Buscar

A COMPARISON OF CROSSFIT TRAINING TO TRADITIONAL ANAEROBIC

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 84 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 84 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 84 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

A COMPARISON OF CROSSFIT TRAINING TO TRADITIONAL ANAEROBIC 
RESISTANCE TRAINING IN TERMS OF SELECTED FITNESS DOMAINS 
REPRESENTATIVE OF OVERALL ATHLETIC PERFORMANCE 
 
 
 
 
 
 
 
 
 
 
 
A Thesis 
Submitted to the 
School of Graduate Studies and Research 
in Partial Fulfillment of the 
Requirements for the Degree 
Master of Science 
 
 
 
 
 
 
 
 
 
 
 
Hayden D. Gerhart 
Indiana University of Pennsylvania 
August 2013 
ii 
 
Indiana University of Pennsylvania 
School of Graduate Studies and Research 
Department of Health and Physical Education 
 
 
 
We hereby approve the thesis of 
 
 
Hayden D. Gerhart 
 
 
 
Candidate for the degree of Master of Science 
 
 
 
 
Madeline Paternostro Bayles, Ph.D. 
Professor of Health and Physical Education, Advisor 
 
 
 
 
 Robert Alman II, Ed.D. 
 Assistant Professor of Health and Physical Education 
 
 
 
 
 David Lorenzi, Ed.D. 
 Associate Professor of Health and Physical Education 
 
 
 
 
 Mark Sloniger, Ph.D. 
 Associate Professor of Health and Physical Education 
 
 
ACCEPTED 
 
 
 
Timothy P. Mack, Ph.D. 
Dean 
School of Graduate Studies and Research 
 
 
iii 
 
Title: A Comparison of CrossFit Training to Traditional Anaerobic Resistance Training 
in Terms of Selected Fitness Domains Representative of Overall Athletic 
Performance 
 
Author: Hayden D. Gerhart 
Thesis Chair: Dr. Madeline Paternostro Bayles 
Thesis Committee Members: Dr. Mark Sloniger 
 Dr. Robert Alman II 
 Dr. David Lorenzi 
 
The purpose of this study was to observe and gather information regarding overall 
athletic performance in two different groups of exercisers. The two groups were CrossFit 
exercisers (CF) and traditional anaerobic resistance exercisers (TAR). The study is cross-
sectional in nature, with various observations being required for data collection. Data was 
collected via a simple field test including measurement of performance in seven domains 
of fitness representative of overall athletic performance. The domains of fitness include 
body composition, flexibility, aerobic capacity, maximum strength, agility, maximum 
power, and muscular endurance. The sample size includes 19 participants in each group. 
All subjects are males, for the sake of maintaining a completely homogenous sample. All 
participants self-reported their volume and type of exercise. They were required to fall 
within the range of 5-6 days/week of 45-60min. This comes out to 240-300 minutes per 
week of exercise sessions of moderate-vigorous activity (both in CF and TAR). Data was 
analyzed using multiple regression, and among each group through the use of 
independent T-tests and Chi-Square Analysis. 
iv 
 
ACKNOWLEDGMENTS 
 
First and foremost I would like to thank my family. My parents, Paul and Lori 
Gerhart, have supported me in all walks of my life, especially my academic pursuits. They 
have always been a source of great encouragement and guidance in my life. They are two of 
the best role models in the world, and they make me feel extremely blessed on a daily basis. I 
could work an entire lifetime and still not even come close to ever repaying my parents for 
everything they have done for me. I would also like to thank my sister and her husband, Amy 
and Joe Dullinger. The two of them are a humongous influence in my life, and I aspire to 
impact the lives of others in the way they have impacted mine. They have blessed me with 
two beautiful nieces, Claire and Adalynn, and I feel very lucky to have them in my life. 
Thank you all so much, I am truly thankful for your never ending love and support. 
Next I would like to thank all of the off-campus facilities and owners that allowed me 
to come in and collect data, sometimes on very short notice; CrossFit Akron, CrossFit 717, 
and Sports Evolution. I also want to thank all of the participants in my study for giving their 
best effort and volunteering their time. Thank you all so very much. 
Next I would like to thank the members of my thesis committee, Dr. Mark Sloniger, 
Dr. Robert Alman, Dr. David Lorenzi, Ms. Stenger, and especially my advisor, Dr. Madeline 
Bayles. I have been very fortunate to have grown extremely close to all of the professors on 
my committee, and I appreciate all of the support and encouragement they have given me 
over this past year. 
Finally I would like to dedicate this entire thesis to my grandfather, Reverend Mervin 
Gerhart, who recently passed away on March 3, 2013. My grandfather was a great family 
man, and the love he shared for his faith and family was second to none. I’ll never forget 
some of his stories and some of the silly times we shared together. I feel very lucky to have 
had him in my life. I love you and miss you, Grandpa. 
v 
 
TABLE OF CONTENTS 
Chapter Page 
 
I INTRODUCTION….……………………………………………………………..1 
 
Research Question…………………………………….……………………..……4 
 Statement of the Problem………………………………………..………………...4 
 Hypothesis…………………………………………………………….…………...5 
 Definition of Terms……………………………………………………...………...5 
 Assumptions………………………………………………………………..……...7 
 Limitations………………………………………………………………………...7 
 Significance………………………………………………………………………..8 
 
II LITERATURE REVIEW…………………………………………..……………10 
 
Benefits of Aerobic Training…………………………………………………….11 
 Benefits of Traditional Anaerobic Resistance (TAR) Training……….…………12 
 Aerobic Training – Background………………………………………….……...13 
 TAR Training – Background…………………………………………..………...15 
 Types of TAR Training……………………………………………………..……16 
 CrossFit (CF) Training…………………………………………………………...18 
 
III METHODOLOGY…………………………………………………………..…..21 
 
 Subject Characteristics…………………………………………………………...21 
 Inclusion Criteria………………………………………………………………...21 
 Exclusion Criteria………………………………………………………………..22 
 Recruitment……………………………………………………………………....23 
 Procedures………………………………………………………………………..23 
 Data Collection…………………………………………………………………..24 
 Instruments……………………………………………………………………….33 
 Analysis/Statistics………………………………………………………………..32 
 Timeline………………………………………………………………………….33 
 Confidentiality…………………………………………………………………...33 
 
IV RESULTS………………………………………………………………………..34 
 Subject Demographics…………………………………………………………...34 
 Statistical Analysis……………………………………………………………….45
 Hypothesis I……………………………………………………………………...45 
 Hypothesis II……………………………………………………………………..52 
 
V DISCUSSION/CONCLUSION……………………………………………..…...54 
 
 Summary/Discussion…………………………………………………………….54 
 Future Implications/Direction of Research………………………………………59 
vi 
 
 Conclusion……………………………………………………………………….61 
 
 REFERENCES…………………………………………………………………..63 
 
 APPENDICES…………………………………………………………………...68 
 
 Appendix A: Data Collection Sheet……………………………………………...68 
 Appendix B: Informed Consent………………………………………………….70
 Appendix C: Demographic Survey………………………………………………73 
vii 
 
LIST OF TABLES 
 
Table Page 
 
1: Subject Demographics………………………………………………………………...34 
 
2: Age Comparison Between TAR and CF Participants…………………………………35 
 
3: Height Comparison Between TAR and CF Participants……………………………...35 
 
4: Weight Comparison Between TAR and CF Participants……………………………...36 
5: Frequency of Training – TAR Group ……………………………………...…………36 
6: Frequency of Training – CF Group…………………………………………...............37 
7: Comparison of Means Between Groups – Frequency of Training……………………37 
 
8: Training Session Length – TAR Group……………………………………………….38 
9: Training Session Length – CF Group………………………………………................39 
10: Comparison of Means Between Groups– Session Duration ………………...……...39 
 
11: Weekly Volume of Exercise – TAR Group………………………………………….40 
12: Weekly Volume of Exercise – CF Group…………………………………................41 
13: Comparison of Means Between Groups – Volume of Exercise……………………..41 
 
14: Moderate-Vigorous Activity Level…………………………………………………..42 
15: Comparison of Means Between Groups – Moderate-Vigorous Activity……………43 
16: Length of Time of Consecutive Training – Crosstabulation………………………...44 
17: Strength of a Covariate (Experience12)……………………………………………...45 
18: Field Test Group Data ……………………………………………………………….46 
19: Comparison of Means Between Groups– Body Composition……………………….47 
 
20: Comparison of Means Between Groups – Flexibility……………………………….47 
 
21: Comparison of Means Between Groups – Aerobic Capacity………………………..48 
 
viii 
 
22: Comparison of Means Between Groups – Maximum Strength……………………...49 
23: Comparison of Means Between Groups – Agility…………………………………...50 
 
