Buscar

Handbook of Nuclear Chemistry.pdf

Esta é uma pré-visualização de arquivo. Entre para ver o arquivo original

Handbook of Nuclear Chemistry
Frank Ro¨sch (Eds.)
Handbook of
Nuclear Chemistry
Second Edition
With 907 Figures and 312 Tables
Attila Ve´rtes, Sa´ndor Nagy, Zolta´n Klencsa´r, Rezso˝ G. Lovas,
Zolta´n Klencsa´r, Dr.
Chemical Research Center
Hungarian Academy of Sciences
Pusztaszeri u´t 59-67
Budapest, 1025
Hungary
55128 Mainz
Germany
IS
2
k
iev
co
pl
e
ISBN 978-1-4419-0719-6 e-
DOI 10.1007/978-1-4419-0720-2
Print and electronic bundle ISBN: 978-1-4419-07
Springer Dordrecht Heidelberg London New Yor
Library of Congress Control Number: 2010935459
� Springer ScienceþBusiness Media B.V. 2011
No part of this workmay be reproduced, stored in a retr
electronic, mechanical, photocopying, microfilming, re
the Publisher, with the exception of any material sup
executed on a computer system, for exclusive use by th
Printed on acid-free paper
Springer is part of Springer ScienceþBusiness Media (ww
BN 978-1-4419-0720-2
1-9
al system, or transmitted in any form or by any means,
rding or otherwise, without written permission from
ied specifically for the purpose of being entered and
purchaser of the work.
Budapest, 1518
Hungary
Editors
Attila Ve´rtes, Professor Emeritus
Institute of Chemistry
Eo¨tvo¨s Lora´nd University
P.O. Box 32
Budapest, 1518
Hungary
Sa´ndor Nagy, Professor
Institute of Chemistry
Eo¨tvo¨s Lora´nd University
P.O. Box 32
Rezso˝ G. Lovas, Professor
Institute of Nuclear Research (ATOMKI)
Hungarian Academy of Sciences
P.O. Box 51
Debrecen, 4001
Hungary
Frank Ro¨sch, Professor
Institute of Nuclear Chemistry
Fritz-Strassmann-Weg 2
Johannes Gutenberg University Mainz
w.springer.com)
An important part of all this is widespread understanding of a field that is novel, but
basically not particularly difficult to understand. This major five-volume publication is
exceedingly useful for further research, understanding and application of the chemical aspect
of nuclear science.
Foreword
The Future of Nuclear Energy and Research
New ideas are hard to accept; popular mistrust and opposition often hinder the exploration
and application of new sciences and technologies. We have to look only at the work and
struggle of Galileo, Newton, and Einstein, among many others, to realize what obstacles there
were in their paths.
There can be no question that nuclear energy will become more important in the future
in spite of the fact that there is general opposition toward the use of this form of energy.
Conventional energy sources will soon become less available. Oil and gas are becoming more
expensive and no great reserves appear to be available. Coal supplies are likely to last longer but
I expect it to become more expensive even within this century. The other sources, like
hydroelectricity, solar energy and geothermal energy will be in many cases important, but
they will remain local and limited. I firmly expect that the source that will become of lasting and
general importance for the world is nuclear energy.
As we see it at the present, uranium will remain a satisfactory energy source for the third
millennium. Energy from thorium (by transformation into uranium 233) is likely to remain
available even longer. One obstacle appears to remain: fear of radioactivity. My main point is
that the fear is not justified.
Consider the damage in the last few decades due to the use of nuclear reactors, divided by
the amount of available energy produced. Two well-known examples of such damage are at
ThreeMile Island in the United States in 1979, and evenmore at Chernobyl in the Soviet Union
in 1986. Both of these were caused by human error. At ThreeMile Island, the economic damage
was great, but there was hardly any effect on health. In Chernobyl, the effect on human health
was considerable, but still small compared to the publicity it generated.
The main problem in nuclear energy is the fight against hysteria. I hope and believe that
ways will be found to overcome such hysteria. I want to make just one recommendation.
In developing nuclear energy for the future, primary emphasis should be given to one problem
with double aspect. One aspect is safety of future nuclear reactors; the other is the public
understanding of this safety. This is the field in which innovations are most necessary.
For this, we need three things: one is careful planning and operation of nuclear energy
production; other improvements in nuclear energy production will be made, but these are
unimportant compared to the needed improvements in safety. The second point is the review
of past damage in all phases connected with nuclear energy. The third andmost important part
is the work for and execution of plans for the use of nuclear energy for the whole world,
advanced and underdeveloped, with primary emphasis on safety and objective reporting.
E. Teller{
{Editors’ note: The above sentences were dictated by Professor Edward Teller to his
secretary in March 2003. The text was to be the Foreword of the first edition of the
Handbook of Nuclear Chemistry (HNC) published in November 2003. Professor Teller died
on September 9, 2003, just a fewmonths before the bookwas released.We still deeply regret that
we lost the opportunity to present him with a complimentary copy of HNC as a token of our
gratitude for his support. However, his words have not lost their timeliness over the years. We
have decided to have them published unchanged thus expressing our respect for his memory.
vi Foreword
difficulties and hazards as well as regulating them (within reason) is necessary. Finding solutions to
overcome them, however, is essential.
(Olah 1998, pp 40–54)
The editors of this handbook hope that this work contributes to the activity of a research
field that helps us to learn more and more about nature and will remain dynamic for a long
Preface
In the twentieth century, 57 Nobel Prizes honored the chemical and physical results achieved by
theoreticians and experimenters who can be rightly called nuclear scientists. This number alone
proves that nuclear science was recognized as one of the most powerful engines pushing science
to new heights in the past century, often referred to as the Nuclear Age.
It is interesting to mention that until the middle of the twentieth century, the ratio of Nobel
Prizes that honored nuclear results was 2:1 for physics and chemistry. However, after 1950, only
two chemical results were awarded by this prize: E. M. McMillan and G. T. Seaborg for the
production of 93Np and 94Pu in 1951, and W. F. Libby for working out the
14C age determi-
nation in archeology and geophysics in 1960. R.S. Yalow was honored by the Nobel Prize in
1977 for a medical result. She developed the radioimmunoassays of peptide hormones. All
other Nobel Prizes for nuclear results were awarded in the field of physics. The Nobel Prizes
achieved by nuclear scientists are listed in >Table 1.
A correlation between the period of the research work and the date of the award is
demonstrated in > Fig. 1.
One needs little imagination to foretell that the flagships of science will be informatics and
biology in the twenty-first century. Nevertheless, there are many signs making us firmly believe
that nuclear science will remain important in the future as well, in spite of the antinuclear
sentiments caused by the unfortunate Chernobyl accident in 1986. Radiopharmaceutical
chemistry is stimulating biomedical research and nuclear medicine (diagnosis and therapy).
The development of particle physics keeps its dynamism as demonstrated by the Nobel Prizes
awarded in this century (2002, 2004, and 2008.)
There are well-supported opinions that nuclear fission and fusion will be among the
important sources of energy in the twenty-first century. We cite George A. Olah
who was
awarded the Nobel Prize for his contributions to carbocation chemistry in 1994. He wrote
(Olah GA (1998) Oil and hydrocarbons in the 21st century. In: Barkan P (ed) Chemical
research 2000 and beyond. Amer Chem Soc, Washington, DC/OUP, New York, pp 40–54):
" Generating energy by burning non-renewable fossil fuels including oil, gas and coal is feasible only for
the relatively short future and even so, faces serious environmental problems. The advent of the
atomic age opened up a wonderful new possibility, but also created dangers and concerns of safety.
I feel that it is tragic that the latter considerations practically brought further development of atomic
energy to a stand still at least in most of the Western world. Whether we like it or not we have in the
long run no alternative but to rely increasingly on clean atomic energy, but we must solve safety
problems including those of disposal and storage of radioactive waste-products. Pointing out
time.
.
T
a
b
le
1
T
h
e
re
su
lt
s
o
f
n
u
cl
e
a
r
sc
ie
n
ti
st
s
h
o
n
o
re
d
b
y
N
o
b
e
l
P
ri
ze
s
T
h
e
h
o
n
o
re
d
re
su
lt
s
a
s
p
h
ra
se
d
b
y
th
e
N
o
b
e
l
C
o
m
m
it
te
e
T
h
e
p
e
ri
o
d
o
f
th
e
a
ct
iv
it
y
re
su
lt
in
g
th
e
N
o
b
e
l
P
ri
ze
T
h
e
n
a
m
e
(s
)
o
f
th
e
a
w
a
rd
e
d
p
e
rs
o
n
(s
)
T
h
e
y
e
a
r
o
f
d
is
ti
n
ct
io
n
In
re
co
g
n
it
io
n
o
f
th
e
e
xt
ra
o
rd
in
ar
y
se
rv
ic
e
s
h
e
h
as
re
n
d
e
re
d
b
y
h
is
d
is
co
ve
ry
o
f
sp
o
n
ta
n
e
o
u
s
ra
d
io
ac
ti
vi
ty
1
8
9
6
H
.A
.B
e
cq
u
e
re
l
1
9
0
3
(p
h
ys
ic
s)
In
re
co
g
n
it
io
n
o
f
th
e
e
xt
ra
o
rd
in
ar
y
se
rv
ic
e
s
th
e
y
h
av
e
re
n
d
e
re
d
b
y
th
e
ir
jo
in
t
re
se
ar
ch
e
s
o
n
th
e
ra
d
ia
ti
o
n
p
h
e
n
o
m
e
n
a
d
is
co
ve
re
d
b
y
P
ro
fe
ss
o
r
H
e
n
ri
B
e
cq
u
e
re
l
1
8
9
7
–
1
9
0
3
M
.C
u
ri
e
P
.C
u
ri
e
In
re
co
g
n
it
io
n
o
f
h
e
r
se
rv
ic
e
s
to
th
e
ad
va
n
ce
m
e
n
t
o
f
ch
e
m
is
tr
y
b
y
th
e
d
is
co
ve
ry
o
f
th
e
e
le
m
e
n
ts
ra
d
iu
m
an
d
p
o
lo
n
iu
m
,b
y
th
e
is
o
la
ti
o
n
o
f
ra
d
iu
m
an
d
th
e
st
u
d
y
o
f
th
e
n
at
u
re
an
d
co
m
p
o
u
n
d
s
o
f
th
is
re
m
ar
ka
b
le
e
le
m
e
n
t
1
8
9
8
M
.C
u
ri
e
1
9
1
1
(c
h
e
m
is
tr
y)
Fo
r
h
is
in
ve
st
ig
at
io
n
s
in
to
th
e
d
is
in
te
g
ra
ti
o
n
o
f
th
e
e
le
m
e
n
ts
,a
n
d
th
e
ch
e
m
is
tr
y
o
f
ra
d
io
ac
ti
ve
su
b
st
an
ce
s
1
8
9
8
–
1
9
0
0
E.
