Buscar

Os cruzamentos

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 12 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 12 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 12 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

Os cruzamentos 
 
Depois de obter linhagens puras, Mendel efetuou um cruzamento diferente. Cortou os estames de uma flor proveniente de semente verde e depois depositou, nos estigmas dessa flor, pólen de uma planta proveniente de semente amarela. Efetuou, então, artificialmente, uma polinização cruzada: pólen de uma planta que produzia apenas semente amarela foi depositado no estigma de outra planta que só produzia semente verde, ou seja, cruzou duas plantas puras entre si. Essas duas plantas foram consideradas como a geração parental (P), isto é, a dos genitores.
 
	
	 
	Após repetir o mesmo procedimento diversas vezes, Mendel verificou que todas as sementes originadas desses cruzamentos eram amarelas – a cor verde havia aparentemente “desaparecido” nos descendentes híbridos (resultantes do cruzamento das plantas), que Mendel chamou de F1 (primeira geração filial). Concluiu, então, que a cor amarela “dominava” a cor verde. Chamou o caráter cor amarela da semente de dominante e o verde de recessivo. 
A seguir, Mendel fez germinar as sementes obtidas em F1 até surgirem as plantas e as flores. Deixou que se autofertilizassem e aí houve a surpresa: a cor verde das sementes reapareceu na F2 (segunda geração filial), só eu em proporção menor que as de cor amarela: surgiram 6.022 sementes amarelas para 2.001 verdes, o que conduzia a proporção 3:1. Concluiu que na verdade, a cor verde das sementes não havia “desaparecido” nas sementes da geração F1. O que ocorreu é que ela não tinha se manifestado, uma vez que, sendo uma caráter recessivo, era apenas “dominado” (nas palavras de Mendel) pela cor amarela. Mendel concluiu que a cor das sementes era determinada por dois fatores, cada um determinando o surgimento de uma cor, amarela ou verde.
 
Era necessário definir uma simbologia para representar esses fatores: escolheu a inicial do caráter recessivo. Assim, a letra v (inicial de verde), minúscula, simbolizava o fator recessivo. Assim, a letra v (inicial de verde), minúscula, simbolizava o fator recessivo – para cor verse – e a letra V, maiúscula, o fator dominante – para cor amarela.
 
	VV
	vv
	Vv
	Semente amarela pura 
	Semente verde pura 
	Semente amarela híbrida 
 
Persistia, porém, uma dúvida: Como explicar o desaparecimento da cor verde na geração F1 e o seu reaparecimento na geração F2? 
A resposta surgiu a partir do conhecimento de que cada um dos fatores se separava durante a formação das células reprodutoras, os gametas. Dessa forma, podemos entender como o material hereditário passa de uma geração para a outra. Acompanhe nos esquemas abaixo os procedimentos adorados por Mendel com relação ao caráter cor da semente em ervilhas.
 
 
 
Resultado: em F2, para cada três sementes amarelas, Mendel obteve uma semente de cor verde. Repetindo o procedimento para outras seis características estudadas nas plantas de ervilha, sempre eram obtidos os mesmos resultados em F2, ou seja a proporção de três expressões dominantes para uma recessiva. 
Leis de Mendel 
 
1ª Lei de Mendel: Lei da Segregação dos Fatores
A comprovação da hipótese de dominância e recessividade nos vários experimentos efetuados por Mendel levou, mais tarde à formulação da sua 1º lei: “Cada característica é determinada por dois fatores que se separam na formação dos gametas, onde ocorrem em dose simples”, isto é, para cada gameta masculino ou feminino encaminha-se apenas um fator.
Mendel não tinha idéia da constituição desses fatores, nem onde se localizavam.
 
As bases celulares da segregação
A redescoberta dos trabalhos de Mendel, em 1900, trouxe a questão: onde estão os fatores hereditários e como eles se segregam?
	