24: Comparison of Means Between Groups – Maximum Power………………………..51 
 
25: Comparison of Means – Muscular Endurance………………………………….........51 
 
26: Comparison of Means Between Groups – Field Test Data………………………….52 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ix 
 
 
 
LIST OF FIGURES 
 
Figure Page 
 
1: Chest site………………………………………………………………………….…...26 
 
2: Abdomen site……………………………………………………………………..…...26 
 
3: Thigh site………………………………………………………………………….…..26 
 
4: Sit-and-reach test……………………………………………………………….……..27 
 
5: Queens College three-minute step test………………………………………...………28 
 
6: Deadlift………………………………………………………………………….…….30 
 
7: Pro-agility test…………………………………………………………………………30 
 
8: Standing long jump……………………………………………………………………31 
 
9: Pushup test………………………………………………………………………….…32 
 
10: Effect of training experience on maximum strength…………………….…………..58
1 
 
CHAPTER I 
 
INTRODUCTION 
 
 Athletic performance and enhancement of strength is highly dependent on a 
variety of different training variables including intensity, modality, volume, tempo, 
frequency, and rest. These variables are manipulated by health and fitness professionals 
on an individual basis with the intention of creating the ideal presentation of an exercise 
program, which involves either aerobic conditioning (training requiring the use of 
oxygen), anaerobic conditioning (training not requiring the use of oxygen), or some 
combination of the two. 
The benefits of Traditional Anaerobic Resistance (TAR) training are widely 
understood and accepted by a variety of health professionals and organizations, such as 
the American College of Sports Medicine (ACSM) as well as the National Strength and 
Conditioning Association (NSCA). TAR training consists of high-intensity, intermittent 
bouts of exercise such as weight training, plyometrics, and speed, agility, and interval 
training (NSCA, 2008). The physiological and performance-based benefits of TAR 
training are largely known and specific to individualized program designs. Some of these 
benefits include muscular strength, power, hypertrophy, muscular endurance, as well as 
motor skill performance (NSCA, 2008). TAR programs are implemented with these 
specific physiological benefits in mind. 
Like resistance training, aerobic conditioning has been highly researched and the 
benefits show a marked reduction in a variety of cardiovascular risk factors, such as 
obesity, blood pressure, body mass index (BMI), as well as percentage of body fat 
(Chaudhary, 2010). Aerobic conditioning involves training the cardiovascular system and 
2 
 
improving the function of the heart. Typical aerobic exercise could involve running, 
rowing, biking or swimming, just to give a few examples. The most largely known and 
researched benefit to aerobic conditioning is improvement in oxygen uptake. Maximal 
oxygen uptake (VO2) is described as the maximal amount of oxygen that can be used at 
the cellular level for the entire body (NSCA, 2008). The benefits of aerobic conditioning 
are supported by a substantial amount of literature, and highly reputable sources such as 
the American College of Sports Medicine. Benefits include reduction in risk of 
cardiovascular disease, weight loss, decrease in likelihood of developing various chronic 
diseases such as diabetes mellitus and the metabolic syndrome, as well as controlling 
cholesterol and blood pressure levels (ACSM GETP, 2013). 
While the benefits of anaerobic and aerobic training have been thoroughly 
evaluated, the benefits of CrossFit (CF) training have not. CF combines the principles 
associated with both TAR as well as aerobic training. The CF concept aims to prepare 
people for the unknown by training with “constantly varied, high intensity, functional 
movement (CrossFit Training Guide, 2010).” The workout design is focused around 10 
domains of fitness. The 10 domains include cardiovascular and respiratory endurance, 
stamina, strength, flexibility, power, speed, coordination, agility, balance and accuracy. 
In these 10 domains, it is evident that CF training involves a combination of resistance 
training as well as cardiovascular endurance training. These domains of fitness are 
similar to those domains of fitness defined by the NSCA; maximum muscular strength, 
maximum muscular power, muscular endurance, anaerobic capacity, aerobic capacity, 
agility, speed, body composition, flexibility, and anthropometry (NSCA, 2008). Due to 
the similarity between fitness domains defined by CF as well as the NSCA, the 
3 
 
overlapping fitness domains (flexibility, aerobic capacity, maximum strength, agility, 
maximum power, and muscular endurance or stamina) with the addition of body 
composition, will be the variables under observation for measurement of overall athletic 
performance in this study. 
The ultimate goal of CF is to produce the maximum functionality that is possible 
for a specific individual. “World-Class Fitness in 100 Words” is defined by the Greg 
Glassmen, creator of CrossFit, in the CrossFit Training Guide (2010) as follows: 
 
“Eat meat and vegetables, nuts and seeds, some fruit, little starch and no sugar. Keep 
intake to levels that will support exercise but not body fat. Practice and train major 
lifts: Deadlift, clean, squat, presses, clean and jerk, and snatch. Similarly, master the 
basics of gymnastics: pull-ups, dips, rope climbs, push-ups, presses to handstand, 
pirouettes, flips, splints, and holds. Bike, run, swim, row, etc, hard and fast. Five or 
six days per week mix these elements in as many combinations and patterns as 
creativity will allow. Routine is the enemy. Keep workouts short and intense. 
Regularly learn and play new sports.” 
 
The proposed definition of “world-class fitness” suggests that the exercise routines in 
CF are constantly varied, and randomized with maximum functionality as the primary goal. 
This study will compare overall athletic performance of current exercisers 
participating in CF with the overall athletic performance of current exercisers adhering to 
240-300 minutes per week of TAR exercise of moderate-vigorous intensity (equivalent to 
4-5 days per week of anaerobic exercise sessions lasting 60 minutes in duration). For the 
purpose of this study, moderate-vigorous intensity will be defined as follows: moderate 
4 
 
intensity = noticeably increased heart rate and breathing. Vigorous intensity = 
substantially increased heart rate and breathing (ACSM GETP, 2013). The fitness 
domains as defined by CF and the NSCA, and common to both, will be evaluated in this 
proposed study. There is very limited literaturecomparing CF training to any other type 
of training. This study will be the first to compare overall athletic performance of CF 
training individuals with individuals who train with TAR methods. “Traditional,” in this 
case, refers to specific program variables such as intensity, modality, volume, tempo, 
frequency, and rest that are manipulated in a much more structured format as compared 
to the randomness and intensity in the structure and presentation of CF training. 
Research Question 
How does overall athletic performance in 7 domains of fitness common to both 
CrossFit and the NSCA (body composition, flexibility, aerobic capacity, maximum 
strength, agility, maximum power, and muscular endurance) differ between CrossFit 
exercisers and traditional anaerobic resistance exercisers? 
Statement of the Problem 
 CF training claims to prescribe exercise in the most effective manner for 
maximizing overall athletic performance and health. On the other hand, strength and 
conditioning professionals typically prescribe a more TAR exercise program with similar 
intentions of improving performance and health. Claims made by CF professionals have 
very little support scientifically, and there are very few, if any studies that compare 
outcomes in CF trained individuals as compared to TAR training. This has led many 
professionals to question the methodology and effectiveness of CF training. This study 
will examine the level of performance in 7 domains of fitness between CF and TAR 
5 
 
individuals. The seven domains of fitness include body composition, flexibility, aerobic 
capacity, maximum strength, agility, maximum power, and muscular endurance. The goal 
of this study is to compare the differences in overall athletic performance between these 
two different training styles, with the intention of producing overall athletic performance. 
Comparisons will be made among and between both groups of participants. 
Hypothesis 
1. The CrossFit (CF) training group will show significantly higher performance than 
the Traditional Anaerobic Resistance (TAR) group in all 7 tested fitness domains 
with the exception of maximum strength (one-repetition maximum deadlift). 
2. There will be no significant difference in the performance of maximum strength 
between the CF group and TAR group. 
Definition of Terms 
1. Traditional Anaerobic Resistance (TAR) Training – Scientifically supported 
methodology with physiological benefits are well-known and researched with a 
focus on strength and/or the improvement of a single domain of fitness; i.e. 
hypertophy, endurance, and power. 
2. Aerobic Training – Energy systems used rely heavy on the use of oxygen for 
performance. Involves training the cardiovascular system and improving the 
function of the heart, typically longer in duration with high emphasis on 
continuous, high-volume exercise. 
3. CrossFit (CF) Training – “Constantly varied, high intensity, functional 
movement.” A newly developed type of resistance training focusing on the 
improvement of various domains simultaneously. Combines the principles 
6 
 