R
u
th
e
rf
o
rd
1
9
0
8
(c
h
e
m
is
tr
y)
In
re
co
g
n
it
io
n
o
f
th
e
se
rv
ic
e
s
h
e
re
n
d
e
re
d
to
th
e
ad
va
n
ce
m
e
n
t
o
f
p
h
ys
ic
s
b
y
h
is
d
is
co
ve
ry
o
f
e
n
e
rg
y
q
u
an
ta
1
9
0
1
M
.P
la
n
ck
1
9
1
8
(p
h
ys
ic
s)
Fo
r
h
is
se
rv
ic
e
s
to
th
e
o
re
ti
ca
lp
h
ys
ic
s,
an
d
e
sp
e
ci
al
ly
fo
r
h
is
d
is
co
ve
ry
o
f
th
e
la
w
o
f
th
e
p
h
o
to
e
le
ct
ri
c
e
ff
e
ct
1
9
0
5
A
.E
in
st
e
in
1
9
2
1
(p
h
ys
ic
s)
Fo
r
h
is
w
o
rk
o
n
th
e
e
le
m
e
n
ta
ry
ch
ar
g
e
o
f
e
le
ct
ri
ci
ty
an
d
o
n
th
e
p
h
o
to
e
le
ct
ri
c
e
ff
e
ct
1
9
1
0
–
1
9
1
4
R
.A
.M
ill
ik
an
1
9
2
3
(p
h
ys
ic
s)
Fo
r
h
is
m
e
th
o
d
o
f
m
ak
in
g
th
e
p
at
h
s
o
f
e
le
ct
ri
ca
lly
ch
ar
g
e
d
p
ar
ti
cl
e
s
vi
si
b
le
b
y
co
n
d
e
n
sa
ti
o
n
o
f
va
p
o
r
1
9
1
2
C
.T
.R
.W
ils
o
n
1
9
2
7
(p
h
ys
ic
s)
Fo
r
h
is
d
is
co
ve
ry
o
f
co
sm
ic
ra
d
ia
ti
o
n
1
9
1
2
V
.F
.H
e
ss
1
9
3
6
(p
h
ys
ic
s)
Fo
r
h
is
w
o
rk
o
n
th
e
u
se
o
f
is
o
to
p
e
s
as
tr
ac
e
rs
in
th
e
st
u
d
y
o
f
ch
e
m
ic
al
p
ro
ce
ss
e
s
1
9
1
3
–
1
9
3
5
G
.H
e
ve
sy
1
9
4
3
(c
h
e
m
is
tr
y)
Fo
r
h
is
co
n
tr
ib
u
ti
o
n
s
to
o
u
r
kn
o
w
le
d
g
e
o
f
th
e
ch
e
m
is
tr
y
o
f
ra
d
io
ac
ti
ve
su
b
st
an
ce
s,
an
d
h
is
in
ve
st
ig
at
io
n
s
in
to
th
e
o
ri
g
in
an
d
n
at
u
re
o
f
is
o
to
p
e
s
1
9
1
3
–
1
9
1
6
F.
So
d
d
y
1
9
2
1
(c
h
e
m
is
tr
y)
Fo
r
h
is
d
is
co
ve
ry
o
f
th
e
e
ff
e
ct
n
am
e
d
af
te
r
h
im
1
9
2
3
A
.H
.C
o
m
p
to
n
1
9
2
7
(p
h
ys
ic
s)
Fo
r
th
e
d
is
co
ve
ry
o
f
th
e
Ex
cl
u
si
o
n
P
ri
n
ci
p
le
,a
ls
o
ca
lle
d
th
e
P
au
li
P
ri
n
ci
p
le
1
9
2
5
W
.P
au
li
1
9
4
5
(p
h
ys
ic
s)
Fo
r
th
e
d
is
co
ve
ry
o
f
n
e
w
p
ro
d
u
ct
iv
e
fo
rm
s
o
f
at
o
m
ic
th
e
o
ry
1
9
2
6
E.
Sc
h
ro¨
d
in
g
e
r
1
9
3
3
(p
h
ys
ic
s)
P
.A
.M
.D
ir
ac
viii Preface
Fo
r
th
e
in
ve
n
ti
o
n
an
d
d
e
ve
lo
p
m
e
n
t
o
f
th
e
cy
cl
o
tr
o
n
an
d
fo
r
re
su
lt
s
o
b
ta
in
e
d
w
it
h
it
,
e
sp
e
ci
al
ly
w
it
h
re
g
ar
d
to
ar
ti
fi
ci
al
ra
d
io
ac
ti
ve
e
le
m
e
n
ts
1
9
2
9
–
1
9
3
2
E.
O
.L
aw
re
n
ce
1
9
3
9
(p
h
ys
ic
s)
Fo
r
h
is
re
so
n
an
ce
m
e
th
o
d
fo
r
re
co
rd
in
g
th
e
m
ag
n
e
ti
c
p
ro
p
e
rt
ie
s
fo
r
at
o
m
ic
n
u
cl
e
i
1
9
3
0
–
1
9
3
9
I.
I.
R
ab
i
1
9
4
4
(p
h
ys
ic
s)
Fo
r
th
e
co
in
ci
d
e
n
ce
m
e
th
o
d
an
d
h
is
d
is
co
ve
ri
e
s
m
ad
e
th
e
re
w
it
h
1
9
3
0
–
1
9
4
0
W
.B
o
th
e
1
9
5
4
(p
h
ys
ic
s)
Fo
r
h
is
d
e
ve
lo
p
m
e
n
t
o
f
th
e
W
ils
o
n
cl
o
u
d
ch
am
b
e
r
m
e
th
o
d
,a
n
d
h
is
d
is
co
ve
ri
e
s
th
e
re
w
it
h
in
th
e
fi
e
ld
o
f
n
u
cl
e
ar
p
h
ys
ic
s
an
d
co
sm
ic
ra
d
ia
ti
o
n
1
9
3
1
–
1
9
3
3
P
.M
.S
.B
la
ck
e
tt
1
9
4
8
(p
h
ys
ic
s)
Fo
r
th
e
d
is
co
ve
ry
o
f
th
e
n
e
u
tr
o
n
1
9
3
2
J.
C
h
ad
w
ic
k
1
9
3
5
(p
h
ys
ic
s)
Fo
r
h
is
d
is
co
ve
ry
o
f
th
e
p
o
si
tr
o
n
1
9
3
2
C
.D
.A
n
d
e
rs
o
n
1
9
3
6
(p
h
ys
ic
s)
Fo
r
th
e
ir
p
io
n
e
e
ri
n
g
w
o
rk
o
n
th
e
tr
an
sm
u
ta
ti
o
n
o
f
at
o
m
ic
n
u
cl
e
ib
y
ar
ti
fi
ci
al
ly
ac
ce
le
ra
te
d
at
o
m
ic
p
ar
ti
cl
e
s
1
9
3
2
J.
D
.C
o
ck
cr
o
ft
1
9
5
1
(p
h
ys
ic
s)
E.
T
.S
.W
al
to
n
Fo
r
h
is
co
n
tr
ib
u
ti
o
n
s
to
th
e
d
e
ve
lo
p
m
e
n
t
o
f
th
e
m
o
le
cu
la
r
ra
y
m
e
th
o
d
an
d
h
is
d
is
co
ve
ry
o
f
th
e
m
ag
n
e
ti
c
m
o
m
e
n
t
o
f
th
e
p
ro
to
n
1
9
3
3
O
.S
te
rn
1
9
4
3
(p
h
ys
ic
s)
Fo
r
h
is
co
n
tr
ib
u
ti
o
n
s
to
th
e
th
e
o
ry
o
f
th
e
at
o
m
ic
n
u
cl
e
u
s
an
d
th
e
e
le
m
e
n
ta
ry
p
ar
ti
cl
e
s,
p
ar
ti
cu
la
rl
y
th
ro
u
g
h
th
e
d
is
co
ve
ry
an
d
ap
p
lic
at
io
n
o
f
fu
n
d
am
e
n
ta
l
sy
m
m
e
tr
y
p
ri
n
ci
p
le
s
1
9
3
3
–
1
9
3
7
E.
P
.W
ig
n
e
r
1
9
6
3
(p
h
ys
ic
s)
In
re
co
g
n
it
io
n
o
f
th
e
ir
sy
n
th
e
si
s
o
f
n
e
w
ra
d
io
ac
ti
ve
e
le
m
e
n
ts
1
9
3
4
F.
J.
C
u
ri
e
1
9
3
5
(c
h
e
m
is
tr
y)
I.
C
u
ri
e
Fo
r
th
e
d
is
co
ve
ry
an
d
th
e
in
te
rp
re
ta
ti
o
n
o
f
th
e
C
h
e
re
n
ko
v
e
ff
e
ct
1
9
3
4
–
1
9
3
7
P
.A
.C
h
e
re
n
ko
v
1
9
5
8
(p
h
ys
ic
s)
I.
M
.F
ra
n
k
I.
E.
T
am
m
Fo
r
h
is
d
e
m
o
n
st
ra
ti
o
n
s
o
f
th
e
e
xi
st
e
n
ce
o
f
n
e
w
ra
d
io
ac
ti
ve
e
le
m
e
n
ts
p
ro
d
u
ce
d
b
y
n
e
u
tr
o
n
ir
ra
d
ia
ti
o
n
,a
n
d
fo
r
h
is
re
la
te
d
d
is
co
ve
ry
o
f
n
u
cl
e
ar
re
ac
ti
o
n
s
b
ro
u
g
h
t
ab
o
u
t
b
y
sl
o
w
n
e
u
tr
o
n
s
1
9
3
4
–
1
9
3
6
E.
