Buscar

Simuldo fisiologia[1]

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 6 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 6 páginas

Prévia do material em texto

2 - Qual é a função do sistema cardiovascular?
Função: a função primária do sistema cardiovascular é o transporte. A corrente sanguínea transporta numerosas substâncias essenciais à vida e à saúde, incluindo o oxigênio e nutrientes. O sangue também remove dióxido de carbono e outros produtos resultantes do metabolismo de cada célula, e os envia ao pulmão, ao rim ou ao fígado, onde serão eliminados.
3 - Descreva os que são células auto excitáveis, seu funcionamento e sua relação com o sistema nervoso autônomo.
Despolarização
Após a entrada de íons positivamente carregados vindos de uma célula vizinha despolarizada, através das junções comunicantes, o limiar de disparo do potencial de ação é atingido nas células de resposta rápida. São, então, ativados canais de Na, que se abrem promovendo a entrada de íons sódio (mais abundantes no meio extracelular) no interior da célula. Esse influxo de cargas positivas despolariza a célula, que alcança potencial de membrana positivo (+30mV). Estes canais permanecem abertos por um curto período de tempo, e logo são inativados. Eles ficam nesse estado inativado, impedidos de serem reabertos, até que o potencial de membrana adjacente ao canal volte ao seu valor de repouso (repolarização). Enquanto o potencial de membrana permanecer despolarizado, nenhum estímulo irá induzir à abertura do canal: ele e a célula ficam absolutamente refratários. Como a célula cardíaca não se repolariza até que o evento contrátil (descrito adiante) tenha cessado, nenhum outro evento contrátil terá lugar até que a célula cardáca tenha atingido relaxamento quase completo. Isto evita que o músculo cardíaco entre em tetania - estado de rápidas contrações seriadas, que impediria um enchimento adequado das câmaras cardíacas e um bombeamento de sangue adequado. Canais de K não controlados por voltagem são fechados neste momento de despolarização. Isso evita um efluxo de íons K, já que este íon é atraído para o exterior da célula por sua menor concentração extracelular (gradiente químico) e retido no interior da célula porque o lado interno da membrana é negativo e o íon K possui carga positiva (gradiente elétrico); se o lado interno está se tornando positivo por causa da entrada de íons Na, o gradiente elétrico é diminuído e aumenta a tendência de saída do K. O fechamento deste tipo de canal de K evita este efeito indesejado, que impediria a despolarização da célula.
Repolarização
Após este evento, são abertos canais de K “tardios”. Ocorre saída de íons K, o que leva a célula a iniciar o processo de repolarização. Esse fenômeno é chamado de repolarização precoce. Neste momento, no entanto, são abertos canais de cálcio, originando um influxo de íons cálcio para o interior da célula. Esse influxo de íons cálcio vai impedir, temporariamente, a repolarização da célula, sendo responsável pelo “platô” observado no gráfico do potencial de ação das células de resposta rápida. A entrada do cálcio “compensa” a saída do potássio, retardando a repolarização completa da célula. A entrada de cálcio também é fundamental para o fenômeno de contração das células miocárdicas. Estas células não contam com um depósito de cálcio intracelular como o retículo sarcoplasmático das fibras musculares esqueléticas, sendo sua contração dependente da entrada do cálcio extracelular nesta fase do potencial de ação. Após a diminuição do influxo de cálcio (que, assim como toda corrente de entrada e sáida de íons, se encerra quando é alcançado um equilíbrio eletroquímico entre a concentração do íon no lado externo da membrana e a concentração deste memso íon no lado interno da membrana), prevalece a saída de íons K pelos canais de K “tardios” e também pelos canais de K não controlados por voltagem. Isto levará a célula a um potencial de membrana de -90mV , o potencial de repouso destas células.