associated with both traditional resistance training as well as aerobic training. 
Typically combines Olympic weightlifting, aerobic training and body weight 
resistance exercises. Physiological benefits are not largely researched. 
4. ACSM GETP – American College of Sports Medicine’s Guidelines for Exercise 
Testing and Prescription, 2013. 
5. ACSM HRPFAM – American College of Sports Medicine’s Health-Related 
Physical Fitness Assessment Manual, 2010. 
6. VO2 Max – Maximal rate of oxygen consumption during exercise. Typically 
accepted as a measure of overall health and fitness. 
7. Skinfold Measurement – Measurement of body composition. For purposes of this 
study, the three sites at the chest, abdomen and thigh will be used. 
8. Sit-and-Reach – Measurement of flexibility performed in the seated position. This 
test measures the flexibility of the hip and lower back. 
9. Queens College 3-minute Step Test – Measurement of aerobic capacity. Uses a 
submaximal test to predict aerobic capacity based on a final heart rate. 
10. Deadlift – Measure of maximal strength. The load of the bar is placed on the 
floor. The participant will grip the bar with hips and knees flexed, elbows fully 
extended. Range of motion involves one continuous motion of hip and knee 
extension, elbows remaining fully extended throughout the movement. The lift is 
finished by returning the load to the floor in the same manner. 
11. One-repetition Maximum lift – Measure of maximal strength performance. 
Highest load of weight lifted safely and effectively for 1 repetition. 
12. Pro Agility Test – Measurement of agility. Also known as a “20 yard shuttle run.” 
7 
 
13. Standing Long Jump – Measurement of maximum power. 
14. Push-up Test – Measurement of muscular endurance, performed until failure. 
15. Functional Training – multi-joint, multi-planar movements that mimic daily 
activities used to improve overall health, athleticism, and quality of life. 
Assumptions 
1. Physical Activity is reported accurately in terms of type, duration, intensity, 
and experience level by all participants on the demographic handout. 
2. All participants are physically able to perform all aspects of the field test. 
3. Participants did not use performance-enhancing and/or thermogenic 
supplementation. 
Limitations 
1. The placement into either of the two groups is based on self-report rather than 
practical application of the movements. 
2. The convenience of travel may limit the number of participants. 
3. The required range of exercise for inclusion is narrow in both groups, and 
thus, may limit sample size. 
4. Data collection at off-site facilities required manipulation of space and time 
around group fitness classes, causing desirable order of domains in the field 
test to be altered in order to accommodate space and availability of 
equipment. This modified order was then maintained at all sites of data 
collection. 
5. Lifting straps, which can provide support while attempting to lift heavy loads, 
were prohibited in this study. 
8 
 
6. The sit-and-reach measured lower back and hamstring flexibility, rather than 
flexibility of any area of the upper body. 
7. The deadlift measured the strength of the lower back, hamstrings, and 
quadriceps muscles. No measure of upper body strength was measured. 
8. No pre-testing measurements were taken for either group. 
9. There was no control for aerobic activity level outside of self-reported data. 
Significance 
The improvement in athletic performance is highly dependent on a variety of 
different training variables; some of which include intensity, modality, volume, tempo, 
frequency, and rest. These variables are typically manipulated by strength and 
conditioning professionals in a traditional anaerobic resistance (TAR) presentation of 
exercise with the intention of creating the ideal program for clients and/or athletes. The 
physiological benefits of TAR training as well as aerobic training are well known, and 
program designs are implemented with specific physiological benefits in mind, such as 
improved physical function, body composition, and of course improved muscular 
strength (Straight, 2012). 
On the other hand, the benefits of CrossFit (CF) training are largely 
undocumented. The CF prescription is “constantly varied, high intensity, functional 
movement (CrossFit Training Guide, 2010).” The workout design is focused around 10 
important domains of fitness. The 10 domains of focus for CF training include 
cardiovascular and respiratory endurance, stamina, strength, flexibility,power, speed, 
coordination, agility, balance and accuracy. These 10 domains of fitness mirror the 10 
domains of fitness as defined by the NSCA nearly perfectly, with the exception of 
9 
 
anaerobic capacity, body composition, and girth measurements. These domains represent 
all the major fitness domains associated with performance and health. By evaluating 
these domains and comparing the results between groups, it will become evident which 
training strategy is more efficient at producing overall athletic performance. 
This study will contribute to the field of health and fitness, specifically in terms 
overall muscular strength and conditioning performance. There is limited published and 
refereed literature comparing CF training with other types of exercise programming. This 
study will examine the effectiveness of CF training and possibly provide insight to fitness 
professionals/athletes/recreational exercisers across the country in terms of properly 
structuring exercise programs with the goal of maximizing overall athletic performance. 
10 
 
CHAPTER II 
LITERATURE REVIEW 
 TAR and aerobic training modalities are both commonly used by strength and 
conditioning professionals to maximize performance and health benefits. The benefits of 
anaerobic and aerobic training have been demonstrated in a variety of different 
populations, ranging from overweight smokers to inactive children. The benefits of CF 
training, on the other hand, are largely unknown. CF training involves various modalities 
of training presented simultaneously through manipulation of intensity, volume, tempo, 
frequency and load, among other variables. The aim of CF training is to provide a broad, 
general, inclusive level of fitness across a variety of fitness domains. These fitness 
domains include cardiovascular and respiratory endurance, stamina, strength, flexibility, 
power, speed, coordination, agility, balance and accuracy (CrossFit Training Guide, 
2010). Similarly, the NSCA places a high importance on a slightly different list of fitness 
domains. These domains include anaerobic and aerobic capacity, strength, power, 
muscular endurance, agility, speed, flexibility, body composition and anthropometry 
(NSCA, 2008). The similarities between these fitness domains are clear. The overlapping 
domains between CF and the NSCA include flexibility, aerobic capacity (cardiovascular 
endurance), maximum strength, agility, power and muscular endurance (stamina). These 
domains, along with the addition of measurements of body composition, were coupled 
together to comprise the battery involved in this study, assessing the overall athletic 
abilities of each participant. 
 
 
11 
 
Benefits of Aerobic Training 
 Aerobic training physiologically improves the function of the heart through 
consistent training. Performance based improvements include better endurance for longer 
distances and periods of time. The improvement of VO2 max is the ultimate goal of 
aerobic training (ACSM GETP, 2013). 
The health benefits associated with aerobic training are vast, and linked to a 
reduction in nearly all cardiovascular-related diseases (Dalleck, 2008). Some of the 
benefits of aerobic training include reduction in risk of cardiovascular disease, weight 
loss, decrease in likelihood of developing various chronic diseases such as diabetes 
mellitus and the metabolic syndrome, as well as controlling cholesterol and blood 
pressure level (ACSM GETP, 2013). Aerobic training will improve VO2 max levels, 
which means the client/athlete’s cardiovascular system will utilize oxygen more 
efficiently during exercise. This is thought to be the gold standard of overall fitness levels 
among athletes and exercisers. 
 As previously discussed, aerobic exercise can also lead to improved quality of 
life, higher cognitive functioning, and a better perception of overall health status. Motor 
function can also improve due to the implementation of an aerobic training program. In a 
study conducted on 10 elderly individuals, an 8-week intervention of aerobic exercise (3 
days per week) consisting of calisthenics, biking, and walking showed marked 
improvement in motor functioning (Bakken, 2001). A finger movement tracking test was 
used to analyze the improvements of motor functioning. The results showed that motor 
functioning could be positively effected due to the intervention of an aerobic training 
program (Bakken, 2001). 
12 
 
