativa, Maior 
densidade capilar (proteólise). 
‘DIAFRAGMA’. 
Acessórios Esternocleidomastóideo, 
Esterno-Hióide, Peitoral Maior 
 
 Diafragma: traciona a superfície 
inferior dos pulmões para baixo, 
aumentando o volume da caixa 
toráxica no sentido vertical 
(crânio-caudal). 
 Intercostais Externos e Músculos 
do Pescoço 
(Esternocleidomastóideo e 
Escalenos): tracionam as costelas 
e o osso esterno para cima e para 
diante, aumentando o volume da 
caixa toráxica no sentido 
horizontal (ântero-posterior). São os mais cobrados na respiração forçada. 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
: ao se contrairem, Músculos Expiratórios
produzem diminuição do volume da caixa 
toráxica. 
Expiração: processo inteiramente PASSIVO. 
 
Músculos: Retroabdominal, Oblíquo 
Externo, Transverso Abdominal 
 Músculos Abdominais (Transverso, Oblíquo Externo e Interno): elevam a superfície 
inferior dos pulmões, diminuindo o volume da caixa toráxica no sentido vertical 
(crânio-caudal). 
 Músculos Intercostais Internos: tracionam as costelas e o esterno para baixo, 
diminuindo o volume da caixa toráxica no sentido horizontal (ântero-posterior). 
 
-Gasto de Energia- 
 : inspiração (basal) Passivo
 : expiração. Esforço físico (inspiração/ativa) Ativo
A variação de comprimento (volume) é proporcional à força (pressão). 
 
-Propriedades elásticas do Pulmão- 
Todas as estruturas do pulmão (vasos, bronquíolos, alvéolos, etc.) encontram-se interligadas 
por uma trama de tecido conjuntivo pulmonar, de sorte que, quando há insuflação todos esses 
componentes se distendem. É a INTERDEPENDÊNCIA, que contribui para manter todos os 
alvéolos abertos, posto que caso alguns se fechassem, seus vizinhos pucariam suas paredes e 
tenderiam a reabri-los. Além das propiedades elásticas dos tecidos pulmonares, os pulmões 
ainda apresentam um importante fator que contribui para suas caracteristicas elásticas: a 
TENSÃO SUPERFICIAL do líquido que recobre as zonas de trocas, denominado SURFACTANTE. 
 
-Pressão Intrapleural, Alveolar e Transpulmonar- 
é a pressão no espaço pleural, ou seja, entre as duas Pressão Intrapleural (Pip): 
pleuras. É subatmosférica. 
É sempre negativa, pois existe uma drenagem constante do liquido intersticial 
pelos ductos linfáticos, sendo no repouso –5cm H2O. 
 
Durante a expansão do pulmão a pressão intrapleural fica mais intensa e 
negativa, cerca de –7cm H2O (inspiração). 
Durante a expiração a pressão intrapleural, aumenta para – 3cm H2O, esta pressão é sempre 
negativa nunca positiva. 
 
é a pressão no interior dos alvéolos. Sendo a Pressão Alveolar (Palv): 
responsável por manter a expansão pulmonar contra a parede torácica, 
evitando assim seu colabamento. 
 
No momento de repouso, ou seja, não se inspira nem expira a pressão 
alveolar é de 0cm H2O (sendo na realidade a pressão atmosférica). 
Durante a inspiração a caixa torácica se expande por causa da musculatura, o que expande 
também o pulmão, de acordo com as leis da física quando o volume de gás sofre um aumento 
súbito sua pressão diminui, assim durante a inspiração a 
pressão alveolar cai para cerca de –1cm H2O. 
Durante a expiração ocorre o oposto do descrito acima e a 
pressão aumenta para cerca de 1cm H2). 
 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
é a pressão resultante (diferença) entre a pressão intrapleural e Pressão Transpulmonar (Ptp): 
alveolar, sendo ela quem controla a quantidade de ar que entra ou sai do pulmão. 
Quanto maior a pressão transpulmonar maior a quantidade de ar que entra no pulmão. 
 
Histerese: fenômeno físico determinado pela resistência 
do tecido pulmonar que provoca uma diferença entre a 
curva de insuflação e deflação pulmonar, a histerese é 
determinada pela força elástica dos pulmões que estão 
em dois grupos: 
 
1. Força elástica do próprio tecido muscular. 
2. Força elástica causada pela tensão superficial do 
liquido que reveste as paredes internas dos alvéolos e 
outros espaços aéreos do pulmão. 
 
O pulmão enche mais facilmente em sua região apical do que a basal, pois no movimento da 
expiração o pulmão nunca se esvazia por completo e o ar para sair do pulmão passa por ultimo 
na região basal em direção aos bronquíolos, por conseguinte a região basal fica com mais ar 
que a apical após a expiração, e por isso o pulmão enche mais facilmente na região basal. 
 
-Lei de Hooke- 
Afirma que os corpos perfeitamente elásticos exibem uma relação linear entre a força aplicada 
e a deformação obtida até ser o módulo de elasticidade. Tanto os pulmões como a caixa 
toráxica são elásticas e armazenam energia quando se destendem. 
 
COMPLACÊNCIA: É uma medida da 
tendência de um órgão oco a resistir ao recuo 
às suas dimensões originais com a remoção 
de uma força compressiva ou distentiva. É 
 o trabalho necessário para expandir os 
pulmões contra as forcas elásticas do pulmão. 
A complacência é máxima em volumes 
pulmonares moderados, e muito baixa em 
volumes que são muito baixos ou muito altos. 
 
A complacência pulmonar de um individuo 
sadio e adulto é de cerca de 200 ml/cm H2O. 
500ml é o volume corrente, ou seja, os ares 
inspirados a cada respiração normal, destes 
150ml estão no espaço morto anatômico 
(área onde não ocorre qualquer troca gasosa) 
então estes 150ml são denominados ar do espaço morto anatômico. 
500ml – 150ml = 350ml, renovação do ar sendo este o que faz as trocas gasosas. 
 