	 
	Em 1902, enquanto estudava a formação dos gametas em gafanhotos, o pesquisador norte americano Walter S. Sutton notou surpreendente semelhança entre o comportamento dos cromossomos homólogos, que se separavam durante a meiose, e os fatores imaginados por Mendel. Sutton lançou a hipótese de que os pares de fatores hereditários estavam localizados em pares de cromossomos homólogos, de tal maneira que a separação dos homólogos levava à segregação dos fatores.
Hoje sabemos que os fatores a que Mendel se referiu são os genes (do grego genos, originar, provir), e que realmente estão localizados nos cromossomos, como Sutton havia proposto. As diferentes formas sob as quais um gene pode se apresentar são denominadas alelos. A cor amarela e a cor verde da semente de ervilha, por exemplo, são determinadas por dois alelos, isto é, duas diferentes formas do gene para cor da semente. 
 
 
 
Exemplo da primeira lei de Mendel em um animal
Vamos estudar um exemplo da aplicação da primeira lei de Mendel em um animal, aproveitando para aplicar a terminologia modernamente usada em Genética. A característica que escolhemos foi a cor da pelagem de cobaias, que pode ser preta ou branca. De acordo com uma convenção largamente aceita, representaremos por B o alelo dominante, que condiciona a cor preta, e por b o alelo recessivo, que condiciona a cor branca. 
Uma técnica simples de combinar os gametas produzidos pelos indivíduos de F1 para obter a constituição genética dos indivíduos de F2 é a montagem do quadrado de Punnet. Este consiste em um quadro, com número de fileiras e de colunas que correspondem respectivamente, aos tipos de gametas masculinos e femininos formados no cruzamento. O quadrado de Punnet para o cruzamento de cobaias heterozigotas é: 
 
 
	B
Gametas  paternos
b
	Gametas maternos 
  B                         b 
	
	BB
Preto
	Bb
Preto
	
	Bb
Preto
	bb
Branco
Os conceitos de fenótipo e genótipo 
 
Dois conceitos importantes para o desenvolvimento da genética, no começo do século XX, foram os de fenótipo e genótipo, criados pelo pesquisador dinamarquês Wilhelm L. Johannsen (1857 – 1912). 
 
Fenótipo 
O termo “fenótipo” (do grego pheno, evidente, brilhante, e typos, característico) é empregado para designar as características apresentadas por um indivíduo, sejam elas morfológicas, fisiológicas e comportamentais. Também fazem parte do fenótipo características microscópicas e de natureza bioquímica, que necessitam de testes especiais para a sua identificação. 
Entre as características fenotípicas visíveis, podemos citar a cor de uma flor, a cor dos olhos de uma pessoa, a textura do cabelo, a cor do pelo de um animal, etc. Já o tipo sanguíneo e a sequência de aminoácidos de uma proteína são características fenotípicas revelada apenas mediante testes especiais. 
 
O fenótipo de um indivíduo sofre transformações com o passar do tempo. Por exemplo, à medida que envelhecemos o nosso corpo se modifica. Fatores ambientais também podem alterar o fenótipo: se ficarmos expostos à luz do sol, nossa pele escurecerá.
 
Genótipo 
O termo “genótipo” (do grego genos, originar, provir, e typos, característica) refere-se à constituição genética do indivíduo, ou seja, aos genes que ele possui. Estamos nos referindo ao genótipo quando dizemos, por exemplo, que uma planta de ervilha é homozigota dominante (VV) ou heterozigota (Vv) em relação à cor da semente. 
Fenótipo: genótipo e ambiente em interação 
O fenótipo resulta da interação do genótipo com o ambiente. Consideremos, por exemplo, duas pessoas que tenham os mesmos tipos de alelos para pigmentação da pele; se uma delas toma sol com mais frequência que a outra, suas tonalidades de pele, fenótipo, são diferentes. 
Um exemplo interessante de interação entre genótipo e ambiente na produção do fenótipo é a reação dos coelhos da raça himalaia à temperatura. Em temperaturas baixas, os pelos crescem pretos e, em temperaturas altas, crescem brancos. A pelagem normal desses coelhos é branca, menos nas extremidades do corpo (focinho, orelha, rabo e patas), que, por perderem mais calor e apresentarem temperatura mais baixa, desenvolvem pelagem preta. 
 