Benefits of Traditional Anaerobic Resistance (TAR) Training 
Traditional anaerobic resistance (TAR) training leads to improvement in nearly all 
fitness domains discussed previously and defined by the NSCA as well as CrossFit (CF). 
Maximum strength is improved through low speed movements of isolated muscle groups, 
quantified by amount of weight lifted (NSCA, 2008). Power can also be improved 
through TAR training. Power is the ability of a muscle to exert high force while 
contracting at a high speed (NSCA, 2008). Through the constant application of quick 
short bursts of energy applied to a muscle group, power can be improved over time. 
Muscular endurance can also be improved through anaerobic training. Unlike power, 
endurance consists of a single muscle group contracting repeatedly against submaximal 
resistance (NSCA, 2008). 
Agility and speed are also affected by continuous anaerobic training. Agility is the 
ability to stop, start, and change direction rapidly and in a controlled manner (NSCA, 
2008). Testing agility periodically is an important part of TAR training and involves 
similar metabolic pathways as muscular strength and endurance, depending on the 
duration of activity and intensity of agility exercises, which are typically performed 
anaerobically. Speed is typically quantified as the time taken to cover a distance (NSCA, 
2008). Tests of speed are typically performed at or under the distance of 200 meters in 
terms of anaerobic training (NSCA, 2008). 
TAR exercise leads to improvement in physiological benefits. Some of these 
benefits will be discussed in more detail with specificity regarding type and modality of 
resistance training. One important benefit is improved strength. When placing a 
13 
 
resistance on a muscle, and allowing it to fully recover, the capacity for strength increases 
as this resistance is continuously applied and increased over time (Kilgore, 2010). 
 Other benefits of TAR training include an increase in overall functional fitness. 
Certain types of TAR training are designed to specifically work the muscular as well as 
cardiovascular system with total body movements (Crawford, 2011). These specific types 
of movements and exercises (which will be discussed in further detail) are also great at 
enhancing muscular awareness and overall proprioception due to the nature of the 
compound joint movement involved in functional movements (Crawford, 2011). 
 TAR training can also prove to benefit younger, overweight and obese children. 
In a randomized controlled trial involving an 8-week (twice per week) resistance training 
program, variables such as waist circumference, body fat, muscular strength, 
cardiorespiratory fitness, and insulin resistance were all significantly improved compared 
to a control group (Benson, 2008). These results show that a resistance program can be 
effective at reducing cardiovascular, metabolic, and pulmonary risk factors in young kids, 
which may in turn keep this population from growing up and developing chronic diseases 
in adulthood. 
Aerobic Training - Background 
The ACSM GETP recommends a minimum of 3-5 days per week of a 
combination of moderate and vigorous aerobic physical activity; if all activityis vigorous 
in nature, a minimum of 3 days is recommended; if all activity is moderate in nature, a 
minimum of 5 days per week is recommended. Moderate activity is defined as noticeably 
increased heart rate and breathing, while vigorous activity is defined by substantially 
increased heart rate and breathing (ACSM GETP, 2013). 
14 
 
Aerobic training is typically measured by VO2, or “maximal rate of oxygen 
consumption during exercise” (Dalleck, 2008). Aerobic, in fact, is defined as exercise 
using oxygen. VO2 max is typically associated with overall health of an individual, 
which emphasizes the importance of training one’s cardiorespiratory endurance. Strength 
and conditioning professionals incorporate aerobic training into the programs of many 
clients/athletes in order to produce the best overall fitness, and also to improve overall 
health and reduce cardiovascular risk factors. Studies have consistently demonstrated an 
inverse relationship between VO2max values and risk of cardiovascular disease and all-
cause mortality (Dalleck, 2008). 
Aerobic training also involves conditioning of the heart and cardiovascular 
system. A minimum of 60 minutes, but most likely 80-90 minutes of moderate-intensity 
aerobic physical activity per day may be needed to avoid or limit weight regain and to 
prevent and treat cardiovascular diseases in formerly overweight or obese individuals 
(Chaudhary, 2010). Not only does aerobic training improve risk factors associated with 
cardiovascular and pulmonary diseases, but active participation in a regular aerobic 
exercise routine has been shown to improve overall perception of health as well as 
cognitive functioning (Chan, 2012). Depending on the goals of the client, aerobic training 
may or may not have a high emphasis, but it is important to never neglect aerobic training 
due to the nature of the positive physiological and psychological effects on the body (as 
discussed later). 
 VO2 max is often considered the most valid criterion reference measure of a 
person’s cardiorespiratory fitness level. Since testing for VO2 max is not very practical, 
for the purposes of this study, aerobic capacity is measured submaximally in the form of 
15 
 
a step test. This test uses validated and reliable measures to predict the maximal rate of 
oxygen consumption (VO2 max) based on the heart rate recorded at the end of the test 
(ACSM GETP, 2013). 
 TAR Training - Background 
 TAR training is the maximal rate of energy production by the combined 
phosphate and lactic acid energy systems for physical activity (NSCA, 2008). It is 
recommended in the ACSM GETP that one should participate in at least 2-3 days per 
week of muscular strength/endurance training is recommended (ACSM GETP, 2013). As 
explained by Kilgore in his article titled “Adaptation for Fitness,” resistance to the body 
is simply defined as an external stress placed on the body which has not yet been 
experienced (Kilgore, 2010). In other words, TAR training involves moving the body 
against a stressor in various ways, through manipulation of different variables such as 
type, frequency, volume, and rest. It is understood that in order to increase strength and 
overall fitness, there must be a progression with resistance to the body (Kilgore, 2010). 
The production of power, muscular strength and endurance, and hypertrophy are the main 
objectives for a successful resistance program. Other benefits such as improved peak 
running speed, increased performance of activities of daily living, higher quality of life, 
improved cognitive function, as well as increased effectiveness of motor recruitment 
patterns associated with resistance training are widely researched and supported with 
literature. One example is research conducted by Straight et. al, who concluded that 
interventions of resistance training improve body composition, muscular strength, and 
overall physical function in adults (Straight, 2012). The ACSM GETP explains TAR 
training as the programmed manipulation of training protocols such as the training 
16 
 
modality, repetition duration, range of repetitions, number of sets, and frequency of 
training will differentially affect specific physiological adaptations such as muscular 
strength, hypertrophy, power, and endurance (ACSM GETP, 2013). Through the 
manipulation of exercise variables and stress placed on the body, it is expected that 
strength professionals can create an effective program design to achieve maximal 
strength production (NSCA, 2008). 
Types of TAR Training 
The manipulation of different variables associated with exercise has created many 
different types and styles of TAR training. One style of training is referred to as high 
intensity interval training (HIIT). HIIT is typically defined as exercise at a heart rate 
between 85-100% of maximum heart rate (Hamilton, 2006). This loose definition allows 
strength and conditioning professionals the freedom to create any style of exercise 
program that qualifies as long as it is performed at least at 85-100% of maximum heart 
rate. Consequently, there are a many different styles of training that may fit into the 
domain of “high intensity.” By manipulating work- and rest-periods in an exercise 
session, it is possible to create a program centered around interval training, which can 
also be high intensity. With a large volume or load of work as well as a shortened rest 
period, it is possible to perform exercise at a heart rate which classifies the exercise into 
high intensity. The benefits of high intensity interval training are vast. In a study 
conducted on competitive distance runners aged 17-40 years old, performance was 
measured by the following variables; peak running speed, running speed at 4mm lactate, 
running speed at a fixed heart rate, fixed heart rate for the above, predicted 800m time, 
predicted 1500m time, 5km time, as well as thigh cross-sectional area (Hamilton, 2006). 
17 
 
All of these variables were found to significantly improve after a 5-7 week high intensity 
resistance training period, with the exception of running speed at a fixed heart rate 
(Hamilton, 2006). 
 Not only is high intensity interval training beneficial to athletes and competitive 
exercisers, but it is also beneficial for recreational exercisers. For example, in a study 
conducted on women over the age of 65 years old, researchers found significant 
physiological and cognitive improvements in a group who engaged in strength training 
compared to a group who participated in calisthenics (Carral, 2007). Activities of daily 
living, quality of life, cognitive function, and overall strength were all variables which 
significantly improved as a result of intervening with high intensity resistance exercise in 
this population (Carral, 2007). This shows the impact that TAR training can have on 
different physiological functions of the body. 
 Another form of TAR training is Olympic lifting. Olympic lifting involves 
exercises such as the snatch and the clean and jerk. Olympic lifting is unique in its ability 
to develop an athlete’s explosive power, control of external objects, and mastery of motor 
recruitment patterns (CrossFit Training Guide, 2010). The style of CF training also 
involves a heavy focus in the realm of Olympic lifting (as will be discussed). In a study 
conducted on experienced junior weight lifters, these lifts were the source of data 
collection. With regard to low-, medium-, or high-volume exercise, it was found that a 
moderate-volume of exercise (with regard to Olympic lifting) is a more desirable 
program for improving muscular strength and power performance in a 4-5 week 
intervention (Gonzalez-Badillo,2005). 
18 
 
 Kettlebell training, another form of resistance training, is growing in popularity in 
the United States since its implementation into sport and physical activity in Eastern 
Europe in the 1940’s (Crawford, 2011). Kettlebell training is specifically designed to be a 
full body functional workout. Kettlebell training has been proven to increase strength, 
endurance, agility and balance by using both the muscular and cardiovascular systems. 
Many people are choosing to exercise with kettlebells over dumbbells due to the nature of 
the functional movements associated with kettlebells. Kettlebells typically involve far 
more than just one muscle group, while dumbbells are typically isolating only one muscle 
group in a single plane of motion. Kettlebells recruit multiple muscle groups to perform 
exercises that are directly applicable to sport and human movement (Crawford, 2011). 
 TAR training has many forms, dependent on the manipulation of different 
scientifically researched exercise variables, such as load, intensity, frequency, volume, 
rest, etc. The manipulation of these variables is highly researched and the physiological 
as well as cognitive benefits are supported in recent literature. 
CrossFit (CF) Training 
 CF training is a new style of training which combines both anaerobic training as 
well as aerobic training. Different variables of fitness, such as intensity, modality, tempo, 
volume and frequency are manipulated into different types of exercises and workouts to 
maximize benefits in conditioning and performance. There is little research supporting 
the claims of CrossFit training, or even providing any insight to the long-term 
physiological and cognitive benefits of this style of training. In a similar Master’s Thesis 
conducted by Christine Jeffrey at Arkansas State University, a statistically significant 
difference was found between CrossFit exercisers and a control group (adhering to the 
19 
 