 
 
 
 
 
 
 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
 
 
-Lei de Laplace- 
Laplace afirmava que, em um sistema fechado de 
bolhas comunicantes (como os alvéolos), as 
menores tendem a esvaziar-se nas bolhas 
maiores. Quanto menos o tamanho dos alvéolos, 
maior a sua tensão superficial, e mais facilmente 
se colaba. 
 
TENSÃO SUPERFICIAL: Quando se forma uma 
interface entre H2O e ar as moléculas de H2Osituadas na superfície, tem uma atração 
especialmente forte umas pelas outras, como 
conseqüência a superfície da água esta sempre 
tentando se contrair. 
Os alvéolos possuem água em suas paredes internas, água esta que faz com que o alvéolo 
tenda a colabar forçando o ar para fora dos mesmos em direção aos bronquíolos e brônquios. 
 
SURFACTANTE: os alvéolos não colabam 
graças à existência de surfactante pulmonar, 
agente tensoativo na água produzido pelos 
Pneumócitos tipo II dos alvéolos, que reduz 
acentuadamente a tensão superficial da 
água que enconbre os alvéolos. O 
surfactante é uma mistura complexa de 
vários fosfolipídios (DPPC- dipalmitoil 
fosfatidilcolina), proteínas (apoproteínas 
surfactantes) e íons (cálcio), que não se 
dissolvem uniformemente em água, 
espalhando-se sobre a superfície da mesma, 
uma vez que alguns de seus componentes 
apresentam áreas hidrofílicas (que reagirão com água) e outras áreas hidrofóbicas (não se 
dissolve). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
TROCAS GASOSAS 
 
-Lei dos Gases- 
A pressão dos gases é determinada pelo impacto constante das moléculas em movimento 
contra uma superfície. É proporcional ao npumero de moléculas. 
Os gases dissolvidos na água ou nos tecidos do corpo exercem pressões, visto que apresentam 
movimento aleatório – energia cinética. 
 
 
 
 
 
 
 
 
 
 
 
 
-Difusão- 
A difusão de gases entre os alvéolos e o sangue obedece às regras da 
difusão simples. 
 A taxa de difusão através das membranas é diretamente 
proporcional ao gradiente de pressão parcial (concentração) 
 A taxa de difusão através das membranas é diretamente 
proporcional à superfície de área disponível 
 A taxa de difusão através das membranas é inversamente 
proporcional à espessura da membrana 
 A difusão é mais rápida em distâncias curtas. 
 
Pp= PN2 + PCO2 + PO2 
 
A pressão parcial de um gás é determinada não só por sua 
concentração como também pelo seu Coeficiente de Solubilidade. 
 
-Difusão Alvéolo-Capilar- 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
As paredes alveolares são extremamente finas e estão envolvidas por um plexo capilar 
extenso.Esta estreita proximidade faz com que as trocas ocorram através das membranas de 
todas as porções terminais dos pulmões, não só através dos alvéolos propriamente ditos. Esta 
superfície de trocas designa-se por membrana respiratória e 
possui diferentes camadas: 
 camada de fluido que reveste internamente o alvéolo 
(onde se encontra o surfactante) 
 epitélio alveolar, composto por células epiteliais finas 
 membrana basal epitelial, 
 espaço intersticial, delgado entre o epitélio alveolar e a 
membrana capilar 
 membrana basal dos capilares que, em muitos pontos, 
se funde com a do epitélio 
 membrana endotelial capilar. 
 
Surpreendentemente, a espessura de todas estas camadas 
ronda um total de 0,6µm. Em termos de superfície total de 
trocas, estima-se, como já foi referido, cerca de 70 m2. Por outro 
lado, o diâmetro dos capilares raramente excede os 5µm, o que 
faz com que os eritrócitos seencostem às paredes, diminuindo a quantidade de plasma que os 
gases devem percorrer, o que, por si,também contribui para a rapidez das trocas. 
 
Em suma, os fatores que determinam a velocidade das trocas gasosas através da membrana 
respiratória são: 
 a espessura da membrana, 
 a área superficial da membrana, 
 o coeficiente de difusão do gás na substância da membrana 
 a diferença de pressão parcial do gás entre os dois lados da membrana. 
 
Com base no volume de gás que se difunde através da membrana, em cada minuto, para uma 
diferença de pressão de 1 mmHg, pode exprimir-se a capacidade de difusão da membrana. 
Num indivíduo saudável, e para o O2, deve ser de cerca de 21 mL/min/mmHg. O tempo de 
trocas é o adequado para que a PO2 no eritrócito entre em equilíbrio com a PO2 alveolar. Ou 
seja, a difusão não é um passo limitante. 
 
Após os alvéolos serem ventilados com ar fresco, a próxima etapa no processo da respiração é 
a difusão do O2 dos alvéolos para o sangue e do CO2 no sentido oposto do sangue para os 
alvéolos. 
Esta troca ocorre nas membranas respiratórias (todas as superfícies pulmonares) por meio de 
difusão, ou seja, tanto O2 quanto o CO2 passam do meio mais concentrado para um meio 
menos concentrado. 
Como se pode perceber tanto O2 quanto CO2 tem um sentido oposto durante a difusão. 
 
Ventilação Normal: 4,2 L/min. 
é o aumento da quantidade de ar que ventila os pulmões, devido a causas Hiperventilação 
muito variadas, como p.ex. exercício físico, febre, hipóxia etc., podendo traduzir-se em 
hipocapnia e alcalose. 
ocorre quando a ventilação é inadequada para realizar a troca de gases nos Hipoventilação 
pulmões. 
: aumenta a captação de CO2 Hipoventilação
: aumenta a excreção de CO2 Hiperventilação
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
Após os alvéolos serem ventilados com ar fresco, a próxima etapa no processo da respiração é 
a difusão do O2 dos alvéolos para o sangue e do CO2 no sentido oposto do sangue para os 
alvéolos. 
Esta troca ocorre nas membranas respiratórias (todas as superfícies pulmonares) por meio de 
difusão, ou seja, tanto O2 quanto o CO2 passam do meio mais concentrado para um meio 
menos concentrado. 
Como se pode perceber tanto O2 quanto CO2 
tem um sentido oposto durante a difusão. 
 