Fe
rm
i
1
9
3
8
(p
h
ys
ic
s)
Fo
r
h
is
p
re
d
ic
ti
o
n
o
f
th
e
e
xi
st
e
n
ce
o
f
m
e
so
n
s
o
n
th
e
b
as
is
o
f
th
e
o
re
ti
ca
lw
o
rk
o
n
n
u
cl
e
ar
fo
rc
e
s
1
9
3
5
H
.Y
u
ka
w
a
1
9
4
9
(p
h
ys
ic
s)
Fo
r
h
is
co
n
tr
ib
u
ti
o
n
s
to
th
e
th
e
o
ry
o
f
n
u
cl
e
ar
re
ac
ti
o
n
s,
e
sp
e
ci
al
ly
h
is
d
is
co
ve
ri
e
s
co
n
ce
rn
in
g
th
e
e
n
e
rg
y
p
ro
d
u
ct
io
n
in
st
ar
s
1
9
3
8
H
.A
.B
e
th
e
1
9
6
7
(p
h
ys
ic
s)
Fo
r
h
is
d
is
co
ve
ry
o
f
th
e
fi
ss
io
n
o
f
h
e
av
y
n
u
cl
e
i
1
9
3
8
O
.H
ah
n
1
9
4
4
(c
h
e
m
is
tr
y)
Preface ix
.
T
a
b
le
1
(C
o
n
ti
n
u
e
d
)
T
h
e
h
o
n
o
re
d
re
su
lt
s
a
s
p
h
ra
se
d
b
y
th
e
N
o
b
e
l
C
o
m
m
it
te
e
T
h
e
p
e
ri
o
d
o
f
th
e
a
ct
iv
it
y
re
su
lt
in
g
th
e
N
o
b
e
l
P
ri
ze
T
h
e
n
a
m
e
(s
)
o
f
th
e
a
w
a
rd
e
d
p
e
rs
o
n
(s
)
T
h
e
y
e
a
r
o
f
d
is
ti
n
ct
io
n
Fo
r
th
e
ir
d
is
co
ve
ri
e
s
in
th
e
ch
e
m
is
tr
y
o
f
th
e
tr
an
su
ra
n
iu
m
e
le
m
e
n
ts
1
9
4
0
E.
M
.M
cM
ill
an
1
9
5
1
(c
h
e
m
is
tr
y)
G
.T
.S
e
ab
o
rg
Fo
r
h
is
m
e
th
o
d
to
u
se
ca
rb
o
n
-1
4
fo
r
ag
e
d
e
te
rm
in
at
io
n
in
ar
ch
ae
o
lo
g
y,
g
e
o
lo
g
y,
g
e
o
p
h
ys
ic
s,
an
d
o
th
e
r
b
ra
n
ch
e
s
o
f
sc
ie
n
ce
1
9
4
6
W
.F
.L
ib
b
y
1
9
6
0
(c
h
e
m
is
tr
y)
Fo
r
th
e
ir
d
e
ve
lo
p
m
e
n
t
o
f
n
e
w
m
e
th
o
d
s
fo
r
n
u
cl
e
ar
m
ag
n
e
ti
c
p
re
ci
si
o
n
m
e
as
u
re
m
e
n
ts
an
d
d
is
co
ve
ri
e
s
in
co
n
n
e
ct
io
n
th
e
re
w
it
h
1
9
4
6
–
1
9
4
8
F.
B
lo
ch
1
9
5
2
(p
h
ys
ic
s)
E.
M
.P
u
rc
e
ll
Fo
r
th
e
ir
fu
n
d
am
e
n
ta
lw
o
rk
in
q
u
an
tu
m
e
le
ct
ro
d
yn
am
ic
s,
w
it
h
d
e
e
p
-p
lo
u
g
h
in
g
co
n
se
q
u
e
n
ce
s
fo
r
th
e
p
h
ys
ic
s
o
f
e
le
m
e
n
ta
ry
p
ar
ti
cl
e
s
1
9
4
6
–
1
9
4
8
S.
-I
.T
o
m
o
n
ag
a
1
9
6
5
(p
h
ys
ic
s)
J.
Sc
h
w
in
g
e
r
R
.P
.F
e
yn
m
an
Fo
r
h
is
d
e
ve
lo
p
m
e
n
t
o
f
th
e
p
h
o
to
g
ra
p
h
ic
m
e
th
o
d
o
f
st
u
d
yi
n
g
n
u
cl
e
ar
p
ro
ce
ss
e
s
an
d
h
is
d
is
co
ve
ri
e
s
re
g
ar
d
in
g
m
e
so
n
s
m
ad
e
w
it
h
th
is
m
e
th
o
d
1
9
4
6
–
1
9
5
0
C
.F
.P
o
w
e
ll
1
9
5
0
(p
h
ys
ic
s)
Fo
r
th
e
ir
d
is
co
ve
ri
e
s
co
n
ce
rn
in
g
n
u
cl
e
ar
sh
e
ll
st
ru
ct
u
re
1
9
4
8
–
1
9
5
4
O
.M
.G
o
e
p
p
e
rt
-
M
ay
e
r
1
9
6
3
(p
h
ys
ic
s)
J.
H
.D
.J
e
n
se
n
Fo
r
th
e
in
ve
n
ti
o
n
o
f
th
e
b
u
b
b
le
ch
am
b
e
r
1
9
5
2
D
.A
.G
la
se
r
1
9
6
0
(p
h
ys
ic
s)
Fo
r
th
e
d
is
co
ve
ry
o
f
th
e
co
n
n
e
ct
io
n
b
e
tw
e
e
n
co
lle
ct
iv
e
m
o
ti
o
n
an
d
p
ar
ti
cl
e
m
o
ti
o
n
in
at
o
m
ic
n
u
cl
e
ia
n
d
th
e
d
e
ve
lo
p
m
e
n
t
o
f
th
e
th
e
o
ry
o
f
th
e
st
ru
ct
u
re
o
f
th
e
at
o
m
ic
n
u
cl
e
u
s
b
as
e
d
o
n
th
is
co
n
n
e
ct
io
n
1
9
5
3
A
.N
.B
o
h
r
1
9
7
5
(p
h
ys
ic
s)
B
.R
.M
o
tt
e
ls
o
n
L.
J.
R
ai
n
w
at
e
r
Fo
r
h
is
p
io
n
e
e
ri
n
g
st
u
d
ie
s
o
f
e
le
ct
ro
n
sc
at
te
ri
n
g
in
at
o
m
ic
n
u
cl
e
ia
n
d
fo
r
h
is
th
e
re
b
y
ac
h
ie
ve
d
d
is
co
ve
ri
e
s
co
n
ce
rn
in
g
th
e
st
ru
ct
u
re
o
f
th
e
n
u
cl
e
o
n
s
1
9
5
3
–
1
9
6
0
R
.H
o
fs
ta
d
te
r
1
9
6
1
(p
h
ys
ic
s)
Fo
r
th
e
d
e
te
ct
io
n
o
f
th
e
n
e
u
tr
in
o
1
9
5
3
–
1
9
6
0
F.
R
e
in
e
s
1
9
9
5
(p
h
ys
ic
s)
Fo
r
h
is
co
n
tr
ib
u
ti
o
n
to
th
e
d
e
ve
lo
p
m
e
n
t
o
f
h
ig
h
-r
e
so
lu
ti
o
n
e
le
ct
ro
n
sp
e
ct
ro
sc
o
p
y
1
9
5
4
–
1
9
5
8
K
.M
.S
ie
g
b
ah
n
1
9
8
1
(p
h
ys
ic
s)
Fo
r
th
e
ir
d
is
co
ve
ry
o
f
th
e
an
ti
p
ro
to
n
1
9
5
5
E.
G
.S
e
g
re
1
9
5
9
(p
h
ys
ic
s)
O
.C
h
e
m
b
e
rl
ai
n
x Preface
Fo
r
h
is
d
e
ci
si
ve
co
n
tr
ib
u
ti
o
n
s
to
e
le
m
e
n
ta
ry
p
ar
ti
cl
e
p
h
ys
ic
s,
in
p
ar
ti
cu
la
r,
th
e
d
is
co
ve
ry
o
f
a
la
rg
e
n
u
m
b
e
r
o
f
re
so
n
an
ce
st
at
e
s,
m
ad
e
p
o
ss
ib
le
th
ro
u
g
h
h
is
d
e
ve
lo
p
m
e
n
t
o
f
th
e
te
ch
n
iq
u
e
o
f
u
si
n
g
h
yd
ro
g
e
n
b
u
b
b
le
ch
am
b
e
r
an
d
d
at
a
an
al
ys
is
1
9
5
5
–
1
9
5
7
L.
W
.A
lv
ar
e
z
1
9
6
8
(p
h
ys
ic
s)
Fo
r
th
e
d
e
ve
lo
p
m
e
n
t
o
f
n
e
u
tr
o
n
sp
e
ct
ro
sc
o
p
y
1
9
5
5
–
1
9
6
0
B
.N
.B
ro
ck
h
o
u
se
1
9
9
4
(p
h
ys
ic
s)
C
.G
.S
h
u
ll
Fo
r
p
io
n
e
e
ri
n
g
co
n
tr
ib
u
ti
o
n
s
to
as
tr
o
p
h
ys
ic
s,
in
p
ar
ti
cu
la
r,
fo
r
th
e
d
e
te
ct
io
n
o
f
co
sm
ic
n
e
u
tr
in
o
s
1
9
5
5
–
1
9
7
2
R
.D
av
is
2
0
0
2
(p
h
ys
ic
s)
M
.K
o
sh
ib
a
Fo
r
th
e
ir
p
e
n
e
tr
at
in
g
in
ve
st
ig
at
io
n
o
f
th
e
so
-c
al
le
d
p
ar
it
y
la
w
s,
w
h
ic
h
h
as
le
d
to
im
p
o
rt
an
t
d
is
co
ve
ri
e
s
re
g
ar
d
in
g
th
e
e
le
m
e
n
ta
ry
p
ar
ti
cl
e
s
1
9
5
6
T
.D
.L
e
e
1
9
5
7
(p
h
ys
ic
s)
C
.N
.Y
an
g
Fo
r
h
is
th
e
o
re
ti
ca
ls
tu
d
ie
s
o
f
th
e
p
h
ys
ic
al
p
ro
ce
ss
e
s
o
f
im
p
o
rt
an
ce
to
th
e
st
ru
ct
u
re
an
d
e
vo
lu
ti
o
n
o
f
th
e
st
ar
s
1
9
6
2
–
1
9
7
1
S.