ACSM guidelines for physical fitness) in terms of power, measured by the Margaria 
Kalamen Power Test (Jeffrey, 2012). Other variables tested in this study, anaerobic capacity 
and aerobic capacity in the form of an anaerobic step test and a Cooper 1.5 mile run, yielded 
no statistical significance between groups (Jeffrey, 2012). 
CF was developed in 1995 by Greg Glassman and has only been getting 
widespread exposure since 2007, when CF started holding annual international 
competitions. Since this exposure, CF training has been rapidly growing across the world. 
This study will compare the overall athletic performance of CF training exercisers with 
the performance of purely anaerobic exercisers. This type of comparison has yet to be 
evaluated. CF training involves so many modalities and manipulations of exercise 
variables; it is difficult to compare training volumes of other like programs. The CrossFit 
Level 1 Certificate Training Guide defines CrossFit as… 
 
“…a core strength and conditioning program. We have designed our program to elicit as 
broad an adaptation response as possible. CrossFit is not a specialized fitness program but 
a deliberate attempt to optimize physical competence in each of ten recognized fitness 
domains. They are Cardiovascular and Respiratory endurance, Stamina, Strength, 
Flexibility, Power, Speed, Coordination, Agility, Balance, and Accuracy.” 
 
In an article written by Dr. Lon Kilgore of Midwestern State University, the CF 
training definition of physical fitness is as follows: “Possession of adequate levels of 
strength, endurance, and mobility to provide for successful participation in occupational 
effort, recreational pursuits, familial obligation, and that is consistent with a functional 
phenotypic expression of the human genotype (Kilgore, 2007).” 
20 
 
 The benefits associated with CF training have not yet been evaluated. Some long-
term benefits are typically discussed in relation to excessively high performance in any 
single fitness domain compared to other domains. If an exerciser or athlete trains at an 
elite level in one of the ten domains defined by CF, then they have done so at the expense 
of improvement in other domains of fitness. CF training makes the claim that elite 
strength and conditioning is a balanced compromise between each of the ten physical 
adaptations (CrossFit Training Guide, 2010). This idea may conflict with the training 
styles of many recreational exercisers. Producing maximal strength, for example, would 
be thought of as an unbalanced compromise in other areas of fitness. The question of 
whether or not CF training is the best style of training for maximizing overall athletic 
performance in all domains of fitness has not yet been answered. Therefore, the goal of 
this study is to examine whether or not CF training actually does produce greater overall 
athletic performance than those who strictly train and/or exercise within the TAR 
constraints of this study. 
 
21 
 
CHAPTER III 
METHODOLOGY 
Subject Characteristics 
The participants in this study were all males, age range of 18-29 years. 
Participants were gathered from a largely diverse pool of races/ethnicities. A total of 38 
participants were recruited for this study. Half of those recruited were current CF trained 
exercisers, and half were participants who self-reported TAR training, adhering to 4-5 
days/week of moderate to vigorous exercise sessions 60 minutes in duration; a total 
exercise volume of 240-300 minutes/week. Both groups of participants self-reported 
similar exercise volume and intensity for inclusion. For the CF training group, this type 
of exercise was strictly limited to CrossFit’s traditional programming methods. For the 
TAR training group, participants self-reported physical activity within 240-300 minutes 
of moderate-vigorous exercise as defined by the ACSM. (Moderate = noticeably 
increased heart rate and breathing. Vigorous = substantially increased heart rate and 
breathing (ACSM GETP, 2013). Moderate to vigorous activity was reported for TAR 
exercisers using traditional exercise modalities, such as free weights (dumbbells, barbells, 
resistance machines). The same intensity of exercise was reported for the CF group, using 
traditional CF programming methodology. Members of each group also reported 
participation in exercising over at least the previous 3 consecutive months. All self-
reported data was collected via demographic survey found in Appendix C. 
Inclusion Criteria 
All male participants fell within the age range of 18-29 years old and self-reported 
the required volume, type, and length of training experience (via demographic survey) 
22 
 
related to the exercise specified above in order to become eligible for the study. 
Participants who self-reported 240-300 minutes/week of moderate-vigorous CF 
programming were included in the study. Participants who self-reported 240-300 
minutes/week of moderate-vigorous TAR training were included in the study. The 
primary investigator first demonstrated proper technique on all aspects of the field test; 
body composition, sit-and reach, 3-minute step test, 1-repetition maximum deadlift, pro 
agility test, standing broad jump, and the pushup test; then participants were required to 
demonstrate the ability and willingness to perform all dimensions of the field test 
properly and safely under the supervision of the primary investigator and/or qualified 
assistants before testing at maximum effort. After all of the above qualities are met, the 
participants were eligible to complete the battery of tests measuring overall athletic 
performance. Additional criterion was put into place for the purposes of offsite data 
collectionregarding CF exercisers. If CF exercises participated after performing a 
workout, they were required to rest at least 20 minutes before beginning the testing 
protocol. The rest period was estimated based upon availability of willing participants. 
Full recovery was necessary for performance in the field test, and 20 minutes provided 
the subjects with adequate recovery, while also allowing them to perform within an 
acceptable window of time suitable for their schedules. 
Exclusion Criteria 
Participants who did not fall into the correct age range of 18-29 were immediately 
excluded. Exclusion criteria also included any participant in both groups who has not 
been exercising 240-300 minutes/week at moderate-vigorous intensity for at least the 
previous 3 consecutive months. Participants recovering from the occurrence of injury in 
23 
 
the past 3 months were also excluded. Any participant self-reporting the use of 
performance-enhancing and/or thermogenic supplementation for more than one 
continuous week in the past 3 months was excluded from the study. Any participant who 
was unable to demonstrate proper form, technique and safety of all parts of the field test 
was excluded. Any participant who did not report full recovery after a workout was 
excluded from participation. Lastly, any participants who reported competition-level 
status of training (either competitive weight lifting, or CF competition at the level of 
Regionals) were excluded from the study. 
Recruitment 
 Members of the CF group and TAR group were recruited from various Health and 
Physical Education classes held in Zink Hall on the campus of Indiana University of 
Pennsylvania. Some of the classes include Health and Wellness, Health and Fitness 
Instruction, as well as Exercise Physiology. Participants were also recruited from 2 
affiliated CF facilities in the state of Pennsylvania (CrossFit 717 in Lemoyne, PA and 
CrossFit Sports Evolution in Altoona, PA) and 1 affiliated CF facility in Ohio (CrossFit 
Akron) by contacting owners and management. Signed informed consent was first 
obtained from all participants before distribution of the demographic survey. The 
demographic survey stratified them into three different categories; CF training, TAR 
training, or not eligible for participation in the study. 
Procedures 
 Upon completing the informed consent and demographic survey, all levels of 
physical activity, based on self-reported data, were quantified by the primary investigator. 
Participants who met the inclusion criteria were sent an email notifying them of their 
24 
 
selection for the study. Participants who met exclusion criteria were sent an email 
thanking them for their willingness to participate. On-site distribution of informed 
consent as well as demographic surveys was necessary for participation of members at 
facilities located outside of the Indiana University of Pennsylvania campus. Off-campus 
data collecting sessions were scheduled according to contacts made with owners of the 
CF facilities. All participants who met inclusion criteria then set up a time to meet with 
the primary investigator for data collection. At the exercise session, the procedures were 
strictly followed under supervision of the primary investigator and qualified assistants. 
The primary investigator first explained and demonstrated each test, to ensure familiarity 
and understanding on the part of each participant. Upon completion of the protocol, the 
exercise session was ended and the participant was finished with their part in the study. 
All participants were able to demonstrate safe performance of the 7 testing domains 
evaluated to test overall fitness. There were no drop-outs recorded by the primary 
investigator. All participants showed up for their scheduled sessions, and completed the 
various field tests safely and accurately. 
Data Collection 
The field test to measure overall athletic performance included seven domains of 
fitness. Listed below are the seven domains of fitness and the fitness test associated with 
each domain in the correct order they were presented to each participant. These tests were 
each chosen for the practical application based upon the primary investigator’s ability to 
successfully and accurately recreate the tests at various sites. All tests were performed 
safely, under the supervision of the primary investigator. Following the list of tests 
describes the procedure for performing each test in detail. Finally, following the 
25 
 