A difusão depende de cinco fatores: 
 
1. Solubilidade do gás em um liquido. 
2. A área da reação transversa do liquido. 
3. A distancia através da qual o gás deve 
difundir. 
4. Peso molecular do gás. 
5. Temperatura do gás. 
 
A maioria dos gases com importância na fisiologia da respiração possuem uma solubilidade 
muito baixa no sangue e o inverso ocorre nos lipídios através da membrana celular onde são 
muito solúveis. 
Quando há edema a membrana celular aumenta em muito a sua espessura, com isso se tem 
uma maior dificuldade para ocorrer à difusão. 
Composição do ar alveolar e sua relação com o ar atmosférico, ao nível do mar. 
 
O ar alveolar não apresenta de modo 
algum as mesmas concentrações 
gasosas do ar atmosférico, pois: 
 O ar alveolar é substituído 
parcialmente por ar 
atmosférico a cada respiração. 
 O O2 esta constantemente 
sendo absorvido dos alvéolos 
para o sangue. 
 O CO2 esta em difusão constante do sangue para os alvéolos. 
O ar atmosférico seco que penetra nas via aérea é umidificado antes de chegar aos alvéolos. 
 
A velocidade de renovação do ar alveolar pelo ar atmosférico ocorre de maneira muito lenta, 
pois em um individuo normal após a respiração no final da expiração o volume de ar que 
permanece no pulmão é de cerca de 2.300ml, todavia apenas 350ml chegam aos alvéolos a 
cada respiração normal, como consequência disso o ar renovado a cada respiração é de 
apenas 1/7, pois 2300/350 = 0,007 
 
Esta renovação lenta do ar é importante para evitar: 
 Alterações súbitas da concentração de gases no sangue. 
 Evitar o aumento ou diminuição excessiva na oxigenação dos tecidos. 
 Alterações súbitas da concentração de CO2 tecidual. 
 Alterações excessivas do pH do sangue e tecidos, quando a respiração é interrompida. 
 
 
 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
Concentração e pressão de O2 nos alvéolos: 
 É controlado em 1° lugar pela velocidade de absorção de O2 pelos capilares. 
 É controlado em 2° lugar pela velocidade da entrada do novo O2 para os pulmões pelo 
processo da ventilação. 
Concentração e pressão de CO2 nos alvéolos: 
 O CO2 é continuamente formado no organismo,sendo também continuamente 
liberado nos alvéolos e apartir daí para fora do corpo. 
 A concentração de CO2 no sangue é muito mais 
importante que a de O2. 
 Se o gás for solúvel no liquido (plasma) ele 
exerce pouca pressão este é o caso do CO2 que 
demora a saturar, já o O2 é muito pouco solúvel 
em meio liquido saturando mais rapidamente 
 
: 40mmHg PV (pressão venosa pulmonar)O2
: 45mmHg PV (pressão venosa pulmonar)CO2
: 104mmHg Pa (pressão artéria pulmonar)O2
: 40mmHg Pa (pressão artéria pulmonar)CO2
: 100mmHg PA (pressão alveolar)O2
: 40mmHg PA (pressão alveolar)CO2
 
ESPAÇO MORTO FISIOLÓGICO: é na realidade a soma 
do espaço morto anatômico com outros volumes gasosos pulmonares que não participam da 
troca gasosa. 
Por exemplo: determinada área do pulmão é ventilada, mas não perfundida e os gases que 
chegaram aos alvéolos nestas regiões não podem participar das trocas gasosas e é 
funcionalmente morto. 
Também pode ocorrer o contrario onde ocorre a perfusão, mas não ocorre a ventilação, o que 
resulta em um sangue que não pode fazer as trocas gasosas e a este sangue o chamamos de 
sangue shunt por sua incapacidade de realizar as trocas gasosas. 
“O espaço morto fisiológico é maior que o anatômico.” 
 
Quando entra O2 no organismo a sua pressão parcial diminui devido a umidificação que ocorre 
nas vias aéreas, em saltos de 160mmHg para 149mmHg. 
 = 104mmHg. Pressão alveolar O2 
 = 100mmHg. Pressão arterial O2 
 = 40mmHg. Pressão venosa O2 
O CO2 é resultado da queima da glicose dentro das células, tendo como função reativar o 
tampão carbônico para a manutenção do pH. 
 
CO2 + H2O ↔ H2CO3 ↔ H
+ + HCO3
- 
Este tampão tem como finalidade manter a estabilidade do pH, pois: 
 CO2↑ H
+↑ pH↓, o que leva a uma acidose. 
 CO2↓ H
+↓ pH↑, o que leva a uma alcalose. 
 
É mais importante manter o equilíbrio de CO2 que o de O2: 
[CO2] no ar atmosférico é praticamente 0mmHg. 
[CO2] no ar atmosférico é praticamente 0mmHg. 
[CO2] no ar alveolar = 40mmHg. 
Pressão arterial CO2 = 40mmHg. 
Pressão venosa CO2 = 45mmHg. 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
Percebe-se que a diferença entre o sangue venoso e o arterial não pode ser muito grande, pois 
se isso ocorre-se o sangue venoso seria muito ácido. 
Quando o sangue venoso passa pelo pulmão deixa cerca de 5mmHg de CO2 saindo para a veia 
pulmonar com cerca de 40mmHg de CO2, então qualquer problema que impeça este processo 
em longo prazo acarretará uma acidose respiratória. 
 