Redistribuição dos íons:
 Após a repolarização, é realizada a redistribuição dos cátions para seus valores habituais, ou seja, são reconstituídas suas concentrações inicias de cada lado da membrana. O íon Na, que durante a despolarização entrou na célula, é devolvido para o meio extracelular pela bomba Na/K ATPase. Ao mesmo tempo o íon K, que durante a repolarização saiu da célula, é internalizado por esta bomba. O íon cálcio, participante dos processos de despolarização e da fase de “platô” (dependendo do tipo celular), é devolvido para o espaço extracelular numa troca com o íon Na: este entra na célula, enquanto o cálcio sai da célula. Este processo não envolve nenhum gasto de ATP diretamente, mas se utiliza do gradiente de concentração favorável à entrada do íon Na criado pela bomba Na/K ATPase. 
5 - Descreva o que é eletrocardiograma, as suas funções e as suas fases.
O eletrocardiograma (ECG) é o registro dos sinais elétricos emitidos durante a atividade cardíaca, refletindo a atividade do coração e, portanto, oferecendo informações acerca da função cardíaca, sendo inscrito sobre uma linha de papel quadriculado, de modo que obtemos um registro contínuo da atividade cardíaca
ONDAS
Onda P: Corresponde a despolarização auricular.
Complexo QRS: Corresponde a despolarização ventricular.
Onda T: Corresponde a repolarização ventricular.
Onda T atrial: A repolarização auricular não costuma ser registrada, pois é encoberta pela despolarização ventricular, evento elétrico concomitante e mais potente. Quando registrada, corresponde a Onda T atrial.
Intervalo PR: É o intervalo entre o início da onda p e início do complexo QRS. É um indicativo da velocidade de condução entre os átrios e os ventrículos.
Período PP: Ou Intervalo PP, ou Ciclo PP. É o intervalo entre o início de duas ondas P. Corresponde afrequência de despolarização atrial, ou simplesmente frequência atrial.
Período RR: Ou Intervalo RR, ou Ciclo RR. É o intervalo entre duas ondas R. Corresponde afrequência de despolarização ventricular, ou simplesmente frequência ventricular.
6 - Descreva o que é débito cardíaco
O débito cardíaco sistêmico corresponde à quantidade de sangue lançada pelo ventrículo esquerdo na aorta, a cada minuto. Esta é a forma habitual de expressar a função de bomba do coração. Em cada batimento, o volume ejetado pelo ventrículo esquerdo na aorta é o produto do volume sistólico final pelo número de batimentos a cada minuto (frequência cardíaca, FC). 
7 - Qual é a função do sistema respiratório?
Sistema Respiratório
Funções: Trocas gasosas de O2 e CO2 , regulação do pH sanguíneo, olfato, filtra o ar inspirado, produz sons, elimina água e calor (ar exalado).
O processo de trocas gasosas no corpo é chamado de respiração, que tem por função fornecer O2
aos tecidos e remover o CO2.
Eventos funcionais
Ventilação pulmonar: é o fluxo mecânico de ar para dentro (inspiração) e para fora (expiração)dos pulmões. Troca de ar entre a atmosfera e os alvéolos.
Inspiração: entrada de ar nos pulmões; contração do diafragma; contração dosmúsculos intercostais; elevação das costelas; redução da pressão interna
Expiração:saída de ar dos pulmões; relaxamento do diafragma e dos músculosintercostais; aumento da pressão interna.Difusão: Trocas de oxigênio e dióxido de carbono entre os alvéolos e o sangue
Transporte: Troca de gases entre o sangue nos capilares sistêmicos e as células teciduais
8 -Como acontece a ventilação pulmonar?
A inspiração, que promove a entrada de ar nos pulmões, dá-se pela contração da musculatura do diafragma e dos músculos intercostais. O diafragma abaixa e as costelas elevam-se, promovendo o aumento da caixa torácica, com consequente redução da pressão interna (em relação à externa), forçando o ar a entrar nos pulmões.