description of how to perform each test is the data collection sheet which was used 
throughout the study. The seven fitness domains are as follows: 
1. Body composition – measured by three-site skinfold (chest, abdomen, 
thigh). 
2. Flexibility – measured by the sit-and-reach. 
3. Aerobic Capacity – measured by Queens College three-minute step test 
4. Maximum Strength – measured by one-repetition maximum deadlift 
5. Agility – measured by the pro agility test 
6. Maximum Power – measured by standing long jump 
7. Muscular Endurance – measured by push-up test 
1. Body Composition – Body composition was measured by a three-site skinfold test 
using the chest, abdomen and thigh. The chest location is one half the distance 
between the anterior axillary line and the nipple. It is a diagonal fold. The 
abdomen location is two centimeters to the right of the umbilicus. The thigh 
location is on the anterior midline of the thigh, midway between the proximal 
border of the patella and the crease of the hip. All measurements were made on 
the right side of the body with the subject standing upright. The caliper was 
placed directly on the skin of the subject, with the pinch maintained during the 
reading. Duplicate measures will be taken at each site, with the average of two 
measurements being used in summation. The formula is as follows… 
Body density = 1.112 – (sum of three folds) + (sum of three folds)^2 – (sum of three 
folds x age) (ACSM HRPFAM, 2010) 
 
26 
 
 
Figure 1: Chest Site 
 
Figure 2: Abdomen Site 
 
 
Figure 3: Thigh Site 
 
(ACSM HRPFAM, 2010) 
27 
 
2. Flexibility – The sit-and-reach test was used to measure flexibility. A tape-
measure was used to place a mark on the floor. This mark was indicative of the 
15-inch mark of the sit-and-reach test. Any necessary warm-up and/or stretching 
was allowed based on the participant’s need. The participant sat on the ground 
with their shoes off. They slowly reached forward as far as possible on the 
ground. The distance reached was recorded in reference to the initial 15-inch 
mark placed on the ground. The best of three trials was recorded to the nearest .25 
inch. 
 
Figure 4: Sit-and-Reach Test 
(NSCA, 2008) 
3. Aerobic Capacity – This was measured by the Queens College three-minute step 
test. A 16.25 inch step was used with a metronome set at 96 beats per minute (24 
steps per minute). The subject took time to orient themselves to the cadence of 96 
beats per minute. Each sound of the metronome indicated either a step up or a step 
down. The cadence was, “up, up, down, down.” Once the subject was comfortable 
with the protocol, they began the three-minute step test. Upon completion, heart 
rate was immediately recorded for one minute. The heart rate was then used in the 
following equation to estimate maximum oxygen consumption (a.k.a. VO2 max 
28 
 
OR aerobic capacity): VO2 max (ml/kg/min) = 111.33 – (.42 x HR) (ACSM 
HRPFAM, 2010) 
 
Figure 5: Queens College 3-minute Step Test 
(ACSM HRPFAM, 2010) 
4. Maximum Strength – The one-repetition maximum deadlift was used to measure 
maximum strength. The following protocol,as outlined by the NSCA, was used to 
find the one-repetition maximum deadlift. 
• Subjects stretched all major muscle groups for 5 minutes prior to testing 
• Subjects demonstrated proper technique and safety on the deadlift with no 
added resistance to a standard 45# Olympic weight lifting barbell. 
• Subjects then progressed through the following sequence referenced from 
the textbook, “Essentials of Strength Training and Conditioning,” until a 
maximum lift was performed safely: 
1. Instruct the athlete to warm up with a light resistance that easily 
allows 5 to 10 repetitions. 
2. Provide a 1-minute rest period. 
3. Estimate a warm-up load that will allow the athlete to complete 
three to five repetitions by adding... 
29 
 
a. 10 – 20 pounds or 5 – 10% for upper body exercise 
b. 30 – 40 pounds or 10 – 20% for lower body exercise 
4. Provide a 2-minute rest period. 
5. Estimate a conservative, near-maximal load that will allow the 
athlete to complete two to three repetitions by adding… 
a. 10 – 20 pounds or 5 – 10% for upper body exercise 
b. 30 – 40 pounds or 10 – 20% for lower body exercise 
6. Provide a 2- to 4-minute rest period. 
7. Make a load increase… 
a. 10 – 20 pounds or 5 – 10% for upper body exercise 
b. 30 – 40 pounds or 10 – 20% for lower body exercise 
8. Instruct the athlete to attempt a 1-repetition maximum lift 
9. If the athlete was successful, provide a 2- to 4-minute rest period 
and go back to step 7. 
If the athlete fails, a 2- to 4-minute rest period is provided, and then the 
load is decreased by subtracting… 
- 5 – 10 pounds or 2.5 – 5% for upper body 
exercise 
- 15 – 20 pounds or 5 – 10% for lower body 
exercise 
AND then go back to step 8. 
 
 
30 
 
 
Figure 6: Deadlift 
(NSCA, 2008) 
5. Agility – Agility was measured by the pro agility test as outlined by the 
NSCA. Three lines were marked on the ground five yards apart from each 
other. A stopwatch was used to record the time. The athlete started on the 
middle line, and upon their first movement, time was started. They sprinted to 
either line (right or left), changed direction and then sprinted ten yards past the 
middle line to the far line 10 yards away, then changed direction one last time 
and sprinted to the finishing middle line. The best time of two trials was 
recorded to the nearest .01 second. 
 
Figure 7: Pro-Agility Test 
 (NSCA, 2008) 
31 
 
6. Maximum Power – Power was measured by the standing long jump, as 
outlined by the NSCA. A piece of tape was laid down as the starting line. The 
subject stood with toes behind the line and proceeded to jump as far as 
possible. The subject was required to land on both feet, without the arms 
assisting in the landing, in order for the jump to count. A marker was placed at 
the back of the heels and measured for distance. The best of 3 trials was 
recorded to the nearest .5 inch. 
 
Figure 8: Standing Long Jump 
 (NSCA, 2008) 
7. Muscular Endurance – Muscular endurance was measured according to the 
NSCA’s description of the push-up test. The subject started with hands 
shoulder-width apart, elbows and body completely straight. The low position 
of the push-up required the upper arms to be parallel to the ground. As many 
repetitions as possible were performed until failure. The top position of the 
pushup was the only position allowed during any necessary resting periods. 
This final number of correctly performed pushups was recorded. 
 
 
32 
 
 
Figure 9: Pushup Test 
 (NSCA, 2008) 
 
Instruments 
Informed consent forms (Appendix B) were first distributed to various groups of 
people from a wide variety of facilities in the hopes of finding CF and TAR participants. 
Demographics (Appendix C) were obtained from all participants upon completion of the 
initial survey. Materials for data collection included the following: skinfold calipers, 
measuring tape, duct tape, 16.25in. step, stopwatch, Olympic barbell, and weight plates. 
The data collection sheet used throughout the study is found in Appendix A. Data 
collection occurred onsite at various facilities. Facilities used include Zink Fitness Center 
as well as various CF affiliated gyms. These gyms include CrossFit 717 in Lemoyne, PA, 
CrossFit Akron in Akron, OH, and Sports Evolution in Altoona, PA. Data collection 
lasted approximately 45-60 minutes, with all field tests being performed sequentially in 
one continuous session. 
Analysis/Statistics 
Measures of central tendency were used to quantify performances of each specific 
field test. Tests of correlation were used to describe the strength of the relationship 
between each training program and overall athletic performance. Differences between 
33 
 
and among groups are observed through t-tests in order to measure the significance levels 
of the data. 
Timeline 
Surveys were distributed beginning February 2013. Following informed consent, 
data collection began immediately and lasted until the appropriate number of subjects is 
obtained. Each individual session lasted 45-60 minutes, and was supervised by the 
principle investigator and qualified assistants. Assistants were specifically trained in 
performance of the field test as well as data collection strategies by the primary 
investigator. With the help of an assistant, data was collected from multiple participants 
simultaneously. 
Confidentiality 
 No individual personal information or results of the study will be presented to 
anyone but the primary investigator. Data collected throughout the course of the study may 
be presented in anonymous fashion at professional conferences, and participants were 
informed of this possibility. 
34 
 