Determinando o genótipo 
Enquanto que o fenótipo de um indivíduo pode ser observado diretamente, mesmo que seja através de instrumentos, o genótipotem que ser inferido através da observação do fenótipo, da análise de seus pais, filhos e de outros parentes ou ainda pelo sequenciamento do genoma do indivíduo, ou seja, leitura do que está nos genes. A técnica do sequenciamento, não é amplamente utilizada, devido ao seu alto custo e pela necessidade de aparelhagem especializada. Por esse motivo a observação do fenótipo e análise dos parentes ainda é o recurso mais utilizado para se conhecer o genótipo. 
Quando um indivíduo apresenta o fenótipo condicionado pelo alelo recessivo, conclui-se que ele é homozigoto quanto ao alelo em questão. Por exemplo, uma semente de ervilha verde é sempre homozigota vv. Já um indivíduo que apresenta o fenótipo condicionado pelo alelo dominante poderá ser homozigoto ou heterozigoto. Uma semente de ervilha amarela, por exemplo, pode ter genótipo VV ou Vv. Nesse caso, o genótipo do indivíduo só poderá ser determinado pela análise de seus pais e de seus descendentes. 
Caso o indivíduo com fenótipo dominante seja filho de pai com fenótipo recessivo, ele certamente será heterozigoto, pois herdou do pai um alelo recessivo. Entretanto, se ambos os pais têm fenótipo dominante, nada se pode afirmar. Será necessário analisar a descendência do indivíduo em estudo: se algum filho exibir o fenótipo recessivo, isso indica que ele é heterozigoto. 
 
	
	 
	Cruzamento-teste 
 
Este cruzamento é feito com um indivíduo homozigótico recessivo para o fator que se pretende estudar, que facilmente se identifica pelo seu fenótipo e um outro de genótipo conhecido ou não. Por exemplo, se cruzarmos um macho desconhecido com uma fêmea recessiva podemos determinar se o macho é portador daquele caráter recessivo ou se é puro. Caso este seja puro todos os filhos serão como ele, se for portador 25% serão brancos, etc. Esta explicação é muito básica, pois geralmente é preciso um pouco mais do que este único cruzamento.
A limitação destes cruzamentos está no fato de não permitirem identificar portadores de alelos múltiplos para a mesma característica, ou seja, podem existir em alguns casos mais do que dois alelos para o mesmo gene e o efeito da sua combinação variar. Além disso, podemos estar cruzando um fator para o qual o macho ou fêmea teste não são portadores, mas sim de outros alelos. 
Dominância incompleta ou Co-dominância 
 
Nem todas as características são herdadas como a cor da semente da ervilha, em que o gene para a cor amarela domina sobre o gene para cor verde. Muito frequentemente a combinação dos genes alelos diferentes produz um fenótipo intermediário. Essa situação ilustra a chamada dominância incompleta ou parcial. Um exemplo desse tipo de herança é a cor das flores maravilha. Elas podem ser vermelhas, brancas ou rosas. Plantas que produzem flores cor-de-rosa são heterozigotas, enquanto os outros dois fenótipos são devidos à condição homozigota. Supondo que o gene V determine a cor vermelha e o gene B, cor branca, teríamos:
 
VV = flor vermelha
BB = flor branca
VB = flor cor-de-rosa
 
Apesar de anteriormente usarmos letras maiúsculas para indicar, respectivamente, os genes dominantes e recessivos, quando se trata de dominância incompleta muitos autores preferem utilizar apenas diferentes letras maiúsculas.
Fazendo o cruzamento de uma planta de maravilha que produz flores vermelhas com outra que produz flores brancas e analisando os resultados fenotípicos da geração F1e F2, teríamos:
 