 : ocorre por problemas relativos ao metabolismo, por exemplo, Acidose metabólica
excesso de produção de acido lático, no diabético o excesso de corpos cetonicos no 
sangue e etc... Todos estes problemas aumentam a concentração de H+ no sangue o 
que por sua vê diminui o pH, para compensar tem-se uma hiperventilação para retirar 
o CO2 em excesso, os rins aumentam a excreção de íons H
+ e a reabsorção de HCO3
-. 
 : por problemas do metabolismo tem se a falta de íons H+ e o Alcalose metabólica
excesso de HCO3
- o que aumenta o pH, é compensado através de uma hiperventilação 
e os rins aumentam a excreção de HCO3
- e a reabsorção de H+. 
 : causada por uma ventilação ruim, o que aumenta a concentração Acidose respiratória
de CO2 no sangue que por sua vês diminui o pH do mesmo.Para se compensar 1° tem 
se os tampões dos líquidos corporais e também os rins necessitam de vários dias para 
corrigir o problema. 
 : ocorre quando se tem uma ventilação excessiva que eleva o pH Alcalose respiratória
do sangue, para se compensar tem se os tampões corporais e também os rins. 
 
-Transporte de O2 e CO2 no Sangue- 
Após sua difusão dos alvéolos para o sangue pulmonar, o O2 é transportado principalmente 
pela hemoglobina dentro dos eritrócitos até capilares teciduais onde é liberado para ser 
utilizado pelas células. 
A presença de sangue nos eritrócitos permite que o sangue transporte 30 a 100 vezes mais O2 
de que sem sua presença, ou seja, O2 dissolvido no plasma. 
O CO2 faz o caminho inverso do O2, ele também se combina quimicamente no sangue o que 
aumenta seu transporte em cerca de 15 a 20 vezes. 
 
TRANSPORTE DE O2 NO SANGUE: 
O pH do sangue arterial é diferente do sangue venoso: 
Sangue arterial: 7,36 a 7,44 
Sangue venoso: 7,44 a 7,46 
Esses valores têm importância para o transporte de O2 que é muito pouco solúvel em 
H2O(plasma), sendo necessário uma proteína, a hemoglobina (Hb) para seu transporte. 
 
Hemoglobina (CARACTERISTICAS) 
 4 polipeptídicas (2 alfas e 2 betas) – Hb A, Hb F (2 gama) e Hb S (aa de cadeia beta é 
Valina no lugar de glutamato) 
 4 grupos HEME (Protoporfirina e Ferro Ferroso Fe2+) 
 Combinação com O2 (Oxihemoglobina) 
 Dissociação com O2 (Deoxihemoglobina) 
 *Metemoglobina: Férrico (Fe3+) – Nitrito 
 *Carboxihemoglobina: (Hb CO) 
 
A hemoglobina se liga a até quatro O2 e 
a partir que o primeiro se liga os outros 
se ligam a ela mais facilmente 
(mecanismo de autofacilitação). 
 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
Normalmente cerca de 97% de todo O2 transportado dos pulmões para os tecidos são 
transportados em combinação química com a hemoglobina, sendo que os três restantes estão 
dissolvidos na água do plasma. 
Quando 100% da Hb esta ligada ao O2, a concentração de O2 é transportado em 20% ou seja, 
100ml de sangue para 20mm de O2. 
A uma PO2 de 104mmHg, 99% do O2 é transportado pela proteína Hb. 
 
Gráfico da dissociação da Hemoglobina: 
No sangue arterial com uma 
saturação de 97%, a quantidade 
total de O2 ligado à hemoglobina 
é de 19,4mm para cada 100ml de 
sangue, ao passar pelos capilares 
esta quantidade cai para cerca de 
14,5mm, assim em condições 
normais cerca de 5mm de O2 são 
transportados dos pulmões para 
os tecidos a cada 100ml de 
sangue. 
 
-Função de tampão da hemoglobina- 
Tampão de O2 tecidual, ou seja, ela é responsável pela estabilização da pressão de O2 no 
plasma e tecidos. 
 Nos tecidos a PO2 normal é de cerca de 40mmHg, quando o sangue chega nos tecidos 
a sua pressão varia de acordo com o seu metabolismo, quando a PO2 cai a 
concentração de Hb também cai. 
 Quando a concentração de O2 da ATM se modifica acentuadamente o efeito tampão 
da Hb entra em ação, mantendo a PO2 tecidual e sanguínea quase constante, tanto na 
altitude onde a PO2 dos alvéolos pode cair pela metade ou quando mergulhamos a 
altas profundidades onde a PO2 nos alvéolos pode aumentar cerca de até 10 vezes. 
 
Por exemplo: quando por qualquer que seja motivo a pressão alveolar venha a se elevar até 
500mmHg cerca de 5 vezes o seu valor normal, mas a saturação da Hb nunca pode passar de 
100% ou seja apenas 03% de seu valor normal que é 97%, a seguir o fluxo sanguíneo continua 
e ao passar pelos capilares teciduais perde cerca de 05mm de O2, o que automaticamente 
reduz a PO2 do capilar para um valor que é apenas alguns mm do valor normal de 40mmHg. 
 Para o metabolismo celular é necessária apenas à presença de pequena pressão de O2, 
para que ocorram as reações químicas intracelulares normais, sendo necessário uma 
PO2 de apenas 1mmHg para que a PO2 deixe de ser um fator limitante para as reações 
enzimáticas das células. 
 