A expiração, que promove a saída de ar dos pulmões, dá-se pelo relaxamento da musculatura do diafragma e dos músculos intercostais. O diafragma eleva-se e as costelas abaixam, o que diminui o volume da caixa torácica, com consequente aumento da pressão interna, forçando o ar a sair dos pulmões.
O sistema respiratório humano comporta um volume total de aproximadamente 5 litros dear – a capacidade pulmonar total. Desse volume, apenas meio litro é renovado em cada respiração tranquila, de repouso. Esse volume renovado é o volume corrente. 
Se no final de uma inspiração forçada, executarmos uma expiração forçada, conseguiremos retirar dos pulmões uma quantidade de aproximadamente 4 litros de ar, o que corresponde à capacidade vital, e é dentro de seus limites que a respiração pode acontecer.
9 -Como acontece a difusão de gases entre os alvéolos e os capilares pulmonares?
A difusão dos gases consiste na livre movimentação das suas moléculas entredois pontos. As moléculas dos gases estãoem permanente movimento, em alta velocidade,e colidem ininterruptamente, umascom as outras, mudando de direção, atécolidir com novas moléculas. Esse processogera a energia utilizada para a difusão.A difusão de gases ocorre da mesma forma,no interior de uma massa gasosa, nosgases dissolvidos em líquidos como água ousangue, ou através de membranas permeáveis aos gases.
A difusão, portanto, é um processo que tende a igualar a diferença de concentra- ção de uma substância, pela migração de moléculas da área de maior concentração para a área de menor concentração. A pressão exercida por um gás sobre uma superfície, é o resultado do impacto constante das moléculas do gás em permanente movimento, contra a referida superfície. Quanto maior o número de moléculas do gás, ou seja, quanto maior a sua concentração, tanto maior será a pressão exercida pelo gás. 
10 - Descreva o transporte dos gases na corrente sanguínea.
O transporte de gás oxigênio está a cargo da hemoglobina, proteína presente nas hemácias. Cada molécula de hemoglobina combina-se com 4 moléculas de gás oxigênio, formando a oxi-hemoglobina. Nos alvéolos pulmonares o gás oxigênio do ar difunde-se para os capilares sanguíneos e penetra nas hemácias, onde se combina com a hemoglobina, enquanto o gás carbônico (CO2) é liberado para o ar (processo chamado hematose).
Nos tecidos ocorre um processo inverso: o gás oxigênio dissocia-se da hemoglobina e difunde-se pelo líquido tissular, atingindo as células. A maior parte do gás carbônico (cerca de 70%) liberado pelas células no líquido tissular penetra nas hemácias e reage com a água, formando o ácido carbônico, que logo se dissocia e dá origem a íons H+ e bicarbonato (HCO3-), difundindo-se para o plasma sangüíneo, onde ajudam a manter o grau de acidez do sangue. Cerca de 23% do gás carbônico liberado pelos tecidos associam-se à própria hemoglobina, formando a carboemoglobina. O restante dissolve-se no plasma.
- Qual é a função do sistema Renal?
A principal função dos rins é a regulação do líquido extracelular (plasma e líquido intersticial) do corpo. Isso é possível por meio da formação da urina, que é um filtrado modificado no plasma. No processo de formação da urina, os rins regulam o volume do plasma sanguíneo ( e, consequentemente, contribuem significativamente para a regulação da pressão arterial); a concentração de produtos da degradação metabólica do sangue; a concentração de eletrólitos (Na+, K+, HCP3- e outros íons) no plasma; e o pH plasmático. Para compreendermos como os rins realizam sua função, é necessário um conhecimento da estrutura renal.
11- O que é filtração glomerular e como ocorre?