C
h
an
d
ra
se
kh
ar
1
9
8
3
(p
h
ys
ic
s)
Fo
r
h
is
th
e
o
re
ti
ca
la
n
d
e
xp
e
ri
m
e
n
ta
ls
tu
d
ie
s
o
f
th
e
n
u
cl
e
ar
re
ac
ti
o
n
s
o
f
im
p
o
rt
an
ce
in
th
e
fo
rm
at
io
n
o
f
th
e
ch
e
m
ic
al
e
le
m
e
n
ts
in
th
e
u
n
iv
e
rs
e
1
9
5
6
–
1
9
6
5
W
.A
.F
o
w
le
r
Fo
r
h
is
re
se
ar
ch
e
s
co
n
ce
rn
in
g
th
e
re
so
n
an
ce
ab
so
rp
ti
o
n
o
fg
am
m
a
ra
d
ia
ti
o
n
an
d
h
is
d
is
co
ve
ry
in
th
is
co
n
n
e
ct
io
n
o
f
th
e
e
ff
e
ct
th
at
b
e
ar
s
h
is
n
am
e
1
9
5
8
R
.M
o¨
ss
b
au
e
r
1
9
6
1
(p
h
ys
ic
s)
Fo
r
th
e
ir
co
n
tr
ib
u
ti
o
n
s
to
th
e
th
e
o
ry
o
f
th
e
u
n
if
ie
d
w
e
ak
an
d
e
le
ct
ro
m
ag
n
e
ti
c
in
te
ra
ct
io
n
b
e
tw
e
e
n
e
le
m
e
n
ta
ry
p
ar
ti
cl
e
s,
in
cl
u
d
in
g
,i
n
te
r
al
ia
,t
h
e
p
re
d
ic
ti
o
n
o
f
th
e
w
e
ak
n
e
u
tr
al
cu
rr
e
n
t
1
9
5
8
–
1
9
7
0
S.
L.
G
la
sh
o
w
1
9
7
9
(p
h
ys
ic
s)
A
.S
al
am
S.
W
e
in
b
e
rg
Fo
r
th
e
d
e
ve
lo
p
m
e
n
t
o
f
ra
d
io
im
m
u
n
o
as
sa
ys
o
f
p
e
p
ti
d
e
h
o
rm
o
n
e
s
1
9
5
9
R
.S
.Y
al
o
w
1
9
7
7
(m
e
d
ic
in
e
)
Fo
r
h
is
co
n
tr
ib
u
ti
o
n
s
an
d
d
is
co
ve
ri
e
s
co
n
ce
rn
in
g
th
e
cl
as
si
fi
ca
ti
o
n
o
f
e
le
m
e
n
ta
ry
p
ar
ti
cl
e
s
an
d
th
e
ir
in
te
ra
ct
io
n
s
1
9
6
0
–
1
9
6
5
M
.G
e
ll-
M
an
n
1
9
6
9
(p
h
ys
ic
s)
Fo
r
th
e
d
is
co
ve
ry
o
f
th
e
m
e
ch
an
is
m
o
f
sp
o
n
ta
n
e
o
u
s
b
ro
ke
n
sy
m
m
e
tr
y
in
su
b
at
o
m
ic
p
h
ys
ic
s
1
9
6
0
–
1
9
7
3
Y
.N
am
b
u
2
0
0
8
(p
h
ys
ic
s)
Fo
r
p
io
n
e
e
ri
n
g
co
n
tr
ib
u
ti
o
n
s
to
as
tr
o
p
h
ys
ic
s,
w
h
ic
h
h
av
e
le
d
to
th
e
d
is
co
ve
ry
o
f
co
sm
ic
X
-r
ay
so
u
rc
e
s
1
9
6
0
–
1
9
8
0
R
.G
ia
cc
o
n
i
2
0
0
2
(p
h
ys
ic
s)
Preface xi
.
T
a
b
le
1
(C
o
n
ti
n
u
e
d
)
T
h
e
h
o
n
o
re
d
re
su
lt
s
a
s
p
h
ra
se
d
b
y
th
e
N
o
b
e
l
C
o
m
m
it
te
e
T
h
e
p
e
ri
o
d
o
f
th
e
a
ct
iv
it
y
re
su
lt
in
g
th
e
N
o
b
e
l
P
ri
ze
T
h
e
n
a
m
e
(s
)
o
f
th
e
a
w
a
rd
e
d
p
e
rs
o
n
(s
)
T
h
e
y
e
a
r
o
f
d
is
ti
n
ct
io
n
Fo
r
th
e
n
e
u
tr
in
o
b
e
am
m
e
th
o
d
an
d
th
e
d
e
m
o
n
st
ra
ti
o
n
o
f
th
e
d
o
u
b
le
t
st
ru
ct
u
re
o
f
th
e
le
p
to
n
s
th
ro
u
g
h
th
e
d
is
co
ve
ry
o
f
th
e
m
u
o
n
n
e
u
tr
in
o
1
9
6
3
L.
Le
d
e
rm
an
1
9
8
8
(p
h
ys
ic
s)
M
.S
ch
w
ar
tz
J.
St
e
in
b
e
rg
e
r
Fo
r
th
e
d
is
co
ve
ry
o
f
vi
o
la
ti
o
n
s
o
f
fu
n
d
am
e
n
ta
ls
ym
m
e
tr
y
p
ri
n
ci
p
le
s
in
th
e
d
e
ca
y
o
f
n
e
u
tr
al
K
-m
e
so
n
s
1
9
6
4
J.
W
.C
ro
n
in
1
9
8
0
(p
h
ys
ic
s)
V
.L
.F
it
ch
Fo
r
th
e
ir
p
io
n
e
e
ri
n
g
in
ve
st
ig
at
io
n
s
co
n
ce
rn
in
g
d
e
e
p
in
e
la
st
ic
sc
at
te
ri
n
g
o
fe
le
ct
ro
n
s
o
n
p
ro
to
n
s
an
d
b
o
u
n
d
n
e
u
tr
o
n
s,
w
h
ic
h
h
av
e
b
e
e
n
o
f
e
ss
e
n
ti
al
im
p
o
rt
an
ce
fo
r
th
e
d
e
ve
lo
p
m
e
n
t
o
f
th
e
q
u
ar
k
m
o
d
e
li
n
p
ar
ti
cl
e
p
h
ys
ic
s
1
9
6
8
J.
I.
Fr
ie
d
m
an
1
9
9
0
(p
h
ys
ic
s)
H
.W
.K
e
n
d
al
l
R
.E
.T
ay
lo
r
Fo
r
h
is
in
ve
n
ti
o
n
an
d
d
e
ve
lo
p
m
e
n
t
o
f
p
ar
ti
cl
e
d
e
te
ct
o
rs
,i
n
p
ar
ti
cu
la
r,
th
e
m
u
lt
iw
ir
e
p
ro
p
o
rt
io
n
al
ch
am
b
e
r
1
9
6
8
G
.C
h
ar
p
ak
1
9
9
2
(p
h
ys
ic
s)
Fo
r
th
e
d
is
co
ve
ry
o
ft
h
e
o
ri
g
in
o
ft
h
e
b
ro
ke
n
sy
m
m
e
tr
y,
w
h
ic
h
p
re
d
ic
ts
th
e
e
xi
st
e
n
ce
o
f
at
le
as
t
th
re
e
fa
m
ili
e
s
o
f
q
u
ar
ks
in
n
at
u
re
1
9
7
0
–
1
9
7
3
M
.K
o
b
ay
as
h
i,
2
0
0
8
(p
h
ys
ic
s)
T
.M
as
ka
w
a
Fo
r
e
lu
ci
d
at
in
g
th
e
q
u
an
tu
m
st
ru
ct
u
re
o
f
e
le
ct
ro
w
e
ak
in
te
ra
ct
io
n
s
in
p
h
ys
ic
s
1
9
7
2
M
.J
.G
.V
e
lt
m
an
1
9
9
9
(p
h
ys
ic
s)
G
.’
t
H
o
o
ft
Fo
r
h
is
th
e
o
ry
fo
r
cr
it
ic
al
p
h
e
n
o
m
e
n
a
in
co
n
n
e
ct
io
n
w
it
h
p
h
as
e
tr
an
si
ti
o
n
s
1
9
7
2
K
.G
.W
ils
o
n
1
9
8
2
(p
h
ys
ic
s)
Fo
r
th
e
d
is
co
ve
ry
o
f
as
ym
p
to
ti
c
fr
e
e
d
o
m
in
th
e
th
e
o
ry
o
f
th
e
st
ro
n
g
in
te
ra
ct
io
n
1
9
7
3
–
1
9
7
4
D
.J
.G
ro
ss
2
0
0
4
(p
h
ys
ic
s)
H
.D
.P
o
lit
ze
r
F.
W
ilc
ze
k
Fo
r
th
e
ir
p
io
n
e
e
ri
n
g
w
o
rk
in
th
e
d
is
co
ve
ry
o
f
a
h
e
av
y
e
le
m
e
n
ta
ry
p
ar
ti
cl
e
o
f
a
n
e
w
ki
n
d
1
9
7
4
B
.R
ic
h
te
r
1
9
7
6
(p
h
ys
ic
s)
S.
C
.C
.T
in
g
Fo
r
th
e
d
is
co
ve
ry
o
f
th
e
ta
u
le
p
to
n
1
9
7
4
M
.P
e
rl
1
9
9
5
(p
h
ys
ic
s)
Fo
r
th
e
ir
d
e
ci
si
ve
co
n
tr
ib
u
ti
o
n
s
to
th
e
la
rg
e
p
ro
je
ct
th
at
le
d
to
th
e
d
is
co
ve
ry
o
f
th
e
fi
e
ld
p
ar
ti
cl
e
s
W
an
d
Z
,c
o
m
m
u
n
ic
at
o
rs
o
f
w
e
ak
in
te
ra
ct
io
n
1
9
8
3
C
.R
u
b
b
ia
1
9
8
4
(p
h
ys
ic
s)
S.
va
n
d
e
r
M
e
e
r
xii Preface
xiii
. Fig. 1
A presentation of the time passed between the discoveries and Nobel Prizes related to the
development of nuclear science and subatomic concepts (Nagy S (2007) Radiochemistry and
nuclear chemistry. In: Encyclopedia of Life Support Systems (EOLSS), Developed under the
auspices of the UNESCO. Eolss Publishers, Oxford [http://www.eolss.net]). The length of each
drop-line shows the delay between award and achievement. Note that some achievements had
been awarded almost promptly, whereas the longest delay was almost half a century. The drop-
lines of the first few points are meaningless, as the Nobel Prize was first awarded in 1901
2010
2000
1990
2010
2000
1990
1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
Preface
The chapter Nuclear and Radiochemistry – the First 100 Years, dealing with the history of
nuclear chemistry, was updated by Professors Friedlander andHerrmann in the Fall of 2008 and in
the Spring of 2009. Alas, it was submitted for the 2nd edition by ProfessorHerrmann alone because
Professor Friedlander died on September 6, 2009. Gerhart Friedlander was born on July 28, 1916, in
Munich. He was a veteran of the Manhattan Project and a pioneer of nuclear chemistry who later
exploited the first particle accelerators to domajor research as head of the chemistry department at
Brookhaven National Laboratory. Many of us, nuclear chemists, used one of Professor
Friedlander’s monographs to learn the basics of this field of science (e.g., Friedlander G, Kennedy
JW, Macias ES, Miller JM (1981) Nuclear and radiochemistry. Wiley, New York). We warmly
suggest that those who wish to get a bird’s eye view of the field of nuclear science should read the
chapter Nuclear and Radiochemistry – the First 100 Years. They will find it not only enjoyable as
a ‘story’ but also useful as a guide to all themain areas of interest, heights, crossroads, and the paths
connecting the individual spots of the landscape underneath.
