Buscar

Glicólise, Ciclo do ácido cítrico, Fosforilação Oxidativa

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

Glicólise
A glicólise é um dos processos mais antigos, na escala evolutiva, através do qual se opera a recuperação de uma parte da energia armazenada na glucose. No termo da glicólise, obtem-se a fragmentação da molécula de açúcar em duas moléculas de ácido pirúvico. Esta energia é posta à disposição das funções celulares sob a forma de ATP.
O sistema enzimático da glicólise é universal, pelo menos nas suas linhas gerais. A glicólise tem lugar no citossol, mas, dada a sequência ordenada das reacções bioquímicas que a integram, não é de excluir que os enzimas se localizem sequencialmente num qualquer suporte membranar, à semelhança de outros processos que adiante serão analisados
Nos organismos aeróbios, a glicólise constitui o segmento inicial da degradação da glucose, sendo essencialmente prosseguida pelo processo a que, globalmente se atribui a designação de respiração celular. Nos organismos anaeróbios (e mesmo nos aeróbios, em certas circunstâncias), pelo contrário, a glicólise é prosseguida por um outro processo designado por fermentação.
A glicólise possui seis átomos de carbono e sua divisão em duas moléculas de piruvato, cada uma com três átomos de carbono, ocorre numa sequência de 10 passos, sendo que os cinco primeiros constituem a via preparatória. Já as cinco últimas fases constituem a fase de pagamento.
Fase Preparatória
Fosforilação da glicose: neste passo inicial, a glicose é ativada para as reações subsequentes pela sua fosforilação em C-6 para liberar a glicose-6-fosfato; o doador do fosfato é o ATP. Esta reação é irreversível sob as condições intracelulares e é catalisada pela enzima hexoquinase.
Isomerização da glicose: neste segundo passo, a glicose-6-fosfato sofre catalise reversível da enzima fosfoexose isomerase, transformando-se em frutose-6-fosfato.
Fosforilação da frutose-6-fosfato: a enzima fosfofrutoquinase-1 catalisa a transferência de um grupo fosfato do ATP para a frutose-6-fosfato para liberar a frutose-1,6-difosfato, sendo essa uma reação irreversível a nível celular.
Clivagem da frutose-1,6-difosfato em duas trioses: a enzima frutose-1,6-biofosfato aldolase, catalisa a condensação reversível de grupos aldol. A frutose-1,6-difosfato é quebrada para liberar duas trioses fosfato diferentes, o gliceraldeído-3-fosfato, uma aldose e a dihidroxiacetona fosfato, uma cetose.
Interconversão das trioses fosfato: apenas uma das trioses fosfato formada pela aldose (gliceraldeído-3-fosfato) pode ser diretamente degradada nos passos subseqüentes da glicólise. Já o produto dihidroxiacetona fosfato, é rápida e reversivelmente convertida em gliceraldeído-3-fosfato pela quinta enzima da seqüência glicolítica a triose fosfato isomerase. Esta reação encerra a fase preparatória da glicólise.
Fase de Pagamento
Oxidação do gliceraldeído-3-fosfato em 1,3-difosfoglicerato: este e o primeiro passo da fase de pagamento da glicólise, onde ocorre a conversão do gliceraldeído-3-fosfato em 1,3-difosfoglicerato, catalisado pelo gliceraldeído-3-fosfato desidrogenase. É a primeira das duas reações conservadoras de energia da glicólise e que leva à formação de ATP. O grupo aldeído do gliceraldeído-3-fosfato é desidrogenado em um anidrido de ácido carboxílico como o ácido fosfórico, o acilfosfato. O receptor do hidrogênio é a coenzima NAD+ (forma oxidada da nicotinamina adenina dinucleotídeo). A redução do NAD+ ocorre pela transferência enzimática de um íon hidreto (H-) do grupo aldeído para liberar a coenzima reduzida NADH. Este, por sua vez, precisa ser reoxidado até NAD+, pois as células possuem um número limitado de NAD+.
Transferência do fosfato do 1,3-difosfoglicerato para o ADP: a enzima fosfogliceratoquinase transfere o grupo fosfato de alta energia do grupo carboxila do 1,3-biofosfoglicerato para o ADP, formando ATP e 3-fosfoglicerato. É irreversível nas condições celulares.
Conversão do 3-fosfoglicerato em 2-fosfoglicerato: a enzima fosfoglicerato mutase catalisa a transferência reversível do grupo fosfato entre C-2 e C-3 do glicerato. O íon Mg+2 é essencial para esta reação.
Desidratação do 2-fosfoglicerato para fosfoenolpiruvato: a segunda reação glicolítica que gera um composto com alto potencial de transferência de grupo fosfato é catalisado pela emolase. Essa enzima promove a remoção reversível de uma molécula de água do 2-fofoglicerato para liberar fosfoenolpiruvato.
Transferência do grupo fosfato do fosfoenolpiruvato para o ADP: o último passo na glicólise é a transferência do grupo fosfato do fosfoenolpiruvato para o ADP, catalisada pelo piruvato quinase. Nesta reação, a fosforilação em nível do substrato, o produto piruvato aparece primeiro na sua forma enol. Entretanto, esta forma tautomeriza-se rapidamente para liberar a forma ceto do piruvato, forma que predomina em pH 7,0. Essa reação é irreversível em condições intracelulares.
Em resumo, no decurso da glicólise, por cada molécula de glucose, são produzidas duas moléculas de ácido pirúvico. No início do processo, foi investida energia (consumiram-se 2 ATP). No final do processo recuperou-se energia sob a forma de 4 ATP. O saldo é pois de 2ATP e 2 NADH por molécula de glucose.