 
 
 
 
Agora analizando os resulados genotípicos da geração F1e F2, teríamos:
 
	P:
	Flor Branca 
  B                       B
	 
V
Flor Vermelha 
V
	BV
cor-de-rosa
	BV
cor-de-rosa
	
	VB
cor-de-rosa
	VB
cor-de-rosa
 
F1 = 100% VB (flores cor-de-rosa)
 
 
Cruzando, agora, duas plantas heterozigotas (flores cor-de-rosa), teríamos: 
 
	F1
	Flor cor-de-rosa
 V                      B
	V
Flor cor-de-rosa
B
 
	VV
Vermelha
	BV
cor-de-rosa
	
	VB
cor-de-rosa
	BB
Branca
 
F2 = Genótipos: 1/4 VV, 1/2 VB, 1/4 BB.
         Fenótipo: 1/4 plantas com flores vermelhas 
                           1/2 plantas com flores cor-de-rosa 
                    1/4 plantas com flores brancas 
 
Alelos letais: Os genes que matam
 
As mutações que ocorrem nos seres vivos são totalmente aleatórias e, às vezes, surgem variedades genéticas que podem levar a morte do portador antes do nascimento ou, caso ele sobreviva, antes de atingir a maturidade sexual. Esses genes que conduzem à morte do portador, são conhecidos como alelos letais. Por exemplo, em uma espécie de planta existe o gene C, dominante, responsável pela coloração verde das folhas. O alelo recessivo c, condiciona a ausência de coloração nas folhas, portanto o homozigoto recessivo cc morre ainda na fase jovem da planta, pois esta precisa do pigmento verde para produzir energia através da fotossíntese. O heterozigoto é uma planta saudável, mas não tão eficiente na captação de energia solar, pela coloração verde clara em suas folhas. Assim, se cruzarmos duas plantas heterozigotas, de folhas verdes claras, resultará na proporção 2:1 fenótipos entre os descendentes, ao invés da proporção de 3:1 que seria esperada se fosse um caso clássico de monoibridismo (cruzamento entre dois indivíduos heterozigotos para um único gene). No caso das plantas o homozigoto recessivo morre logo após germinar, o que conduz a proporção 2:1.
 
	P
	Planta com folhas verde claras 
C                        c
	C
Planta com folhas verde claras 
c
 
	CC
Verde escuro 
	Cc
Verde clara
	
	Cc
Verde clara
	cc
Inviável
 
F1 = Fenótipo: 2/3 Verde clara
                           1/3 Verde escura
Genótipo: 2/3 Cc 
                 1/3 CC 
 
Esse curioso caso de genes letais foi descoberto em 1904 pelo geneticista francês Cuénot, que estranhava o fato de a proporção de 3:1 não ser obedecida. Logo, concluiu se tratar de uma caso de gene recessivo que atuava como letal quando em dose dupla.
No homem, alguns genes letais provocam a morte do feto. É o caso dos genes para acondroplasia, por exemplo. Trata-se de uma anomalia provocada por gene dominante que, em dose dupla, acarreta a morte do feto, mas em dose simples ocasiona um tipo de nanismo, entre outras alterações. 
Há genes letais no homem, que se manifestam depois do nascimento, alguns na infância e outros na idade adulta. Na infância, por exemplo, temos os causadores da fibrose cística e da distrofia muscular de Duchenne (anomalia que acarreta a degeneração da bainha de mielina nos nervos). Dentre os que se expressam tardiamente na vida do portador, estão os causadores da doença de Huntington, em que há a deterioração do tecido nervoso, com perde de células principalmente em uma parte do cérebro, acarretando perda de memória, movimentos involuntários e desequilíbrio emocional. 
Agora, vamos relembrar o caso da cor das sementes de ervilhas estudado por Mendel utilizando termos da
genética.
	ALELOS
	GENÓTIPOS
	GAMETAS
	FENÓTIPOS
	V (dominante)
	V V
	Somente V
	amarela
	v (recessivo)
	V v
	V e v
	amarela
	