The editors acknowledge the valuable work of Professor Ga´bor L. Molna´r who conceptu-
alized and edited all the appendixes of the first edition. He died on January 6, 2004, and he
could not see and enjoy the success of his work as a part of the Handbook of Nuclear Chemistry.
1980
1970
1960
1950
1940
1930
1920
1910
1900
1980
1970
1960
1950
1940
1930
1920
1910
1900
1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
Approximate year of achievement
Ye
a
r 
o
f a
w
a
rd
Field of Nobel Prize
Physics
Chemistry
Medicine
We are sure that Ga´bor L. Molna´r’s work, which is mostly integrated into the 2nd edition as
well, remains an important contribution to the mission of the Handbook of Nuclear
Chemistry.
The 63rd General Assembly of the United Nations adopted a resolution that 2011 would be
the Year of Chemistry. The motivation was that Marie Curie was awarded the Nobel Prize of
Chemistry a century ago, in 1911. This prize honored results achieved in the field of radio- and
nuclear chemistry. It is a great pleasure for us that the 2nd edition of the Handbook of Nuclear
Chemistry can welcome the start of the Year of Chemistry.
The Editors
October 2010
xiv Preface
the Hungarian Academy of Sciences where he chaired the Division of Radiochemistry
(1993–2002). He was also a member of the International Board on the Applications of the
Mo¨ssbauer Effect (IBAME; 1990–1998) and holds editorial spots on some of the top journals
in the field.
Editorial Board
Attila Ve´rtes (Tu¨rje, 1934) is a Professor Emeritus of nuclear chemistry at Eo¨tvo¨s Lora´nd
University, Budapest. He studied the scattering of beta particles for his Master’s thesis in
1958 and has been dealing with different topics of nuclear chemistry ever since (e.g., Mo¨ssbauer
and positron annihilation spectroscopy).
Academic career highlights in Hungary include graduating from the Technical University
of Budapest (MSc), 1958; Doctor of Science, Hungarian Academy of Sciences, 1973;
Corresponding Member of the Hungarian Academy of Sciences, 1993; Ordinary Member of
the Hungarian Academy of Sciences, 1998.
Abroad, Prof. Ve´rtes studied at Lomonosov University and became a Candidate of Science,
Russian Academy of Sciences, 1965. He was a Visiting Scientist at the University of New Castle
(England) and a Humboldt Fellow at the Technical University, Munich (Germany) as well as
a Guest Professor at Lehigh University, Bethlehem (USA), Tokyo University (Japan) and
Johannes Gutenberg University, Mainz (Germany).
He has published more than 500 papers
in scientific periodicals and edited/authored nine
monographs. Prof. Ve´rtes is an Honorary Doctor of Glasgow Caledonian University (England,
1996). He was awarded the Sze´chenyi Prize (given by the President of the Republic of Hungary,
2001) and the Hevesy Medal (Guildford, 2004).
His significant position in the community is seen in his active participation in
More about him at his site: www.chem.elte.hu/departments/magkem/vertesa/vertesaeng/
index.html.
xvi Editorial Board
Sa´ndor Nagy (Budapest, 1949) is a committed teacher of nuclear sciences employed by the
Institute of Chemistry, Eo¨tvo¨s Lora´nd University (ELTE), Budapest. He graduated from
chemistry in 1972, but his formal education also includes applied mathematics. He has been
working for ELTE since his graduation there with some officially approved detours in
the meantime. Thus he spent 14 months at the Sinclair Laboratory of Lehigh University,
Bethlehem, USA (1979–1980); another 22 months at the Chemistry Department of Drexel
University, Philadelphia (1987–1989); and paid several short visits to Belgium, Canada, Cuba,
Denmark, Germany, Kazakhstan, the Netherlands, Romania, and Russia.
Prof. Nagy has published over 100 scientific papers and a number of books and book
chapters in English and Hungarian. Between 2005 and 2007, he acted as an Honorary Theme
Editor of the theme Radiochemistry and Nuclear Chemistry for EOLSS (www.eolss.net/
E6-104-toc.aspx). He is an IUPAC Fellow and a member of the Board of Associate Editors of
the Journal of Radioanalytical and Nuclear Chemistry. He also won some professional/teaching
awards from the Institute of Chemistry, from the Faculty of Science, from ELTE and also from
theMinistry of Education of Hungary. His latest pet project is developing a Nuclear Glossary in
Hungarian (inspired by Rick Firestone, one of the Authors of this Handbook) stuffed with
animations and simulations provided by scientists and teachers all around the world (www.
chem.elte.hu/Sandor.Nagy/NewClearGlossy/).
Apart from science, a few decades ago, he also authored some award-winning books on
bicycling, and translated science fiction and children’s books etc. to Hungarian. He is also an
enthusiastic gardener and the proud father of five daughters.
For more details, visit his site at www.chem.elte.hu/Sandor.Nagy/.
Editorial Board xvii
Zolta´n Klencsa´r (Kaposva´r, 1971) is a senior research fellow at the Chemical Research Center
of the Hungarian Academy of Sciences, Budapest.
Dr. Klencsa´r received his PhD in physics from Eo¨tvo¨s Lora´nd University in 1999. He has
been working as a researcher for the Hungarian Academy of Sciences (1998–2004, 2008–) and
as an assistant and associate professor for the University of Kaposva´r, Hungary (2002–2008).
His main field is Mo¨ssbauer spectroscopy and its applications in physics and chemistry. He has
published over 50 articles in international journals, and authored several book chapters and
lecture notes in the field of physical sciences. He is also an enthusiastic computer programmer
who has developed numerous applications over the past two decades. In the field of Mo¨ssbauer
spectroscopy he is recognized worldwide as the author of a software package used at many
laboratories for the analysis of Mo¨ssbauer spectra.
For more details see: www.siaweb.hu/klencsar/
xviii Editorial Board
Rezso˝ G. Lovas (Debrecen, 1946) is a Research Professor at the Institute of Nuclear Research of
the Hungarian Academy of Sciences in Debrecen, Hungary.
Graduated from the University of Debrecen, he has been affiliated with the Debrecen
Institute throughout his career. Meanwhile, he spent sabbatical-like years at the Nuclear
Physics Laboratory, Oxford, at Daresbury Laboratory, at Kernforschungszentrum Karlsruhe
and medium-term visits at the University of Utrecht, at Manne Siegbahn Laboratory,
Stockholm, and at Niigata University. He was Director of the Debrecen Institute from 1997
to 2007. He is a Titular Professor at the University of Debrecen (1993) and a Corresponding
Member of the Hungarian Academy of Sciences (2004). Formerly, he was member of the
Board of the Nuclear Physics Division of the European Physical Society and of the Editorial
Board of Nuclear Physics News International. At present he is Vice-President of the Physics
Section of the Academy, member of the Council of the Research Institutions of the Academy,
and chairs the Working Group on Energy Strategy of the Academy.
His research field is nuclear theory: reactions, clustering, cluster decay and light exotic
nuclei. He is a coauthor of the monograph Structure and Reactions of Light Exotic Nuclei
(2003).
Editorial Board xix
Frank Ro¨sch (Chemnitz, 1955) is a Professor of nuclear chemistry at Johannes Gutenberg
University, Mainz, Germany.
He studied chemistry at the Technical University Dresden from 1976 to 1981. His diploma
work was on the Production of 211At and investigations on cationic species of Astatine and their
reactions and his PhD thesis 1984 On the chemistry of At(I)-complex formations.
At the Joint Institute for Nuclear Research, Dubna, Sowjet Union, Laboratory for Nuclear
Problems (1984–1987) he investigated Basics and perspectives of the continuous electromigration
measurement of g-emitting radionuclides in homogeneous aqueous electrolytes free of supporting
materials. Back in Germany, he spent some years (1987–1991) at the Central Institute for
Nuclear Research (ZfK) Rossendorf, Department of Radioactive Isotopes, turning his research
activities into the application of radionuclides in life sciences. In 1988 he succeeded with his
habilitation and obtained the venia legendi for radiochemistry.
His research on the production and potential medical application of radionuclides con-
tinued at the Institute of Nuclear Chemistry, Research Centre Ju¨lich GmbH, Germany, from
1991–1996. In 1996 he was appointed a University Professor for Nuclear Chemistry at the
Institute of Nuclear Chemistry, Johannes Gutenberg-University Mainz, Germany. His current
research activities are focused on the development and evaluation of PET radiopharmaceuti-
cals, including radionuclide generator-based radionuclides.
He was honored with scientific awards of the ZfK Rossendorf and the JINR Dubna, and
received other national prices. He has published more than 200 papers in peer review journals
and edited/authored various book chapters.
List
9 Stochastics and Nuclear Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
10 The Standard Model of Elementary Particles . . . . . . . . . . . . . . . . . . . . . . . . 457
D. Horva´th
11 Appendixes – Reference Data to Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
G. L. Molna´r . R. B. Firestone
S. Nagy
7 Kinetics of Radioactive Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
S. Nagy
8 Interaction of Radiation with Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
D. Horva´th . A. Ve´rtes
6 Nuclear Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
G. Veres
5 Tunneling Through Triple-Humped Fission Barriers . . . . . . . . . . . . . . . . . . 281
A. Krasznahorkay
4 Nuclear Fission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
J. O. Denschlag
3 Nuclear Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
L. G. Sobotka . V. E. Viola
2 Basic Properties of the Atomic Nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
T. Fe´nyes
1 Nuclear and Radiochemistry: the First 100 Years . . . . . . . . . . . . . . . . . . . . . . 3
G. Friedlander . G.
Herrmann
Basics of Nuclear Science
Volume 1
of Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii
Table of Contents
Volume 2
H. C. Griffin
H. C. Griffin
G. Jancso´
R. Bowen
R. Bowen
Y. Nagame M. Hirata H. Nakahara
G. Mu¨nzenberg M. Gupta
J. V. Kratz
D. C. Hoffman D. A. Shaughnessy
R. B. Firestone
Volume 3
xxii
Chemical Applications of Nuclear Reactions and Radiations
23 Radiation Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1265
L. Wojna´rovits
24 Hot Atom Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1333
22 Appendix to Part II – Table of Nuclides . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033
21 Superheavy Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005
.