Fatores que desviam a curva de dissociação da oxiemoglobina: 
 
Quanto mais CO2 tiver maior será o metabolismo celular e a 
célula por sua vês necessitara de uma maior quantidade de O2. 
O aumento da temperatura do sangue favorece o desvio para a 
direita, pois aumenta o transporte de O2 para os músculos 
durante a atividade. 
Efeito Bohr: desvio para a esquerda, o que atrapalha a 
dissociação da Hb diminuindo a quantidade de O2 liberado. 
 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
TRANSPORTE DE CO2 NO SANGUE: 
 O CO2 se dissolve bem no sangue, com uma facilidademuito maior que o O2, 
conseqüentemente a pressão do CO2 será também bem menor que a do O2. 
 Já a concentração de CO2 é muito maior que a de O2 (por isso sua concentração é mais 
importante que a de O2). 
 
As hemácias possuem a enzima anidrase carbônica que catalisa a reação H2O + CO2, que 
formara acido carbônico que por sua vês se dissociara em íons bicarbonato e H+ (todo este 
processo ocorre dentro da hemácia). 
 
 
 
 
Na circulação parte de todo CO2 é transportado na forma de bicarbonato dentro da hemácia 
(maior parte), também na forma liquida no sangue e por ultimo ligado a hemoglobina Hb-CO2 
(carboxiemoglobina). 
 
 70% na forma de bicarbonato dentro da hemácia. 
 23% Hb-CO2. 
 07% CO2 dissolvido na plasma. 
 
Uma hiperventilação não aumenta a concentração de O2 no sangue, a não ser que se aumente 
o numero de Hb, pois a uma pressão de 100mmHg 97% de todo O2 e transportado pela 
hemoglobina. 
 
 Acidose deprime o sistema nervoso podendo causar coma. 
 Alcalose excita o sistema nervoso podendo causar convulsão. 
 Hiperventilação aumenta a excreção de CO2. 
 Hipoventilação aumenta a captação de CO2. 
 O maior problema não é a falta de O2, mas sim o acumulo de CO2. 
 
 
 
 
 
 
 
 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
 
Quando o sangue fica ligeiramente ácido, com a queda do pH do valor normal de 7,4 para 7,2 
a curva de dissociação de oxigênio-hemoglobina se desloca em média por cerca de 15% para a 
direita (Efeito Bohr). Por outro lado, o aumento do pH do normal de 7,4 para 7,6 desloca a 
curva de maneira semelhante para a esquerda. 
 
Deslocam a curva para a direita: 
 Maior concentração de Dióxido de Carbono (PCO2) 
 ↑ do pH 
 ↑ da Temperatura corporal 
 ↑ do 2,3 Bifosfoglicerato (BPG) 
O BPG é um composto fosfatídico metabolicamente importante presente no sangue em 
diferentes concentrações, sob diferentes condições metabólicas. (Outra explicação: é um 
produto intermediário formado durante a glicólise anaeróbia, via energética da hemácia). 
 
 Alterações nas trocas Resposta Compensatória 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
ESPOMETRIA: VOLUMES E CAPACIDADES PULMONARES 
Os volumes e as capacidades pulmonares são medidos por meio da Espirometria, que consiste 
em medir a entrada e a saída de ar nos pulmões, ou seja, afere as capacidades e volumes 
pulmonares. O espirômetro é um equipamento composto por uma escala indicadora de 
volume, uma campânula flutuante, um tanque com água e um bocal. 
Na espirometria, podem ser medidos 4 volumes (volume 
corrente, de reserva inspiratório, de reserva expiratório 
e residual) e 4 capacidades ( capacidades inspiratória, 
funcional, vital e capacidade pulmonar total). 
 
VOLUMES PULMONARES: são as medidas individuais 
da quantidade de ar que o indivíduo é capaz de inspirar 
ou de expirar de acordo com a espirometria. 
 
 corresponde ao volume de ar inspirado e expirado em Volume Corrente (VC=500ml): 
cada ciclo respiratório em condições basais (o ciclo respiratório em repouso). O 
volume corrente pode ser designado ainda como VT ( Tidal Volume). 
 é o volume de ar extra que ainda se Volume de Reserva Inspiratória (VRI=3000ml): 
consegue inspirar depois de já ter inspirado o volume corrente, não incluindo-o então. 
 volume de ar que, por meio de uma Volume de Reserva Expiratória (VRE=1100ml): 
expiração forçada, ainda pode ser exalado no final a expiração do volume corrente 
normal. 
 volume do ar que permanece nos pulmões mesmo no Volume Residual (VR=1200ml): 
final da mais vigorosa das expirações (mesmo assim é constantemente renovado). 
Não pode ser demonstrado no gráfico da espirometria uma vez que o espirograma só 
demonstra volumes inspirados ou expirados. Caso fosse registrado, estaria abaixo da 
reserva expiratória. 
 
CAPACIDADES PULMONARES: São as somas de dois ou mais volumes pulmonares. 
 
 é a quantidade de ar que um indivíduo Capacidade Inspiratória (CI= VC+VRI =3500ml): 
pode inspirar, partindo do nivel expiratório basal e enchendo ao máximo os pulmões. 
 consiste em uma quantidade Capacidade Residual Funcional ( CRF= VRE+VR =2300ml): 
de ar que, em condições normais, permanece nos pulmões ao final da expiração 
normal. Não pode ser calculada por espirometria. 
 é a amplitude total de uma inspiração Capacidade Vital (CV= VRI+VC+VRE =4600ml): 
máxima e uma expiração máxima, passando pelo volume corrente (incluindo-o). 
Consiste, portanto, na maior quantidade de ar que uma pessoa pode expelir dos 
pulmões após tê-los enchido ao máximo e, em seguida, expirado completamente. 
 Capacidade Pulmonar Total (CPT= VC+VRI+VRE+VR =5800ml ou CPT=CV+VR): 
representa o somatório de todos os volumes pulmonares, ou seja, todo o volume de 
ar existente no pulmão. Não pode ser medida na expirometria por ter volume residual 
como um de seus componentes. 
 
 
 
 
 
 
 
 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
Volume Respiratório Minuto (VRM): Corresponde à quantidade total de ar que se movimenta 
pelas vias respiratórias a cada minuto. 
 
