Estabilidade das Construções 1  Rogério IFPA
6 pág.

Estabilidade das Construções 1 Rogério IFPA

Pré-visualização1 página
Rogério de Sousa Januário 
Roselino Ferreira da Silva 
 
 
 
 
\u201cEstabilidade das Construções\u201d 
Centro de Gravidade \u2013 Momento de Inércia \u2013 Raio de Giro e Módulo de 
Resistência 
 
 
 
 
 
 
 
 
 
 
Altamira - Pará 
Junho de 2016 
Centro de Gravidade \u2013 Momento de Inércia \u2013 Raio de Giro e Módulo de 
Resistência 
Centro de gravidade ou centro de massa - é o ponto em que o corpo está em 
equilíbrio estático, ou seja, é uma média ponderada das massas das partículas que 
formam um determinado corpo, é um ponto de equilíbrio na aplicação do peso total de 
um corpo. O cálculo do Centro de gravidade (Xcg) coincide como centro de massa 
(Xcm) e é representado desta maneira: 
 
\ud835\udc4b\ud835\udc36\ud835\udc3a=
\ud835\udc4b1\ud835\udc5a1 + \ud835\udc4b2\ud835\udc5a2 + \u22ef + \ud835\udc4b\ud835\udc5b\ud835\udc5a\ud835\udc5b
\ud835\udc5a1 + \ud835\udc5a2 + \u22ef + \ud835\udc5a\ud835\udc5b
=
\u2211\ud835\udc5b\ud835\udc56=1 \ud835\udc4b\ud835\udc56\ud835\udc5a\ud835\udc56
\u2211\ud835\udc5b\ud835\udc56=1 \ud835\udc5a\ud835\udc56
 
 
Xi é a coordenada de massa; 
mi é a massa de cada partícula do corpo. 
O centro de gravidade de um corpo é usado para a verificação de sua 
estabilidade, uma vez que seu centro de massa não deve ultrapassar sua base de apoio, 
caso contrário, provoca instabilidade. 
Centro de gravidade de seções usuais em estruturas 
Se uma viga apresentar um eixo de simetria, o centro de gravidade estará 
obrigatoriamente sobre ele, porém, se uma seção admite um centro de simetria 
horizontal, o centro de gravidade obrigatoriamente coincide com esse centro. A posição 
do centro de gravidade e a área das seções mais usadas em estruturas são o Quadrado, o 
Retângulo, o Triângulo, Semicírculo e ¼ de Círculo. 
Momento de Inércia 
De acordo com a primeira Lei de Newton a Propriedade de Inércia Rotacional 
pode ser exemplificada assim: Um corpo de que gira em torno de um eixo deve 
permanecer girando, a menos que uma força atue sobre ele. No movimento linear a 
inércia do corpo depende de sua massa, já, no movimento de rotação ela depende da 
massa e de como ela se distribui no corpo em relação ao eixo da rotação. Assim, 
observando que a velocidade angular de cada partícula é a mesma, podemos escrever 
que: 
\ud835\udc3e = \u2211
1
2
\ud835\udc5a\ud835\udc56(\ud835\udf14\ud835\udc5f\ud835\udc56)² 
Ao se rearranjar a expressão obtemos: 
\ud835\udc3e =
1
2
 \u2211(\ud835\udc5a\ud835\udc56\ud835\udc5f\ud835\udc56)\ud835\udf14
2 
Já o Momento de inércia é representado pela expressão entre parênteses, logo: 
\ud835\udc3c = \u2211 \ud835\udc5a\ud835\udc56\ud835\udc5f\ud835\udc56
2 
Ri = Raio ou distância; 
Mi = Massa de cada partícula do corpo. 
Quanto maior o momento de inércia do corpo maior será sua energia cinética de 
rotação, ou seja, maior será o trabalho realizado para desacelerar ou acelerar esse corpo, 
caso ele esteja em repouso. Assim, quanto mais distante a massa estiver de seu centro de 
gravidade, mais resistente, a peça será aos esforços empregados. 
O teorema dos eixos paralelos permite o cálculo do momento de inércia do 
conjunto, considerando que: 
\ud835\udc3c = \ud835\udc3c\ud835\udc50\ud835\udc5a + \ud835\udc5a\ud835\udc51
2 
Onde: 
Ip = Momento de inércia no eixo considerado. 
Icm = Momento de inércia doo centro de massa da figura genérica. 
m = é a massa do corpo. 
D = distância de cada massa até o eixo considerado. 
Raio de Giração 
É uma grandeza física que indica como uma área está distribuída em torno de 
um eixo. Quanto maior o raio de giração maior é a resistência à flexão da seção. O raio 
de giração é definido por: 
\ud835\udc56\ud835\udc65 = \u221a
\ud835\udc3c\ud835\udc65
\ud835\udc34
 \ud835\udc56\ud835\udc66 = \u221a
\ud835\udc3c\ud835\udc65
\ud835\udc34
 