	v v
	Somente v
	verde
Vamos usar como modelo para observar os cruzamentos básicos com monoibridismo (análise de um único par de alelos) o albinismo. O albinismo é uma doença recessiva na qual o indivíduo tem deficiência na produção de melanina, um pigmento da pele. O gene dominante A condiciona pigmentação normal da pele e seu alelo a condiciona a ausência de pigmento. Portanto, indivíduos albinos são sempre homozigotos recessivos para este caráter e indivíduos homozigotos dominantes ou heterozigotos têm fenótipo normal quanto à pigmentação da pele.
Encontre a faculdade certa pra você
Assim,
	Genótipos Parentais
	Proporção genotípica em F1
	Proporção fenotípica em F1
	A A x A A
	100% A A
	100% normal
	A A x A a
	50% A A, 50% A a
	100% normal
	A A x a a
	100% A a
	100% normal
	A a x a a
	50% A a, 50% a a
	50% normal, 50% albino
	A a x A a
	25% A A, 50% A a, 25% a a
	75% normal, 25%albino
	a a x a a
	100% a a
	100% albino
Cruzamento-teste
Um fenótipo dominante pode resultar tanto de um genótipo homozigoto dominante quanto de um genótipo heterozigoto. Portanto, às vezes você sabe que um indivíduo tem fenótipo dominante, mas não tem certeza de seu genótipo. Essa dúvida pode ser resolvida pelo cruzamento-teste, que consiste em cruzar tal indivíduo com um homozigoto recessivo e observar o proporção fenotípica da prole. Vamos exemplificar novamente através do albinismo.
Normal (A _) x Albino (a a) :
Se o indivíduo de pigmentação normal for homozigoto dominante (A A), a F1 terá 100% de indivíduos normais (100% A a). Porém, se o indivíduo normal for heterozigoto (A a), a F1 terá 50% de indivíduos normais (50% A a) e 50% de albinos (50% a a).
Co-dominância (herança sem dominância)
Há casos em que os genes alelos não exercem relação de dominância ou recessividade entre si, sendo denominados co-dominantes. Neste caso, haverá dois fenótipos diferentes para os dois tipos de homozigotos e o heterozigoto apresentará um fenótipo intermediário.
Um exemplo bastante comum é a expressão da cor das flores da planta Mirabilis jalapa, chamada popularmente de maravilha. Nesta o genótipo V V condiciona flores vermelhas, o genótipo B B condiciona flores brancas, e o genótipo V B condiciona flores róseas (fenótipo intermediário). Observe:
Assim, concluímos que a proporção fenotípica resultante do cruzamento entre plantas róseas com co-dominância é de 1 : 2 : 1.
Herança com letalidade
Existem certos genes cuja expressão pode levar a fenótipos que resultam na morte do indivíduo. São os genes letais.
Em camundongos um gene dominante A determina pigmentação amarela dos pêlos, e seu alelo recessivo a determina um padrão de pigmentação acinzentada denominada aguti. Observou-se que o cruzamento de ratos amarelos entre si sempre resulta em uma prole na qual há 2 indivíduos amarelos para cada aguti (2 : 1).
A presença dos descendentes aguti indica que os pais amarelos são heterozigotos. E, neste caso, a proporção fenotípica esperada entre descendentes dominantes (amarelos) e recessivos (agutis) é de 3 : 1. A explicação para o aparecimento da inesperada proporção 2 : 1 é o fato de que indivíduos homozigotos dominantes (A A) morrem ainda no estágio embrionário.

Outros materiais