VRM= Volume Corrente (VC) x Frequência Respiratória (FR) 
VRM= 500ml x 12 ciclos.min-1 ou 6 litros.min-1 
 
Volume do Espaço Morto (VEM=150ml): 6 litros de sangue percorrem as vias aéreas por 
minuto. Porém, nem todo ar inspirado participa das trocas gasosas (aproximadamente 150ml). 
Este volume corresponde ao Volume do Espaço Morto, que ocupa apenas a zona que não 
participa da difusão aérea, isto é, a zona de condução. 
 
Em outras palavras, é o volume de ar que entra nos pulmões, porém não atinge os alvéolos. 
Consiste no ar que se encontra no nariz, laringe, faringe, traquéia e brônquios terminais e que 
será expirado sem ter entrado nos alvéolos. Compreende cerca de 150 ml de ar, ainda 
oxigenado, o que mostra a importância das insuflações (respirações boca a boca) como forma 
de fornecer ar oxigenado para o socorrido. 
 
-----------------------------x-------------------------------x--------------------------------x--------------------------- 
Diversos fatores modificam a ventilação, seja por alterações na frequência, no volume 
corrente ou no ritmo. As emoções, a do, o sono, o choro, a fonação, a tosse, as necessidades 
metabólicas, bem como várias entidades mórbidas, podem modificar o padrão ventilatório, 
recebendo denominações especiais: 
 
 : é a respiração normal, sem qualquer sensação subjetiva de desconforto. EUPNÉIA
 : aumento da frequência respiratória. TAQUIPNÉIA
 : diminuição da frequência respiratória. BRADIPNÉIA
 : aumento do volume corrente. HIPERPNÉIA
 : diminuição do volume corrente. HIPOPNÉIA
 : aumento da ventilação global. Mais acertadamente, aumento da HIPERVENTILAÇÃO
ventilação alveolar além das necessidades metabólicas. 
 : diminuição da ventilação global. Com maior precisão, diminuição HIPOVENTILAÇÃO
da ventilação dos alvéolos aquém das necessidades metabólicas. 
 : parada dos movimentos respiratórios ao final de uma expiração basal. APNÉIA
 : interrupção dos movimentos respiratórios ao final da inspiração. APNEUSE
 : respiração laboriosa, sensação subjetiva de dificuldade respiratória. DISPNÉIA
 
MANOBRAS EXPIRATÓRIAS FORÇADAS 
Solicita-se ao indivíduo que, após inspirar até a capacidade pulmonar total (CPT), expire tão 
rápida e intensamente quanto possível em um espirógrafo, sendo o volume expirado lido em 
um traçado volume-tempo. Com base nesse traçado, é possível computar a Capacidade Vital 
Forçada (CVF) e o Volume Expiratório Forçado no Primeiro Segundo (VEF1,0). 
 
 
 
 
 
 
 
 
 
 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto GaldinoLoL 
 
CONTROLE DA RESPIRAÇÃO 
 
A respiração possui tanto o controle involuntário quanto o voluntário: 
 
 existe para que possamos realizar outras funções que sem ele O controle voluntário 
seria impossível, como por exemplo, a fonação. 
 nos mantém respirando a maior parte do tempo, pois durante O controle involuntário 
a maior parte do tempo nem lembramos de estar respirando. 
 
O controle da respiração é feita por dois elementos: 
 
 : controle das atividades. Voluntário
 : relacionado com a química do Metabólico
sangue para garantir a respiração. 
 
Por exemplo, podemos prender a respiração através do 
controlador voluntário (estímulos voluntários), mas 
após algum determinado tempo chega-se a um 
momento em que o controlador metabólico (estímulos 
não voluntários) supera em numero de estímulos o 
controlador voluntário realizando assim a inspiração. 
 
O SNA (sistema nervoso autônomo) controla todas as visceras com exceção do pulmão, o 
único lugar onde se tem musculatura lisa no pulmão é nos brônquios, o que possibilita ao SNA 
fazer a bronquiodilatação e constrição. 
O restante do pulmão possui musculatura estriada esquelética (MEE), que através do nervo 
periférico (eferente motor somático) promove a ventilação. 
 
→CONTROLE NEURAL DA RESPIRAÇÃO← 
 
Em relativo repouso, a freqüência respiratória é da ordem de 10 a 15 movimentos por minuto. 
A PONTE e o BULBO são responsáveis pelo Controle Neural da Respiração. 
 
 aferencias→ +Centro integrador- →eferências 
 RECEPTOR↗ ↘EFETOR 
 
A respiração é controlada automaticamente por um centro nervoso localizado no bulbo. Desse 
centro partem os nervos responsáveis pela contração dos músculos respiratórios (diafragma e 
músculos intercostais). Os sinais nervosos são transmitidos desse centro através da coluna 
espinhal para os músculos da respiração. O mais importante músculo da respiração, o 
diafragma, recebe os sinais respiratórios através do nervo frênico, que deixa a medula espinhal 
na metade superior do pescoço e dirige-se para baixo, através do tórax até o diafragma. 
 Os sinais para os músculos expiratórios, especialmente os músculos abdominais, são 
transmitidos para a porção baixa da medula espinhal, para os nervos espinhais que inervam os 
músculos. Impulsos iniciados pela estimulação psíquica ou sensorial do córtex cerebral podem 
afetar a respiração. Em condições normais, o centro respiratório (CR) produz, a cada 5 
segundos, um impulso nervoso que estimula a contração da musculatura torácica e do 
diafragma, fazendo-nos inspirar. O CR é capaz de aumentar e de diminuir tanto a freqüência 
como a amplitude dos movimentos respiratórios, pois possui quimiorreceptores que são 
bastante sensíveis ao pH do plasma. Essa capacidade permite que os tecidos recebam a 
quantidade de oxigênio que necessitam, além de remover adequadamente o gás carbônico. 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
Quando o sangue torna-se mais ácido devido ao aumento do gás carbônico, o centro 
respiratório induz a aceleração dos movimentos respiratórios. Dessa forma, tanto a freqüência 
quanto a amplitude da respiração tornam-se aumentadas devido à excitação do CR. 
Em situação contrária, com a depressão do CR, ocorre diminuição da freqüência e amplitude 
respiratórias. 
 