Ciclo do ácido cítrico
O Ciclo de Krebs, ou também conhecido como ciclo do ácido cítrico por ser a primeira substância a ser formada durante o ciclo, é uma das etapas do processo da respiração celular dos organismos aeróbios, ocorrendo no interior das mitocôndrias das células eucariontes. 
Devido o seu caráter metabólico, catabólico e anabólico, é considerado como rota anfibólica, de degradação e construção de substâncias com finalidade de produzir energia suficiente para as atividades desenvolvidas pela célula. 
Esse ciclo composto por oito reações controladas enzimaticamente, tem seu início a partir da degradação por oxidação, uma reação do ácido oxalacético com a acetil-coenzima-A, substância originada na glicólise em conseqüência da ação catabólica da enzima desidrogenase sobre o piruvato (molécula altamente energética), produzindo duas moléculas de CO2. 
O produto dessa oxidação origina uma molécula de citrato, mediador de um composto com cinco carbonos (cetoglutarato), que durante o percurso desse ciclo é quebrado liberando prótons receptados pelo NAD (aceptor intermediário de hidrogênios). 
A degradação contínua e o cetoglutarato formam o alfa-cetoglutarato, molécula menos energética contendo quatro carbonos. No entanto, ainda quebrada, libera mais H+, recolhidos nesse momento pela molécula de FAD, finalizando o processo com a restituição do ácido oxalacético, enzima iniciadora do ciclo. 
Além do dióxido de carbono são produzidos íons H+, conforme mencionado são absorvidos pelo NAD e FAD (NADH e FADH2), destinados às cristas mitocôndriais, onde ocorre a cadeia respiratória e produção de ATP.
Fosforilação oxidativa
Terceira e última fase da respiração celular, a fosforilação oxidativa é o processo de síntese de ATP (adenosina trifosfato) a partir da oxidação de nutrientes, principalmente a glicose.
A fosforilação oxidativa ocorre nas mitocôndrias da célula, mais precisamente, nas cristas da membrana mitocondrial. Nessa membrana existem várias estruturas conhecidas como cadeia transportadora de elétrons. Tais cadeias são constituídas de quatro complexos adjacentes presos na membrana interior da mitocôndria e são responsáveis por remover a energia dos elétrons que se movem em pares num gradiente energético.
O início da fosforilação oxidativa é marcado pelo instante em que o NADH da etapa anterior (Ciclo de Krebs) doa 2 elétrons para o primeiro complexo. Em seguida:
os elétrons são transferidos para o próximo complexo e 2 íons H+ vão para o espaço intermediário da membrana. Esses elétrons migram através do complexo e se situam no lado matricial da membrana.
No terceiro complexo, outro par de íons H+ é capturado na matriz.
A partir daí forma-se um complexo denominado coenzima Q, que perpassa a membrana e deposita esses íons no espaço intermediário da membrana.
Os elétrons movem-se para o complexofinal e retornam fim da matriz da membrana.
No final da cadeia, mais dois íons H+ são deslocados por meio da membrana para seu espaço intermediário.
Um átomo de oxigênio se liga a dois íons H+, formando uma molécula de água (H2O). Cada oxigênio recebe dois elétrons do NADH2+.
O NADH2+ volta a ser NAD e novamente se torna capaz de captar outros íons H+.
Outra molécula intermediadora de energia proveniente do ciclo de Krebs, o FADH2+, se use à coenzima Q, e transfere seu dois íons H+ através da cadeia, que vão para o espaço intermediário da membrana.
Novamente o oxigênio faz ligação com o hidrogênio e forma a água.
A energia das moléculas transportadoras de elétrons, NADH e FADH é utilizada para impulsionar a passagem do oxigênio da matriz para o espaço intermediário da membrana. Por fim, a concentração de íons H+ no espaço intermediário da membrana é maior do que na matriz, o que gera a energia usada para produzir ATP.
O ATP é um nucleotídeo constituído de uma base nitrogenada (adenina), uma ribose e três grupamentos fosfato. A adenina quando se une a uma ribose forma a adenosina, que, ligada a um fosfato dá origem ao monofosfato de adenosina (AMP), dois, difosfato de adenosina (ADP) e a um terceiro fosfato, o ATP, trifosfato de adenosina. O fato de o ATP ser um bom armazenador de energia se deve às ligações dos fosfatos, que são ligações de alto potencial energético, o que permite acumulá-la em grandes quantidades. Essa energia acumulada é cedida à maioria dos processos vitais realizados pelas células.
A fosforilação oxidativa produz a maior parte do ATP necessário ao organismo , 32 moléculas, enquanto na glicólise são produzidas somente 2 moléculas de ATP e no Ciclo de Krebs, também apenas 2, somando, então, 36 moléculas de ATP.
Referências bibliográficas
http://materiais.dbio.uevora.pt/jaraujo/biocel/glicolise.htm
http://www.dbio.uevora.pt/jaraujo/biocel/glicolise.htm
http://www.btinternet.com/~n.j.f/olympicsr/VirtualSchool.htm
http://www.fisiologia.kit.net/bioquimica/ck/ck.htm
http://www.infoescola.com/bioquimica/ciclo-de-krebs/
http://www.infoescola.com/bioquimica/fosforilacao-oxidativa/
http://pt.scribd.com/doc/24601221/fosforilacao-oxidativa-Cap-08

Outros materiais