20 Chemistry of Transactinides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925
19 Production and Identification of Transactinide Elements . . . . . . . . . . . . . . . 877
.
18 Production and Chemistry of Transuranium Elements . . . . . . . . . . . . . . . . . 817
. .
17 Radioactive Dating Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761
16 Isotopic Paleoclimatology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
15 Isotope Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699
14 Radioelements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689
Elements and Isotopes Formation, Transformation, Distribution
12 Origin of the Chemical Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
T. Rauscher . A. Patko´s
13 Natural Radioactive Decay Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667
Table of Contents
H. K. Yoshihara . T. Sekine
27 Positron Annihilation Spectroscopies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1461
D. Horva´th
L. Pusztai
31
32
33
34
F. Adams . B. Vekemans . G. Silversmit . B. De Samber . L. Vincze
H. Haba . S. Motomura . S. Kamino . S. Enomoto
Z. Homonnay . Z. Klencsa´r . R. B. Firestone . Z. Re´vay . G. L. Molna´r .
Volume 4
37
xxiii
38 Reactor-Produced Medical Radionuclides . . . . . . . . . . . . . . . . . . . . . . . . . 1857
Introduction to the Fourth Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1855
Radiochemistry and Radiopharmaceutical Chemistry in Life Sciences
J. Csikai . R. Do´czi
36 Appendixes – Reference Data to Part III . . . . . . . . . . . . . . . . . . . . . . . . . . 1793
35 Tracer Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1761
Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1737
Microscopic X-ray Fluorescence Analysis with Synchrotron Radiation
E. Koltay . F. Pa´szti . A´. Z. Kiss
Chemical Applications of Ion Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . 1695
J. Csikai . R. Do´czi
Applications of Neutron Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1673
Z. Re´vay . R. M. Lindstrom . E. A. Mackey . T. Belgya
Neutron-Induced Prompt Gamma Activation Analysis (PGAA) . . . . . . . . . . 1619
30 Activation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1553
R. Zeisler . N. Vajda . G. Kennedy . G. Lamaze . G. L. Molna´r
29 Neutron Scattering Methods in Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . 1515
28 Exotic Atoms and Muonium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1485
K. Su¨vegh . T. Marek
25 Mo¨ssbauer Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1379
E. Kuzmann . Z. Homonnay . S. Nagy . K. Nomura
26 Mo¨ssbauer Excitation by Synchrotron Radiation . . . . . . . . . . . . . . . . . . . . 1447
M. Seto
Table of Contents
S. Mirzadeh . L. F. Mausner . M. A. Garland
S. M. Qaim
F. Ro¨sch . F. F. (Russ) Knapp
G. Antoni . T. Kihlberg . B. La˚ngstro¨m
T. L. Ross . H. J. Wester
R. Alberto . U. Abram
46
Instrumentation, Separation Techniques, Environmental Issues
B. Kanya´r . G. J. Ko¨teles
H. C. Griffin
W. L. McLaughlin . A. Miller . A. Kova´cs . K. K. Mehta
S. Biri . E. Koltay . A. Valek
W. A. Van Hook
xxiv Table of Contents
52 Solvent Extraction and Ion Exchange in Radiochemistry . . . . . . . . . . . . . . 2403
51 Isotope Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2369
50 Particle Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2319
49 Dosimetry Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2287
48 Radiation Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2259
47 Dosimetry and Biological Effects of Ionizing Radiation . . . . . . . . . . . . . . . 2213
Volume 5
M. R. Zalutsky
Radionuclide Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2179
44 Radioiodination Chemistry and Radioiodinated Compounds . . . . . . . . . . . 2121
M. Eisenhut . W. Mier
45 Radiometals (non-Tc, non-Re) and Bifunctional Labeling Chemistry . . . . . 2143
M. Fani . S. Good . H. R. Maecke
43 99mTc: Labeling Chemistry and Labeled Compounds . . . . . . . . . . . . . . . . . 2073
42 18F: Labeling Chemistry and Labeled Compounds . . . . . . . . . . . . . . . . . . . 2021
41 11C: Labeling Chemistry and Labeled Compounds . . . . . . . . . . . . . . . . . . . 1977
40 Radionuclide Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1935
39 Cyclotron Production of Medical Radionuclides . . . . . . . . . . . . . . . . . . . . . 1903
G. Skarnemark
53 Radiochemical Separations by Thermochromatography . . . . . . . . . . . . . . 2429
A. F. Novgorodov . F. Ro¨sch . N. A. Korolev
54 Methods of Cosmochemical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2459
S. Lahiri . M. Maiti
56
Nuclear Energy Production and Safety Issues
J. O. Denschlag
E. O. Adamov Y. Fuji-ie
N. E. Kukharkin N. N. Ponomarev-Stepnoi V. A. Usov
G. Veres S. Zoletnik W. Jacob
63
Inde
Table of Contents xxv
x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3017
M. Zendel . D. L. Donohue . E. Kuhn . S. Deron . T. Bı´ro´
Nuclear Safeguards Verification Measurement Techniques . . . . . . . . . . . . 2893
61 Radioactive Waste Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2797
P. A. Baisden . C. E. Atkins-Duffin
62 Nuclear Forensic Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 2837
I. D. Hutcheon . P. M. Grant . K. J. Moody
60 Technical Developments for Harnessing Controlled Fusion . . . . . . . . . . . . 2759
. .
59 Nuclear Power Sources for Space Systems . . . . . . . . . . . . . . . . . . . . . . . . . 2731
. .
58 Developments and Tendencies in Fission Reactor Concepts . . . . . . . . . . . 2663
.
57 Technical Application of Nuclear Fission . . . . . . . . . . . . . . . . . . . . . . . . . . 2615
Volume 6
R. B. Firestone . G. L. Molna´r
Appendix – Reference Data to Part V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2565
55 Environmental Radiation Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2503
Y. Maeda . S. Osaki . A. Vincze
o
Gunnar Antoni
Uppsala University
Patricia A. Baisden
Sa´ndor Biri
Robert Bowen
Uppsala Imanet AB
P.O. Box 967
Uppsala S-751 09
Institute of Geology
and Paleontology
Westfa¨lische-Wilhelms Universita¨t
Mu¨nster
Roger Alberto
Institute of Inorganic Chemistry
University of Zurich
Zu¨rich CH-8057
Switzerland
ariel@aci.unizh.ch
Freddy Adams
Campus Drie Eiken
University of Antwerp
Universiteitsplein 1
Antwerp B-2610
Belgium
freddy.adams@ua.ac.be
Evgeny O. Adamov
Research and Development Institute of
Power Engineering (NIKIET)
P.O. Box 788
Moscow 101000
Russia
slp@nikiet.ru
Ulrich Abram
Institute of Inorganic Chemistry
Freie Universita¨t Berlin
Berlin D-14195
Germany
abram@chemie.fu-berlin.de
List of Contribut
Sweden
gunnar.antoni@ge.com
Accelerator Center
Institute of Nuclear Research of the
Hungarian Academy of Sciences (ATOMKI)
Bem te´r 18/C
Debrecen H-4026
Hungary
biri@atomki.hu
Tama´s Belgya
Institute of Isotopes
Hungarian Academy of Sciences
P.O. Box 77
Budapest H-1525
Hungary
belgya@iki.kfki.hu
Chemistry and Materials Science
Directorate
Lawrence Livermore National Laboratory
Livermore, California
USA
baisden1@llnl.gov
trish.baisden@nnsa.doe.gov
Cindy E. Atkins-Duffin
Energy and Environment Directorate
Lawrence Livermore National Laboratory
Livermore, California
USA
atkinsduffin1@llnl.gov
rs
Germany
napierbowen@yahoo.co.uk
Pasare´ti u´t 119 1/6
University of Debrecen
Institute of Nuclear Techniques
Institut fu¨r Kernchemie
Neustadtgasse 1
Radiopharmacology
Shuichi Enomoto
Richard B. Firestone
xxviii
Langenzersdorf, Vienna A-2103
Austria
deronfamily@wanadoo.fr
David Lee Donohue
International Atomic Energy Agency
Vienna
Universita¨t Mainz
Mainz D-55128
Germany
h.denschlag@uni-mainz.de
Stein Deron
International Atomic Energy Agency
Budapest University of Technology and
Economics
P.O. Box 91
Budapest H-1521
Hungary
doczi@reak.bme.hu
Johannes O. Denschlag
P.O. Box 105
Debrecen H-4010
Hungary
csikai@falcon.phys.klte.hu
Rita Do´czi
Budapest H-1026
Hungary
tbiro@sunserv.kfki.hu
Julius Csikai
Department of Experimental Physics
Tama´s Bı´ro´
Institute of Isotopes
Hungary Academy of Sciences
List of Contributors
Austria
d.donohue@iaea.org
Lawrence Berkeley National Laboratory
MS 88R0192
Berkeley, California 94720
USA
rbfirestone@lbl.gov
Gerhart Friedlander{
Brookhaven National Laboratory
Tibor Fe´nyes
Institute of Nuclear Research of the
Hungarian Academy of Sciences
Bem-te´r 18/c
Debrecen H-4026
Hungary
h3813fen@ella.hu
Melpomeni Fani
Clinic for Nuclear Medicine
University Hospital Freiburg
Hugstetterstrasse 55
Freiburg D-79106
Germany
melpomeni.fani@uniklinik-freiburg.de
RIKENNishina Center for Accelerator–Based
Science
RIKEN Wako Institute
2‐1, Hirosawa
Wako, Saitama 351-0198
Japan
semo@riken.jp
Cancer Research Center Heidelberg (DKFZ)
Im Neuenheimer Feld, 280
Heidelberg D-69120
Germany
m.eisenhut@dkfz-heidelberg.de
Michael Eisenhut
Department of Radiochemistry and
Upton, NY 11973
USA
2‐1, Hirosawa
Mainz D-55128
Tokai, Ibaraki 319-1195
Berkeley, CA
Pa´zma´ny P. s. 1/A
xxix
Yoichi Fuji-ie