Sendo: 
i = raio de giração. 
I = momento de inércia. 
A = área da seção. 
 
O raio de giração mínimo é aquele que corresponde ao menor valor dos valores 
calculados. 
 
Módulo de Resistência 
O módulo de resistência é definido por: 
 \ud835\udc4a\ud835\udc65 =
\ud835\udc3c\ud835\udc65
\ud835\udc66
 \ud835\udc4a\ud835\udc66 =
\ud835\udc3c\ud835\udc66
\ud835\udc65
 
 
Sendo: 
W = módulo de resistência. 
I = momento de inércia. 
y = distância do centro de gravidade até as bordas da seção transversal 
considerando como referência o eixo horizontal x. 
x = distância do centro de gravidade até as bordas da seção transversal 
considerando como referência o eixo vertical y. 
Características importantes de seções primitivas. 
Em Engenharia as seções e suas características geométricas mais usadas são: 
a) Quadrado 
 
 
 
\ud835\udc3c\ud835\udc65 =
\u210e4
12
 \ud835\udc4a\ud835\udc65 =
\u210e3
6
 \ud835\udc56\ud835\udc65 =
\u210e
\u221a12
 
 
b) Retângulo 
 
 
 
 
 
\ud835\udc3c\ud835\udc65 =
\ud835\udc4f\u210e3
12
 \ud835\udc4a\ud835\udc65 =
\ud835\udc4f\u210e2
6
 \ud835\udc56\ud835\udc65 =
\u210e
\u221a12
 
 
h 
b 
x 
b 
x 
h 
c) Triângulo 
 
 
 
 
 
\ud835\udc3c\ud835\udc65 =
\ud835\udc4f\u210e3
36
 \ud835\udc4a\ud835\udc65 =
\ud835\udc4f\u210e2
12
 \ud835\udc56\ud835\udc65 =
\u210e\u221a2
6
 
d) Círculo 
 
 
 
 
 
\ud835\udc3c\ud835\udc65 =
\ud835\udf0b\ud835\udc374
64
 \ud835\udc4a\ud835\udc65 =
\ud835\udf0b\ud835\udc373
32
 \ud835\udc56\ud835\udc65 =
\ud835\udc37
4
 
 
a) Círculo vazado 
 
 
 
 
 
\ud835\udc3c\ud835\udc65 =
\ud835\udf0b(\ud835\udc374 \u2212 \ud835\udc514)
64
 \ud835\udc4a\ud835\udc65 =
\ud835\udf0b(\ud835\udc373 \u2212 \ud835\udc513)
32
 \ud835\udc56\ud835\udc65 =
1
4
\u221a(\ud835\udc372 + \ud835\udc512) 
 
 
 
d 
D 
b 
x 
D 
x 
x 
h 
Questionário proposto: 
 - Definir o momento de inércia (Ix e Iy) de uma viga de seção transversal 25 x 50 cm. 
 
\ud835\udc3c\ud835\udc65 =
\ud835\udc4f\u210e3
12
 \u2192 \ud835\udc3c\ud835\udc65 =
25\ud835\udc65503
12
\u2192 \ud835\udc3c\ud835\udc65 = 260.416,67\ud835\udc50\ud835\udc5a
4 
 
\ud835\udc3c\ud835\udc66 =
\u210e\ud835\udc4f3
12
 \u2192 \ud835\udc3c\ud835\udc66 =
50\ud835\udc65253
12
\u2192 \ud835\udc3c\ud835\udc66 = 65.104,17\ud835\udc50\ud835\udc5a
4