Em resumo: 
 Ponte e bulbo são responsáveis pelo controle neural da respiração 
 O tronco cerebral controla a geração do Ritmo Respiratório 
 O controle ventilatório depende da integração central de informações periféricas 
 O padrão respiratório não é uma simples oscilação entre Inspiração e Expiração 
 QUIMIORRECEPTORES → TRONCO CEREBRAL → MUSCULATURA 
 Respiração Ritmica: 12 a 18 ciclos em 1 minuto (controlado por mecanismos neurais e 
químicos) 
 Centros de Controle Central 
 RECEPTORES↗ < - - - - - - - - - - - - - - - - - - ↘EFETORES 
 
 
CENTROS/GRUPOS RESPIRATÓRIOS 
A natureza periódica do ciclo respiratório é controlada por neurônios localizados no tronco 
cerebral a nível de Ponte e Bulbo. Esse conjunto de neurônios foi chamado CENTRO 
RESPIRATÓRIO. Por muitos anos perdurou a noção de que o centro respiratório era constituído 
por subcentros bulbares (inspiratório e expiratório) e pelos subcentros pontinos. Deste 
conceito evoluiu-se para os denominados GRUPOS RESPIRATÓRIOS, pois foi verificado qu há 
diversos núcleos neuronais relativamente agrupados envolvidos na respiração. 
 
O Centro Respiratório se compõe por diversos grupos de neurônios localizados bilateralmente 
no Bulbo e na ponte do Tronco Cerebral. Se divide em 3 agrupamentos principais de 
neurônios: 
 
 - situado na porção dorsal do bulbo, responsável Grupo Respiratório Dorsal 
principalmente pela INSPIRAÇÃO. 
 - localizado na parte ventrolateral do bulbo, encarregado Grupo Respiratório Ventral 
basicamente da EXPIRAÇÃO. 
 – encontrado na porção dorsal superior da ponte, incumbido Centro Pneumotáxico 
essencialmente do CONTROLE DA FREQUÊNCIA e da AMPLITUDE RESPIRATÓRIA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
GRUPO RESPIRATÓRIO DORSAL (GRD) 
É composto por um grupo de células ativas durante a inspiração (neurônios inspiratórios). 
Esses neurônios podem ser divididos em dois subtipos: 
 Neurônios Iα 
 Neurônios Iβ 
 
Iα - <-------------------> + Iβ 
 
Enquanto as células do tipo Iα são inibidas 
durante a insuflação pulmonar, as do tipo 
Iβ são estimuladas por ela. Logo as células 
Iβ inibiriam a atividade de Iα, sendo esse 
grupamento responsável pelo reflexo de 
Breuer-Hering. O GRD localiza-se no 
Núcleo do Trato Solitário (NTS). 
 
 
 
-Sinal Inspiratório em Rampa- 
Inicia-se muito fraco e vai aumentando 
progressivamente por cerca de dois segundos. Em 
seguida, cessa abruptamente por cerca de três 
segundos e permite a retração elástica da caixa 
torácica e dos pulmões causando a expiração. O 
centro pneumotáxico limita a duração da inspiração 
e aumenta a freqüência respiratória. 
 
 
 
 
 
 
 
CENTRO PNEUMOTÁXICO 
É situado dorsalmente no núcleo parabraquial 
da parte superior da ponte, transmite sinais 
para a área inspiratória. O Efeito primário 
desse centro é o de controlar o ponto de 
“desligamento” da rampa inspiratória, 
cntrolando assim a duração da fase de 
expansão do ciclo pulmonar. 
A função principal do Centro Pneumotáxico é 
basicamente a de limitar a inspiração. 
 
 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
GRUPO RESPIRATÓRIO VENTRAL (GRV) 
Situado em cada lado do Bulbo, em posição rostral no núcleo ambíguo rostral (Inspiração) e 
caudalmente (Expiração) no Núcleo Retroambíguo. 
O grupo ventral de neurônios permanece quase totalmente inativo durante a respiração 
normal em repouso. Quando há necessidade de altos níveis de ventilação pulmonar, essa área 
opera mais ou menos como um 
mecanismo multiplicador. Dessa forma, 
o grupo ventral é essencialmente 
importante na respiração forçada. Os 
receptores de estiramento localizados 
nas paredes dos brônquios e 
bronquíolos, que transmitem os sinais 
através dos nervos vagos para o grupo 
respiratório dorsal quando os pulmões 
ficam muito distendidos ativam uma 
resposta de feedback adequada que 
desliga a rampa inspiratória através do 
chamado reflexo de insuflação de 
Hering-Breuer. 
 
COMPLEXO DE BOTZINGER :contém neurônios inspiratórios e expiratórios, aqueles 
enviando seus axônios para o Núcleo Ambíguo, isto é, para o GRV, enquanto estes emitem 
seus axônios em direção do GRD (NTS). 
Uma região pequena próxima à terminação rostral dacoluna ventrolateral que se estende do 
Nucleo Facial até a medula espinhal, chamada COMPLEXO PRÉ-BOTZINGER tem sido 
considerada o cerne da ritmogênese respiratória (gerador do Ritmo Respiratório). 
O Pré-Botzinger é considerado como ‘neurônios marcapassos’. 
 