Hiroshima University, Prof. Emeritus of
Tokyo Institute of Technology
22‐1‐1221 Shirakawa Koto–ku
Tokyo 135‐0021
Japan
fujiie@ll.em-net.ne.jp
ns.fuji-ie@atlas.plala.or.jp
Marc A. Garland
Nuclear Science and Technology Division
Oak Ridge National Laboratory
1 Bethel Valley Road
Oak Ridge, TN 37831-6423
USA
garlandma@ornl.gov
Stephan Good
Division of Radiological Chemistry
University Hospital Basel
Petersgraben 4
Basel CH-4031
Switzerland
stephan.good@unibas.ch
Patrick M. Grant
Forensic Science Center (FSC) and CSD
Livermore National Laboratory
Livermore, CA 94550
USA
grant4@llnl.gov
Henry C. Griffin
Department of Chemistry
University of Michigan
Ann Arbor, Michigan 48109-1055
USA
hcg@umich.edu
Mohini Gupta
MARG
Manipal University
Manipal 576104
Manipal, Karnataka
India
mohini.gupta@manipal.edu
Budapest 1117
Hungary
homonnay@ludens.elte.hu
Dezso˝ Horva´th
KFKI Research Institute for Particle and
Nuclear Physics
Budapest H–1525
USA
dchoffman@lbl.gov
Zolta´n Homonnay
Institute of Chemistry
Eo¨tvo¨s Lora´nd University
Japan
hirata.masaru@jaea.go.jp
Darleane C. Hoffman
Department of Chemistry
University of California
Germany
guen.herrmann@t-online.de
Masaru Hirata
Advanced Science Research Center
Japan Atomic Energy Agency
Wako, Saitama 351‐0198
Japan
haba@riken.jp
Gu¨nter Herrmann
Institut fu¨r Kernchemie
Johannes Gutenberg-Universita¨t
Hiromitsu Haba
RIKENNishina Center for Accelerator–Based
Science
RIKEN Wako Institute
List of Contributors
Hungary
horvath@mail.kfki.hu
azkiss@namafia.atomki.hu
z.klencsar@somogy.hu
xxx
Ian D. Hutcheon
Chemical Sciences Division (CSD) and
Seaborg Institute
Livermore National Laboratory
Livermore, CA 94550
USA
hutcheon1@lln.gov
Wolfgang Jacob
Max-Planck-Institut fu¨r Plasmaphysik,
Bereich Materialforschung, AG Reaktive
Plasmaprozesse
Boltzmannstrasse 2
Garching D-85748
Germany
wolfgang.jacob@ipp.mpg.de
Ga´bor Jancso´
KFKI Atomic Energy Research Institute
P.O. Box 49
Budapest H-1525
Hungary
jancso@aeki.kfki.hu
Shinichiro Kamino
Graduate School of Medicine, Dentistry,
and Pharmaceutical Sciences
Okayama University
Okayama Okayama 700-8530
Japan
Be´la Kanya´r
Institute of Radiochemistry and
Radioecology, University of Pannonia
Veszpre´m
Hungary
kanyarb@almos.vein.hu
Greg Kennedy
Department of Engineering Physics
Nuclear Engineering Institute, Ecole
Polytechnique de Montreal
P.O. Box 6079
Montreal, QC H3C 3A7
List of Contributors
Canada
greg.kennedy@polymtl.ca
Ede Koltay
Laboratory of Ion Beam Applications,
Department of Electrostatic Accelerators
Institute of Nuclear Research (ATOMKI),
Hungarian Academy of Sciences
Bem te´r 18/c
Debrecen 4026
F. F. (Russ) Knapp
Nuclear Medicine Program
Nuclear Science and Technology Division
Oak Ridge National Laboratory
2008
Oak Ridge, TN 37831-6229
USA
knappffjr@ornl.gov
Zolta´n Klencsa´r
Chemical Research Center
Hungarian Academy of Sciences
Budapest
Hungary
A´rpa´d Z. Kiss
Laboratory of Ion Beam Applications,
Department of Electrostatic Accelerators
Institute of Nuclear Research (ATOMKI),
Hungarian Academy of Sciences
Bem te´r 18/c
Debrecen 4026
Hungary
Tor Kihlberg
Uppsala University
Uppsala Imanet AB
P.O. Box 967
Uppsala S-751 09
Sweden
tor.kihlberg@ge.com
Hungary
koltay@atomki.hu
korolev@nusun.jinr.ru
jvkratz@uni-mainz.de
xxxi
Erwin Kuhn
International Atomic Energy Agency
Huettergasse 23
Wien, Vienna A-1140
Jens Volker Kratz
Institute of Nuclear Chemistry, Johannes
Gutenberg University
Fritz Strassmann-Weg 2
Mainz D-55128
Germany
Attila Krasznahorkay
Division of Nuclear Physics
Institute of Nuclear Research of the
Hungarian Academy of Sciences (ATOMKI)
Bem-te´r 18/c
Debrecen Pf. 51, H-4001
Hungary
kraszna@atomki.hu
Andra´s Kova´cs
Institute of Isotopes
Hungarian Academy of Sciences
P.O. Box 77
Budapest H-1525
Hungary
akovacs@iki.kfki.hu
Gyo¨rgy J. Ko¨teles
National Research Institute for
Radiobiology and Radiohygiene
Budapest
Hungary
radbiol@hp.osski.hu
Nikolai A. Korolev
Joint Institute of Nuclear Research
Dubna RUS-141980
Russian Federation
Austria
ekuhn@gmx.at
Bengt La˚ngstro¨m
Department of Biochemistry and Organic
Chemistry
Uppsala University
Uppsala Imanet AB
P.O. Box 967
Uppsala S-751 09
George Lamaze
Analytical Chemistry Division
National
Institute of Standards and
Technology
100 Bureau Drive, MS 8395
Gaithersburg, MD 20899-8395
USA
george.lamaze@nist.gov
Susanta Lahiri
Chemical Sciences Division
Saha Institute of Nuclear Physics
1/AF Bidhannagar
Kolkata 700064
India
susanta.lahiri@saha.ac.in
Erno˝ Kuzmann
Institute of Chemistry
Eo¨tvo¨s Lora´nd University
Pa´zma´ny P. se´ta´ny 1/A
Budapest 1117
Hungary
kuzmann@ludens.elte.hu
Nikolay E. Kukharkin
Russian Research Center ‘‘Kurchatov
Institute’’
Kurchatov sq. 1
Moscow 123182
Russia
ztm@adis.vver.kiae.ru
List of Contributors
Sweden
bengt.langstrom@ge.com
Gaithersburg, MD 20899
USA
100 Bureau Drive
Gaithersburg, MD 20899
Hugstetterstrasse 55
Freiburg D-79106
Fukuoka 812-8581
Japan
marek@chem.elte.hu
USA
walter.mier@med.uni-heidelberg.de
xxxii
y.maescc@osu.bbiq.jp
Moumita Maiti
Chemical Sciences Division
Saha Institute of Nuclear Physics
1/AF Bidhannagar
Kolkata 700064
Germany
helmut.maecke@uniklinik-freiburg.de
Yonezo Maeda
Department of Chemistry
Kyushu University
Hakozaki, Higashi-ku
USA
lmackey@nist.gov
Helmut R. Maecke
Clinic for Nuclear Medicine
University Hospital Freiburg
richard.lindstrom@nist.gov
Elizabeth A. Mackey
Analytical Chemistry Division
National Institute of Standards and
Technology
Richard M. Lindstrom
Analytical Chemistry Division
National Institute of Standards and
Technology
100 Bureau Drive
List of Contributors
India
moumita.maiti@saha.ac.in
Arne Miller
Risø High Dose Reference Laboratory
Risø-DTU, Technical University of Denmark
Frederiksborgvej 399, P.O. Box 49
Roskilde DK-4000
Walter Mier
Department of Nuclear Medicine
Radiopharmaceutical Chemistry, University
of Heidelberg
Im Neuenheimer Feld, 400
Heidelberg D-69120
Germany
Kishor K. Mehta
Arbeiterstrandbad Strasse 72
Vienna A-1210
Austria
William L. McLaughlin{
National Institute of Standards and
Technology
Gaithersburg, MD 20902
Leonard F. Mausner
Collider Accelerator Department
Brookhaven National Laboratory
P.O. Box 5000, Building 801
Upton, NY 11973-5000
USA
mausner@bnl.gov
Tama´s Marek
Chemical Research Center
Hungarian Academy of Sciences
Budapest
Hungary
Denmark
armi@risoe.dtu.dk
Oak Ridge, TN 37831-6229
Darmstadt D64291
Pa´zma´ny P. se´ta´ny 1/A
Budapest 1117
Department of Chemistry
Tokyo Metropolitan University
Kiyoshi Nomura
Alexander F. Novgorodov
Radioisotope Center
Kyushu University
xxxiii
Germany
g.muenzenberg@gsi.de
Yuichiro Nagame
Advanced Science Research Center
Japan Atomic Energy Agency
Tokai, Ibaraki 319-1195
Gottfried Mu¨nzenberg
KPII
GSI Helmholtzzentrum fu¨r
Schwerionenforschung mbH
Planckstr. 1
RIKEN Center for Molecular Imaging
Science
RIKEN Kobe Institute
Chuo-ku
Kobe, Hyogo 650-0047
Japan
motomura@riken.jp
Ken J. Moody
Chemical Sciences Division and FSC
Livermore National Laboratory
Livermore, CA 94550
USA
moody@llnl.gov
Shinji Motomura
USA
mirzadehs@ornl.gov
Ga´bor L. Molna´r{
Institute of Isotope and Surface Chemistry
Chemical Research Center
Budapest
Hungary
Saed Mirzadeh
Nuclear Science and Technology Division
Oak Ridge National Laboratory
P.O. Box 2008, Mail Stop 6229
Japan
nagame.yuichiro@jaea.go.jp
Fukuoka
Japan
Ferenc Pa´szti{
KFKI Research Institute for Particle and
Nuclear Physics
Joint Institute of Nuclear Research
Dubna RUS-141980
Russian Federation
novgor@nusun.jinr.dubna.su
Susumu Osaki
Department of Applied Chemistry,
Graduate School of Engineering
The University of Tokyo
Tokyo
Japan
k-nomura@t-adm.t.u-tokyo.ac.jp
1-7-14 Nakamachi Setagaya
Tokyo 158-0091
Japan
nakahara-hiromichi@c.metro-u.ac.jp
Hungary
nagy@chem.elte.hu
Hiromichi Nakahara
Sa´ndor Nagy
Institute of Chemistry
Eo¨tvo¨s Lora´nd University
List of Contributors
Budapest
Hungary
Hungary
patkos@galaxy.elte.hu
Russia
niknik@kiae.ru
Hungary
laszlo.pusztai0@gmail.com
Germany
s.m.qaim@fz-juelich.de
Hungary
revay@iki.kfki.hu
Germany
ross@uni-mainz.de
Germany
frank.roesch@uni-mainz.de
Belgium
bjorn.desamber@ugent.be
xxxiv
Thomas Rauscher
Department of Physics
University of Basel
Klingelbergstrasse 82
Basel CH-4056
Syed M. Qaim
Institut fu¨r Nuklearchemie
Forschungszentrum Ju¨lich GmbH
P.O. Box 1913
Ju¨lich D-52425
La´szlo´ Pusztai
Research Institute for Solid State Physics
and Optics
Hungarian Academy of Sciences
P.O. Box 49
Budapest H-1525
Nikolay N. Ponomarev-Stepnoi
Russian Research Center ‘‘Kurchatov
Institute’’
Kurchatov sq. 1
Moscow 123182
Andra´s Patko´s
Department of Atomic Physics
Eo¨tvo¨s Lora´nd University
Pa´zma´ny Pe´ter se´ta´ny 1/a
Budapest H-1117
List of Contributors
Switzerland
thomas.rauscher@unibas.ch
Tsutomu Sekine
Center for the Advancement of Higher
Education
Tohoku University
41 Kawauchi, Aoba-ku
Sendai
Bjo¨rn De Samber
Department of Analytical Chemistry
Ghent University
Krijgslaan 281 – S12
Gent