CHAPTER IV 
RESULTS 
Subject Demographics 
 
 The final number of participants for both the CF group (n=19) and the TAR group 
(n=19) totaled 38. Average age of the study population was 22.58 ± 2.04 years (CF = 
22.89 ± 2.38 years, TAR = 22.26 ± 1.63 years). Height in inches was nearly identical as 
well, with an average of 70.53 ± 1.91 inches (CF = 70.32 ± 2.19 inches, TAR = 70.74 ± 
1.63 inches). Weight recorded in pounds averaged 186.47 ± 23.44 pounds for the entire 
subject population. Variance in weight was high in each group (average of CF = 187.05 ± 
23.45 pounds, TAR = 185.89 ± 24.05 pounds). 
Table 1: 
Subject Demographics 
Subject Demographics 
Group Age in years Height in inches Weight in pounds 
CF 
N 19 19 19 
Mean 22.90 70.32 187.05 
Std. Deviation ± 2.38 ± 2.19 ± 23.45 
TAR 
N 19 19 19 
Mean 22.26 70.74 185.89 
Std. Deviation ± 1.63 ± 1.63 ± 24.05 
Total 
N 38 38 38 
Mean 22.58 70.53 186.47 
Std. Deviation ± 2.04 ± 1.91 ± 23.44 
 
35 
 
No statistical significance was found between the TAR group and the CF group in 
terms of age (p = .35). Table 2 displays this analysis. 
Table 2: 
 
Age Comparison Between TAR and CF Participants 
 
Age Comparison 
 t-test for Equality of Means 
t df Sig. Mean 
Difference 
95% Confidence Interval 
of the Difference 
Lower Upper 
Age in 
years 
Equal variances 
assumed 
.96 36 .35 .63 -.71 1.97 
 
 No statistical significance was found between the TAR group and the CFgroup in 
terms of height (p = .51). Table 3 displays the analysis of the height of participants in 
each group. 
Table 3: 
 
Height Comparison Between TAR and CF Participants 
 
Height Comparison 
 t-test for Equality of Means 
t df Sig. Mean 
Difference 
95% Confidence Interval 
of the Difference 
Lower Upper 
Height in 
inches 
Equal variances 
assumed 
-.67 36 .51-.42 -1.69 .85 
 
 No statistical significance was found between the TAR group and the CF group in 
terms of weight (p = .88). Below, Table 3 displays the comparison of means between 
groups. 
 
36 
 
Table 4: 
Weight Comparison Between TAR and CF Participants 
Weight Comparison 
 t-test for Equality of Means 
t df Sig. Mean 
Difference 
95% Confidence Interval 
of the Difference 
Lower Upper 
Weight in 
pounds 
Equal variances 
assumed 
.15 36 .88 1.16 -14.47 16.79 
 
84% of participants in the TAR group reported exercising between 3-5 days per 
week (n=16). 1 participant reported less than 3 days per week of exercise (5.3%), and 2 
participants reported a frequency greater than 5 days per week (10.5%). The predominant 
frequency of exercise clearly falls between 3 and 5 days per week for this group. 
Table 5: 
Frequency of Training – TAR Group 
Weekly Frequency of Exercise: 
TAR Group 
TAR Frequency Percent 
 
< 3 days 1 5.3 
3 to 5 days 16 84.2 
> 5 days 2 10.5 
Total 19 100.0 
 
The CF group reported similar results in terms of frequency of exercise. 94% of 
this group reported exercising between 3-5 days per week (n=18), while only 1 
participant from this group reported exercising more frequently than 5 days per week 
37 
 
(5.3%). Once again, in terms of frequency, 3 to 5 days per week is the overwhelming 
response. 
Table 6: 
Frequency of Training – CF Group 
Weekly Frequency of Exercise: CF Group 
CF Frequency Percent 
 
3 to 5 days 18 94.7 
> 5 days 1 5.3 
Total 19 100.0 
 
 No statistical significance was found between the two groups in terms of 
frequency of training. Table 7 displays a p value of .48, resulting from a comparison of 
means between groups run via Chi-Square. 
Table 7: 
 
Comparison of Means Between Groups – Frequency of Training 
 
Chi-Square Tests 
 Value df Sig. 
Pearson Chi-Square 1.45 2 .48 
Likelihood Ratio 1.84 2 .40 
Linear-by-Linear Association .00 1 1.00 
N of Valid Cases 38 
 
38 
 
94% of the participants in the TAR group reported duration of exercise between 
45-60 minutes in length (n=18). Only 1 participant from this group reported duration of 
exercise session to be greater than 60 minutes (5.3%). The predominant duration was 
reported between 45 and 60 minutes per session for the TAR Group. 
Table 8: 
Training Session Length – TAR Group 
Session Duration: TAR Group 
TAR Frequency Percent 
 
45 to 60 min. 18 94.7 
> 60 min. 1 5.3 
Total 19 100.0 
 
In terms of session duration, the same number of participants in the CF group 
reported exercise sessions lasting between 45-60 minutes in duration (n=18, 94%). Again, 
only 1 participant reported training sessions lasting longer than 60 minutes in duration 
(5.3%). 45 to 60 minutes is clearly the most popular response in terms of session length. 
 
 
 
 
 
 
39 
 
Table 9: 
Training Session Length – CF Group 
Session Duration: CF Group 
CF Frequency Percent 
 
45 to 60 min. 18 94.7 
> 60 min. 1 5.3 
Total 19 100.0 
 
 Table 10 was produced via Chi-Square analysis. Due to both groups having 1 
participant reporting greater than 60-minute sessions, the Fisher’s Exact Test is used to 
test significance. When two variables report under 5 counts, the Fisher’s Exact Test 
corrects for this low number. There was no significant difference between the two groups 
in terms of session duration (p = .76). Table 10 displays this relationship. 
Table 10: 
 
Comparison of Means Between Groups – Session Duration 
 
Chi-Square Tests 
 Value df Sig. 
Pearson Chi-Square .00 1 
Continuity Correctionb .00 1 
Likelihood Ratio .00 1 
Fisher's Exact Test .76 
Linear-by-Linear Association .00 1 
N of Valid Cases 38 
a. 2 cells (50.0%) have expected count less than 5. The minimum expected count 
is 1.00. 
40 
 
 
In terms of total minutes (volume) per week of exercise, the most frequently 
reported response in the TAR group was 240-300 minutes per week (47%, n=9). The 
number of participants who reported more precise values of exactly 240 minutes per 
week OR exactly 300 minutes per week is 7 (18%) and 3 (8%) respectively. The most 
popular response in terms of weekly volume is between 240 and 300 minutes per week 
for this group. 
Table 11: 
Weekly Volume of Exercise – TAR Group 
Weekly Volume of Exercise: TAR Group 
TAR Frequency Percent 
 
240 min. 7 36.8 
240 to 300 min. 9 47.4 
300 min. 3 15.8 
Total 19 100.0 
The majority of participants in the CF group reported exercising 240 minutes per 
week (n=8, 42.1%). 36.8% of participants (n=7) reported an exercise volume between 
240-300 minutes per week. The remaining CF participants (n=4) reported 300 minutes 
per week of exercise (21.1%). Although the majority is not overwhelming, the most 
popular weekly volume of exercise per week for CF training exercisers is 240 minutes 
per week. 
 
 
 
41 
 
Table 12: 
Weekly Volume of Exercise – CF Group 
Weekly Volume of Exercise: CF Group 
CF Frequency Percent 
 
240 min. 8 42.1 
240-300 min. 7 36.8 
300 min. 4 21.1 
Total 19 100.0 
 
 Table 13 shows the relationship between groups in terms of volume of exercise. A 
Chi-Square test was run to analyze the results. The comparison of means in terms of 
volume of exercise between groups revealed no statistical significance (p = .80). 
Table 13: 
 
Comparison of Means Between Groups – Volume of Exercise 
 
Chi-Square Tests 
 Value df Sig. 
Pearson Chi-Square .46 2 .80 
Likelihood Ratio .46 2 .79 
Linear-by-Linear Association .00 1 1.00 
N of Valid Cases 38 
 
 
42 
 
Both groups were required to report levels of moderate-vigorous activity during 
exercise. Numbers expressed are in terms of total participants of combined TAR and CF 
groups (n=38). 87% of the total subject population (n=33) reported activity levels of 
moderate-vigorous intensity 100% of the time. All 19 participants in the CF group fell 
into this category. The remaining 5 participants (13.2%), who all came from the TAR 
group, reported activity levels of moderate-vigorous intensity only 75% of the time, 
accounting for light intensity warm-ups and cool-downs. For purposes of this study, 
moderate exercise was defined as noticeably increased heart rate and breathing, while 
vigorous exercise was defined as substantially increased heart rate and breathing (ACSM, 
2008). 
Table 14: 
Moderate-Vigorous Activity Level 
Moderate-Vigorous Activity: Combined Groups 
Percentage of Exercise Frequency Percent 
 