 
-Centros Bulbares envolvidos no Controle da Respiração- 
 
GRD (NTS) → Neurônios Inspiratórios → Nervo Frênico → Diafragma 
 
GRV (Bulbo Ventrolateral) → GRVc → Neurônios Expiratórios → Músculos Abdominais 
↓ ↘ Botzinger → Pré-Botzinger ↘ M. Intercostais Internos 
↓ 
GVVR → Neurônios Inspiratórios (Nervo Frênico) → Diafragma 
 
 
-Ativação Gradativa- 
 
+↓----------- [CENTRO PNEUMOTÁXICO PONTINO] ------------↓- 
 Neurônios Inpiratórios Bulbares Neurônios Expiratórios Bulbares 
 ↘----------------->[NEURÔNIOS MOTORES ESPINHAIS] <------------------↙ 
↓+ 
Diafragma 
↓+ 
Inspiração 
 
 
 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
CENTRO APNÊUSTICO 
Centro pontino: possui neurônios que 
fornecem ritmicidade e 
automaticidade ao processo 
respiratório. Há 2 grupo celulares que 
formam os centros pneumotáxico 
(superior) e apnêustico (inferiores). 
Ainda não se sabe ao certo a função 
do APNÊUSTICO. Acredita-se que ele 
excite o GRD do bulbo, promovendo 
pausa respiratória, mas isso só foi 
comprovado em animais de 
laboratórios e não em homens. 
 
-------------------------x------------------------------------x-----------------------------------x-------------------------- 
 
Reflexo de Breuer-Hering 
 
Inspiração → Insuflação Pulmonar → Ativação de Receptores de Estiramento dos brônquios 
e bronquíolos terminais → Aferências Vagais que vão atuar no GRD inibindo-o e vão atuar 
estimulando o centro pneumotáxico pontino, que interrompe a inspiração. 
 
Quando os pulmões são 
excessivamente insuflados, os 
receptores de estiramento ativam 
resposta de feed-back apropriada que 
“desativa” a rampa inspiratória e 
consequentemente, interrompe a 
inspiração. 
Esse reflexo também aumenta a 
frequência respiratória, o que também 
é verdade para os sinais originários do 
centro pneumotáxico. 
 
 
 
→CONTROLE QUÍMICO DA RESPIRAÇÃO← 
 
-Quimiorreceptores- 
São receptores envolvidos com a percepção dos teores de O2 e CO2 e H
+. São subdivididos 
quanto à sua localização anatômica em: 
 Periféricos 
 Centrais 
 
 
 
 
 
 
 
 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
QUIMIORRECEPTORES PERIFÉRICOS 
São subdivididos anatomicamente em 
CAROTÍDEOS E AÓRTICOS, embora 
fisiologicamente desempenhem a 
mesma função. 
São formações altamente vascularizadas. 
 
Os Carotídeos situam-se bilateralmente 
na bifurcação da artéria carótida comum 
em seus ramos interno e externo. 
Os Aórticos estão localizados ao redor 
das porções iniciais da aorta. 
 
Os quimiorreceptores Carotídeos enviam informações ao centro respiratório por meio de 
potenciais de ação que trafegam bilateralmente ao longo dos nervos Glossofaringeos (IX) 
ao passo que os Aórticos mandam suas mensagens aferentes através dos nervos vagos (X). 
 
Os quimiorreceptores periféricos são sensíveis às variações de PO2, PCO2 e pH no sangue 
arterial. São compostos por dois tipos celulares: 
 (Sensores) Célula tipo I 
 (Sustentação) Célula tipo II 
 
Próximo às células tipo I há um grande número de capilares, garantindo um fluxo sanguíneo 
adequado aos quimiorreceptores. 
As células de sustentação tipo II envolvem tanto as células tipo I como os capilares. 
 
QUIMIORRECEPTORES CENTRAIS 
Estão localizados bilateralmente na face 
ventral do bulbo e são banhados pelo líquido 
cefalorraquidiano. 
Pode ser localizada em zonas: 
 (R) Rostral 
 (C) Caudal 
 (I) Intermediária 
Eles respondem às variações de PCO2 e pH. 
 
 
-Receptores J (Justacapilares)- 
Ainda está em estudo, mas acredita-se que 
são estimulados pela congestão capilar, 
hipertensão capilar e edema de parede 
alveolar. Os Receptores ‘J’ seriam 
responsáveis pela traquipnéia durante a 
congestão ou o edema pulmonar. 
Seus impulsos aferentes chegariam ao centro respiratório por meio de fibras vagais do tipo C. 
 
“80% da resposta é efetuada pelos 
quimiorreceptores centrais 
20% da resposta é efetuada pelos 
quimiorreceptores periféricos” 
 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL 
 
No vaso sanguíneo cerebral há íons hidrogênio (H+) e bicarbonato (HCO3
-) e também há dióxido 
de carbono (CO2). Este gás atravessa livremente a barreira hematoencefálica (o que não ocorre 
em relação ao HCO3
- e ao H+). Quando há um aumento da concentração de dioxido de carbono 
no sangue, ele facilmente passa pela barreira e atinge o líquido cefalo-raquidiano (líquor). 
O dióxido de carbono, no líquor, reage com H2O, com auxílio da anidrase carbônica, formando, 
entre outros, íons hidroxônio (H+). 
 
O aumento da concentração de íons H+ promove uma queda do pH e essa age nos 
quimiorreceptores centrais da área quimioceptora central do bulbo levando à hiperventilação. 
Então o dióxido de carbono retorna ao sangue e é expelido por meio da ventilação. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Em outras palavras, apesar de se dizer que os quimiorreceptores centrais respondem ao 
dióxido de carbono, eles na verdade respondem à mudança de pH que ocorre no fluido 
cerebroespinal. O dióxido de carbono que se difunde através da barreira hematoencefálica 
para dentro do fluido cerebroespinal é convertido em bicarbonato e H+. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FISIOLOGIA DO SISTEMA RESPIRATÓRIO 
RESUMO – Alberto Galdino LoL

Outros materiais