Frank Ro¨sch
Institute of Nuclear Chemistry
Johannes Gutenberg-University of Mainz
Fritz-Strassmann-Weg 2
Mainz D-55128
Tobias L. Ross
Institute of Nuclear Chemistry
Johannes Gutenberg-University Mainz
Fritz-Strassmann-Weg 2
Mainz D-55128
Zsolt Re´vay
Institute of Isotopes
Hungarian Academy of Sciences
P.O. Box 77
Konkoly-Thege Miklos street 29-33
Budapest H-1525
Japan
tsekine@m.tohoku.ac.jp
xxxv
Makoto Seto
Research Reactor Institute
Kyoto University
Kumatori-cho, Sennan-gun
Osaka 590-0494
Japan
seto@rri.kyoto-u.ac.jp
Dawn A. Shaughnessy
Chemical Sciences Division
Lawrence Livermore National Laboratory
P.O. Box 808, L-236
Livermore, CA 94551
USA
shaughnessy2@llnl.gov
Geert Silversmit
Department of Analytical Chemistry
Ghent University
Krijgslaan 281 – S12
Gent
Belgium
geert.silversmit@ugent.be
Gunnar Skarnemark
Nuclear Chemistry, Department of
Chemical and Biological Engineering
Chalmers University of Technology
Go¨teborg S-41296
Sweden
gunnar.skarnemark@chalmers.se
Lee G. Sobotka
Departments of Chemistry and Physics
Washington University
St. Louis, Missouri 63130-4899
USA
lgs@wuchem.wustl.edu
Ka´roly Su¨vegh
Institute of Chemistry
Eo¨tvo¨s Lora´nd University
Pa´zma´ny P. se´ta´ny 1/a
Budapest 1117
Hungary
suveghk@chem.elte.hu
Veniamin A. Usov
Russian Research Center ‘‘Kurchatov
Institute’’
Kurchatov sq. 1
Moscow 123182
Russia
vau@dhtp.kiae.ru
No´ra Vajda
RadAnal Ltd
Budapest
Hungary
vajdanor@gmail.com
vajdanor@reak.bme.hu
Alada´r Valek
Accelerator Center
Institute of Nuclear Research of the
Hungarian Academy of Sciences (ATOMKI)
Bem te´r 18/C
Debrecen H-4026
Hungary
valek@atomki.hu
W. Alexander Van Hook
Chemistry Department
University of Tennessee
Knoxville, Tennessee 37996-1600
USA
avanhook@utk.edu
Bart Vekemans
Department of Analytical Chemistry
Ghent University
Krijgslaan 281 – S12
Gent
Belgium
bart.vekemans@ugent.be
Ga´bor Veres
KFKI Research Institute for Particle and
Nuclear Physics
P.O. Box 49
Budapest H-1525
List of Contributors
Hungary
veres@rmki.kfki.hu
xxxvi List of Contributors
Attila Ve´rtes
Institute of Chemistry
Eo¨tvo¨s Lora´nd University
Pa´zma´ny P. s. 1/A
Budapest 1117
Hungary
vertesa@chem.elte.hu
A´rpa´d Vincze
Department of Nuclear and Radioactive
Materials
Hungarian Atomic Energy Authority
Budapest
Hungary
vincze@oah.hu
La´szlo´ Vincze
Department of Analytical Chemistry
Ghent University
Krijgslaan 281 – S12
Gent
Belgium
laszlo.vincze@ugent.be
Victor E. Viola
Department of Chemistry and IUCF
Indiana University
Bloomington, Indiana 47405
USA
viola@indiana.edu
Hans-Ju¨rgen Wester
Department of Nuclear Medicine
Klinikum rechts der Isar, Technische
Universita¨t Mu¨nchen
Mu¨nchen D-81675
Germany
h.j.wester@lrz.tu-muenchen.de
La´szlo´ Wojna´rovits
Institute of Isotopes
Hungarian Academy of Sciences
P.O. Box 77
Budapest H-1525
Hungary
wojn@iki.kfki.hu
H. Kenji Yoshihara
Isotope Data Institute
Kusakidai 4-12-13
Iwaki city
Japan
kenji-yoshihara@nifty.com
Michael R. Zalutsky
Departments of Radiology and Biomedical
Engineering
Duke University
Durham, NC 27710
USA
zalut001@mc.duke.edu
Rolf Zeisler
Analytical Chemistry Division
National Institute of Standards and
Technology
100 Bureau Drive, MS 8395
Gaithersburg, MD 20899-8395
USA
rolf.zeisler@nist.gov
Manfred Zendel
Department of Safeguards
International Atomic Energy Agency
Wagramer Strasse 5
P.O. Box 100
Vienna A-1140
Austria
m.zendel@iaea.org
Sa´ndor Zoletnik
KFKI Research Institute for Particle and
Nuclear Physics
P.O. Box 49
Budapest H-1525
Hungary
zoletnik@rmki.kfki.hu
Volume 1
Basics of Nuclear Science
1 Nuclear and Radiochemistry:
the First 100 Years
G. Friedlander{1 . G. Herrmann2
1Brookhaven National Laboratory, Upton, NY, USA
2Johannes Gutenberg-Universita¨t, Mainz, Germany
1.1 The Pioneering Years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2
{Deceased
Attila Ve´rte
DOI 10.100
1.5
 Current Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4.5
 Geo- and Cosmochronology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4.3
1.4.4
New Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Hot-Atom Chemistry and Tracer Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.1
1.4.2
Nuclear Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Nuclear Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4
 The Golden Era . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3
 World War II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.5
 Geo- and Cosmochronology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.3
1.2.4
Nuclear Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Nuclear Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
New Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Hot-Atom Chemistry and Tracer Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 The Growth Spurt of the 1930s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1
s, Sa´ndor Nagy, Zolta´n Klencsa´r, Rezso˝ G. Lovas & Frank Ro¨sch (eds.), Handbook of Nuclear Chemistry,
7/978-1-4419-0720-2_1, # Springer Science+Business Media B.V. 2011
same time, Otto Hahn’s treatise Applied Radiochemistry (Hahn 1936) clearly outlined the now
generally accepted definition of ‘‘radiochemistry.’’
Almost immediately after the discovery of radioactivity, Marie Sklodowska Curie and
4 1
Pierre Curie beganmore detailed studies of the new phenomenon. Guided by their observation
that some natural uranium ores, such as pitchblende, were more highly radioactive than
corresponded to their uranium content (Sklodowska Curie 1898), they fractionated the ores
chemically, using the intensity of radioactivity in the fractions as evidence for further radio-
active substances. The result was the discovery, in June 1898, of a new radioactive element in
the bismuth fraction (Curie and Curie, 1898); the Curies named it polonium in honor of
Marie’s homeland. A few months later, in December 1898, they were able to report the
discovery of another radioactive element, this one in the barium fraction separated from
pitchblende (Curie et al. 1898); they named it radium. The subsequent isolation of radium
from barium was accomplished by fractional crystallization of barium chloride, with radium
chloride always being enriched in the crystalline phase. It soon became possible to characterize
Abstract: This chapter gives a brief overview of the development of nuclear and radiochemistry
fromMme. Curie’s chemical isolation of radium toward the end of the twentieth century. The
first four sections deal with fairly distinct time periods: (1) the pioneering years when the only
radioactive materials available were the naturally occurring ones; (2) the decade of rapid
growth and expansion of both the fundamental science and its applications following the
discoveries of the neutron and artificial radioactivity; (3) theWorldWar II period characterized
by the intense exploration of nuclear fission and its ramifications; (4) what can be called the
‘‘golden era’’ – the 3 to 4 decades following World War II when nuclear science was generously
supported and therefore flourished. In the final section, research trends pursued near the end
of the century are briefly touched upon.
1.1 The Pioneering Years
The field that became known as radiochemistry, dealing with the chemical manipulation of
radioactive materials and the application of radioactivity to basic and applied chemical
problems, originated very soon after Henri Becquerel had discovered the phenomenon of
radioactivity during his studies of the fluorescence of uranium compounds (Becquerel 1896).
The term ‘‘radiochemistry’’ for this field was introduced quite early, as indicated by the fact that
it appeared in a book title in 1910 (Cameron 1910). However, the same termwas for some time
also applied to what is now called ‘‘radiation chemistry,’’ the chemical action of radioactive (and
other ionizing) radiations. Later, after the concept of the atomic nucleus was introduced in
1911 and especially after the discoveries of nuclear transmutations (1919) and of artificially
produced radioactivity (1934), chemists became involved more broadly in the study of the
production, properties, and reactions of atomic nuclei; in the 1930s, the term ‘‘nuclear
chemistry’’ gained currency for this branch of the chemical sciences, quite analogous to organic
chemistry being concerned with the synthesis, properties, and reactions of organic molecules.
The creation, in 1937, of a new chair of ‘‘Chimie Nucle´aire’’ for Fre´de´ric Joliot at the Colle`ge de
France was perhaps the first official recognition of the new branch of chemistry. At about the
Nuclear and Radiochemistry: the First 100 Years
radium spectroscopically by optical emission lines (Demarc¸ay 1898) and, thus, to confirm the
discovery by an independent identification. By 1902, M. Curie had isolated 120

Teste o Premium para desbloquear

Aproveite todos os benefícios por 3 dias sem pagar! 😉
Já tem cadastro?

Outros materiais