100% 33 86.8 
75% ***5 13.2 
Total 38 100.0 
***The 5 participants in the “75%” row are ALL from the TAR group 
 The TAR group had 5 members who reported moderate-vigorous activity levels 
only 75% of the time, compared to the entire group of CF participants, who reported 
levels of moderate-vigorous activity 100% of the time. The comparison of means 
43 
 
between groups is displayed in Table 15. The p value of .02 suggests this relationship 
between groups is, in fact, significant. 
Table 15: 
Comparison of Means Between Groups – Moderate-Vigorous Activity 
Independent Samples Test 
 t-test for Equality of Means 
t df Sig. Mean 
Difference 
95% Confidence 
Interval of the 
Difference 
Lower Upper 
Time spent in 
Mod-Vig activity 
Equal variances 
assumed 
-2.54 36 .02 -.26 -.47 -.05 
 
In terms of experience levels, participants were asked to describe how they have 
been adhering to their current exercise program over the preceding weeks, months, or 
years. Table 16is labeled, “Length of Time of Consecutive Training.” This table displays 
experience level. All responses are expressed in terms of previous and consecutive time 
spent in the current exercise program. All experience levels will be discussed as “current” 
experience levels, meaning they are in the midst of their current designated program and 
time frame of experience. Participants in the CF group show a fairly even distribution, 
with 4 participants reporting 3-6 consecutive months of current experience, 4 participants 
reporting 6-12 consecutive months experience, 6 participants reporting 1-2 consecutive 
years of experience, and 5 participants reporting current experience for a longer duration 
than 2 consecutive years. In contrast, the TAR group shows a more uneven distribution of 
experience levels among subjects. 1 participant reported having 3-6 consecutive months 
of experience, 2 participants reported 6-12 consecutive months of experience, 4 
44 
 
participants reported having 1-2 years of current experience, and the remaining 12 
participants reported greater than 2 consecutive years of experience. 
Table 16: 
Length of Time of Consecutive Training – Crosstabulation 
Experience Among Participants 
Group Experience Total 
3 to 6 months 6 to 12 months 1 to 2 years > 2 years 
 
CF 4 4 6 5 19 
TAR 1 2 4 12 19 
Total 5 6 10 17 38 
 
It is clear to see that the TAR group is clearly much more experienced than the CF 
group. This is worthy of further discussion concerning the difference in performance 
between groups, specifically in maximum strength. The difference in maximum strength, 
as shown in Table 18, displays a significant relationship (p = .03), and will be discussed 
in greater detail in Chapter 5. After running a generalized linear regression model in 
order to show the strength of relationship between the two variables of maximum 
strength and experience level, results suggest that experience played a role. Table 17 
shows this interaction. Experience12 is defined as “training experience of at least the 
previous 12 months.” When this variable (Experience12) is defined as a covariate, the 
impact on maximum strength is profound, and quite possibly the reason for such drastic 
differences between groups. 
 
 
 
 
45 
 
Table 17: 
Strength of a Covariate (Experience12) 
Experience Level Affects Maximum Strength Performance 
Dependent Variable: Maximum Strength (pounds) 
Source Type III Sum of 
Squares 
df Mean Square F Sig. 
Corrected Model 53347.52a 3 17782.51 6.79 .00 
Intercept 3129417.06 1 3129417.06 1194.44 .00 
Group 12358.85 1 12358.85 4.72 .04 
Experience12 19137.80 1 19137.80 7.31 .01 
Group * Experience12 6878.36 1 6878.36 2.63 .11 
Error 89079.45 34 2619.98 
Total 4878275.00 38 
Corrected Total 142426.97 37 
a. R Squared = .38 (Adjusted R Squared = .32) 
 
This table shows that performance of maximum strength shares a significant 
relationship with not only “group” (p = .04), but also “Experience12” (p = .01). This 
means there is a significant relationship between those exercising for at least the previous 
12 consecutive months and maximum strength performance. This relationship will be 
further discussed in Chapter 5. 
Statistical Analysis 
Hypothesis I: 
 
The first hypothesis stated that the CF training group will show significantly 
higher performance in all fitness domains with the exception of maximum strength (one-
repetition maximum deadlift). Since the intentions of one who trains with TAR 
modalities and scientifically supported methodology is more focused on strength and/or 
the improvement of a single domain of fitness, as compared to CF’s methodology, which 
46 
 
focuses on the improvement of various domains simultaneously, it was hypothesized that 
maximum strength would be the only domain without a significant improvement shown 
by the CF group. The results shown in Table 18 display the performance of each group in 
all domains of fitness incorporated in the field test. 
Table 18: 
Field Test Group Data 
Field Test Data 
 Group N Mean Std. Deviation Std. Error Mean 
Body Composition (% fat) 
CF 19 13.47 ± 4.14 .95 
TAR 19 14.91 ± 4.59 1.05 
Flexibility (inches) 
CF 19 17.45 ± 3.74 .86 
TAR 19 17.41 ± 4.76 1.09 
Aerobic Capacity (ml/kg/min) CF 19 51.71 
± 6.41 1.47 
TAR 19 50.54 ± 5.15 1.18 
Maximum Strength (pounds) CF 19 374.47 
± 68.23 15.65 
TAR 19 331.58 ± 47.81 10.97 
Agility (seconds) 
CF 19 4.83 ± .40 .09 
TAR 19 4.75 ± .25 .06 
Maximum Power (inches) CF 19 90.32 
± 9.96 2.29 
TAR 19 90.18 ± 8.15 1.87 
Muscular Endurance 
(repetitions) 
CF 19 47.89 ± 6.29 3.74 
TAR 19 48.26 ±15.55 3.57 
 
The mean scores were higher in the CF group compared to the TAR group in 5 
out of the 7 domains tested. The following pages describe the results in performance of 
each fitness domain, followed by a comparison of means between groups. 
Body composition shows that the average body fat percentage for CF exercisers 
was 13.47 ± 4.14% while the average percentage of body fat for TAR exercisers was 
14.91 ± 4.59%. Both groups displayed a similar deviation from the mean. The p-value for 
47 
 
this statistic, found in Table 19 (p = .31), suggests no statistically significant difference in 
% body fat between participants in each group. 
Table 19: 
 
Comparison of Means Between Groups – Body Composition 
 
Independent Samples Test 
 t-test for Equality of Means 
t df Sig. Mean 
Difference 
95% Confidence 
Interval of the 
Difference 
Lower Upper 
Body Composition 
(% fat) 
Equal variances 
assumed 
-1.02 36 .31 -1.45 -4.32 1.43 
 
The second domain of fitness evaluated was flexibility through a sit-and-reach 
test. The CF group averaged a distance of 17.45 ± 3.74 inches, while the TAR group 
averaged a distance of 17.41 ± 4.76 inches. There was no statistical significance between 
the two groups for this measure (p = .99, Table 20). Once again, the standard deviation in 
each group is separated by a small amount (1.02 inches), showing that each group 
showed similar variability in performance. 
Table 20: 
 
Comparison of Means Between Groups - Flexibility 
 
Independent Samples Test 
 t-test for Equality of Means 
t df Sig. Mean 
Difference 
95% Confidence Interval 
of the Difference 
Lower Upper 
Flexibility 
(inches) 
Equal variances 
assumed 
.03 36 .99 .04 -2.78 2.86 
 
48 
 
Aerobic capacity, predicted with a pulse taken immediately following the Queens 
College 3-minute Step Test, also produced similar results between groups. The CF group 
averaged 51.71 ± 6.42 ml/kg/min, while the TAR group averaged 50.54 ± 5.12 
ml/kg/min. The deviation from the mean was similar in each group. No statistical 
significance was found between groups (p = .54, Table 21). 
Table 21: 
 
Comparison of Means Between Groups – Aerobic Capacity 
 
Independent Samples Test 
 t-test for Equality of Means 
t df Sig. Mean 
Difference 
95% Confidence 
Interval of the 
Difference 
Lower Upper 
Aerobic Capacity 
(ml/kg/min) 
Equal variances 
assumed 
.62 36 .54 1.17 -2.65 5.00 
 
Maximum strength, tested by the one-repetition maximum performance in the 
deadlift, is the only tested domain of fitness to show any significance between groups. 
The CF group was able to average a one-repetition maximum deadlift weight of 374.47 ± 
68.23 pounds. This standard deviation is alarmingly high, and worth noting. On the other 
hand, the TAR group performed significantly lower. The TAR group averaged 331.58 ± 
47.81 pounds in the performance of the one-repetition maximum deadlift. The deviation 
from the

Outros materiais