107 pág.

Pré-visualização | Página 2 de 18
B.BA.BB.AA.AA)BA).(BA(AL += += ++= ++++=+++= A figura 06 representa o circuito simplificado. ___________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 10 Figura 1.6 Exemplo 02: Simplificar o circuito da figura 7. Figura 1.7 Solução : A equação deste circuito é : YX.CL += Onde : B.AYeBAX =+= ___________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 11 CBA BB.CA BAC.B.A B.A)BA.(CYX.CL ++= ++= ++= ++=+= A figura 08 representa o circuito simplificado. Figura 1.8 1.2.2 – Simplificação com Mapa de KARNAUGH Quando utilizamos os teoremas e postulados Booleanos para simplificação de uma circuito lógico qualquer não podemos afirmar, que a equação resultante está na sua forma minimizada. Existem métodos de mapeamento de circuitos lógicos, que possibilitam a minimização de expressões com N variáveis. Um desse métodos é a utilização do mapa de KARNAUGH e é indicado para minimização de até 4 variáveis. ___________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 12 Exemplo 1 : Simplificar o circuito da figura 1.9. Figura 1.9 Figura 1.10 Solução: A equação deste circuito é : B.AB.AB.AL ++= Marcamos no mapa de Karnaugh, figura 1.11, as regiões correspondentes a cada parcela da equação do circuito. Figura 1.11 Tomamos o menor número de pares de parcelas vizinhas. A mesma região pode pertencer a pares diferentes. As regiões 1 ( parcela A ) e 2 ( parcela B) correspondem à simplificação do circuito que é : BAL += A figura 1.10 representa o circuito simplificado. ___________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 13 Exemplo 2: Simplificar o circuito da figura 1.12 Figura 1.12 Figura 1.13 Solução : A equação deste circuito é : C.B.AA.CC.BB.A)B.AA.(CC.BB.AL +++=+++= No mapa de KARNAUGH, figura 1.14, marcamos : Figura 1.14 Tomamos o menor número de quadras vizinhas. As regiões 1 (parcela A), 2 (parcela B) e 3(parcela C) correspondem à simplificação do circuito que é: CBAL ++= A figura 1.13 representa o circuito simplificado. ___________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 14 1.3 – MONTAGEM DE CIRCUITOS COM CONDIÇÕES ESTABELECIDAS 1.3.1 – Método da Soma de Produtos Devemos inicialmente preencher a tabela verdade nas condições do problema. Somam-se os produtos das entradas onde se tem a saída no estado “1”, sendo que as variáveis de entrada no estado “0” são barradas. A equação assim obtida é a solução do circuito. Exemplo : Montar o circuito que contém 3 chaves A,B e C e uma lâmpada na seguinte condição: quando pelo menos duas chaves estiverem ligadas, a lâmpada estará acesa. Figura 1.15 Figura 1.16 Solução: As saídas �,�,� e � da tabela verdade, figura 1.15, atendem às condições do problema. Então : C.B.AC.B.AC.B.AC.B.AL +++= No mapa de KARNAUGH, figura 16, marcamos : Região V�, parcela C.B.A Região V�, parcela C.B.A Região V�, parcela C.B.A Região V�, parcela C.B.A ___________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 15 tomamos o menor número de duplas vizinhas. As regiões 1 ( parcela A.B), 2 (parcela B.C) e 3 ( parcela C.A), correspondem à simplificação do circuito que é : A.CC.BB.AL ++= A figura 1.17 representa o circuito simplificado. Figura 1.17 ___________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 16 2–PRINCÍPIO DE CONTROLE SEQUENCIAL E CIRCUITOS BÁSICOS 2.1 – CONTROLE SEQUENCIAL O controle sequencial é o comando passo a passo de uma série de eventos no tempo e numa ordem predeterminada. 2.1.1 - Exemplo Como exemplo de controle sequencial, um processo industrial de aquecimento é mostrado na figura 2.1. Temos que : a) encher o tanque com matéria-prima até certo nível; b) aquecer o conteúdo do tanque, com uso de vapor, agitando o conteúdo atá certa temperatura; c) dar vazão à matéria aquecida. A operação descrita acima é executada manualmente nesta sequência : 1- abrir a válvula manual “V1” para que a matéria prima chegue ao tanque; 2- fechar “V1” quando a matéria prima atingir certo nível marcado pelo indicador “L”; 3- abrir a válvula manual “V2” para aquecimento com passagem de vapor pelo tubo e ligar o motor “M” fazendo girar o homogenizador, para agitar a matéria; 4- quando a indicação do termômetro “TH” atingir certo valor, interromper a passagem de vapor fechando “V2” e parar a agitação desligando o motor “M”; 5- dar vazão à matéria aquecida. ___________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 17 6- Quando o tanque esvaziar, fechar “V3”. Os passos de 1 a 6 são repetidos quantas vezes forem necessárias. Este processo pode ser realizado automaticamente, figura 2.2, nesta sequência : 1- Apertando-se a botoeira de partida, o processo irá iniciar com a abertura da válvula solenóide “VS1”, e a matéria prima chegará ao tanque. 2- Quando for atingido certo nível de matéria, a válvula solenóide “VS1” irá fechar devido à atuação do sensor de nível “SN”. 3- Fechando-se a válvula solenóide “VS1”, a chave de fluxo “CFC1” irá abrir a válvula solenóide “VS2” para aquecimento com passagem de vapor e também ligar o motor “M” do homogenizador para agitar a matéria. 4- Quando a matéria atingir certa temperatura, a válvula solenóide “VS2” irá fechar, e o motor “M” irá parar devido à atuação do sensor de temperatura “ST”. 5- Fechando-se a válvula solenóide “VS2”, a chave de fluxo “CFC2” irá abrir a válvula solenóide “VS3”, dando vazão à matéria e acionando um temporizador. 6- Após certo tempo, a válvula solenóide “VS3”, irá fechar e acionará a chave fluxo “CFC3”, que fará abrir a válvula solenóide “VS1”, recomeçando o processo. Este processo será interrompido apertando-se a botoeira de parada quando a válvula solenóide “VS3” estiver terminando de fechar. Um número predeterminado de execuções do processo pode ser conseguido usando-se um contador. ___________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 18 2.1.2 – Características do controle sequencial O controle sequencial tem as seguintes características : a) do sinal de entrada até o de saída a sequência de operações obedece uma ordem predeterminada; b) durante a execução da sequência, o sinal de controle é transmitido obedecendo certas condições; c) o passo seguinte é executado dependendo do resultado anterior; Geralmente, o controle sequencial é o mais conveniente, indicado e utilizado em operações de atuação passo a passo, como, por exemplo, partida-parada, modificar condição de execução de manual para automático, etc. 2.1.3 – Diagrama de Blocos Na figura 2.3 é mostrado o diagrama de blocos do comando sequencial. 1) Um dispositivo de comando é acionado por um operador; 2) Um sinal é transmitido para o dispositivo de processo que irá atuar de maneira predeterminada. 3) O sinal de detecção, que significa a condição de processo, é enviado aos dispositivos de sinalização; 4) Um sinal de controle, resultante de um sinal de processo e/ou detecção, é transmitido ao dispositivo de final de controle; 5) O sinal transmitido do dispositivo