O sangue chega ao rim através da artéria renal, que se ramifica muito no interior do órgão, originando grande número de arteríolas aferentes, onde cada uma ramifica-se no interior da cápsula de Bowman do néfron, formando um enovelado de capilares. O sangue arterial é conduzido sob alta pressão nos capilares do glomérulo. Essa pressão tem intensidade suficiente para que parte do plasma passe para a cápsula de Bowman, processo denominado filtração. Essas substâncias extravasadas para a cápsula de Bowman constituem o filtrado glomerular.Os capilares glomerulares possuem poros em suas paredes, e a camada da cápsula glomerular (de Bowman) que está em contato com o glomérulo possui fendas de filtração. Portanto, a água, juntamente com solutos dissolvidos (excetuando-se as proteínas), pode passar do plasma sanguíneo para o interior da cápsula e dos túbulos renais. O volume desse filtrado produzido por ambos os rins por minuto é denominado taxa de filtração glomerular (TFG).
O filtrado glomerular passa em seguida para o túbulo contorcido proximal, cuja parede éformada por células adaptadas ao transporte ativo. Nesse túbulo, ocorre reabsorção ativa de sódio.
A saída desses íons provoca a remoção de cloro, fazendo com que a concentração do líquido dentro desse tubo fique menor do que do plasma dos capilares que o envolvem. Com isso, quando o líquido percorre o ramo descendente da alça de Henle, há passagem de água por osmose do líquido tubular para os capilares sanguíneos, ao que chamamos reabsorção. O ramo descendente percorre regiões do rim com gradientes crescentes de concentração. Consequentemente, ele perde ainda mais água para os tecidos, de forma que, na curvatura da alça de Henle, a concentração do líquido tubular é alta. Esse líquido muito concentrado passa então a percorrer o ramo ascendente da alça de Henle, que é formado por células impermeáveis à água e que estão adaptadas ao transporte ativo de sais.
Estima-se que em 24 horas são filtrados cerca de 180 litros de fluido do plasma, porém são formados apenas 1 a 2 litros de urina por dia. Além desses processos gerais descritos, ocorre, ao longo dos túbulos renais, reabsorção ativa de aminoácidos e glicose. Desse modo, no final do túbulo distal, essas substâncias já não são mais encontradas. Os capilares que reabsorvem as substâncias úteis dos túbulos renais se reúnem para formar um vaso único, a veia renal, que leva o sangue para fora do rim em direção ao coração.
O sistema renina-angiotensina é o responsável pela resposta corporal a situações de baixa no volume de sangue e na pressão, fatores que acarretam a diminuição da circulação de sangue nos rins e a consequente ativação do sistema. Simplificadamente o que ocorre é: os rins liberam renina, que atuará na transformação de angiotensinogênio em angiotensina I, ativando-a; a angiotensina I é então transformada em angiotensina II, que atuará aumentando a secreção de aldosterona. Dessa forma se tem um aumento na reabsorção de sódio e água, que acarretará o aumento no volume sanguíneo E na pressão.
- Qual é a função do sistema digestório?
16 - Descreva a disposição geral do sistema digestório.
17 - O que são os processos químicos e mecânicos do sistema digestório?
18 - Descreva todos os estágios da digestão.
O sistema ou aparelho digestivo (também chamado sistema digestório) é o sistema que, nos animais, é responsável por obter dos alimentos ingeridos os nutrientes necessários às diferentes funções do organismo, como crescimento, energia para reprodução, locomoção, etc. É composto por um conjunto de órgãos que têm por função a realização da digestão. O tubo digestivo apresenta as seguintes regiões; boca, faringe, esôfago, estômago, intestino delgado, intestino grosso e ânus. A parede do tubo digestivo tem a mesma estrutura da boca ao ânus, sendo formada por quatro camadas: mucosa, submucosa, muscular e adventícia. Os dentes e a língua preparam o alimento para a digestão, por meio da mastigação, os dentes reduzem os alimentos em pequenos pedaços, misturando-os a saliva, o que irá facilitar a futura ação das enzimas. A língua movimenta o alimento empurrando-o em direção a garganta, para que seja engolido. Na superfície da língua existem dezenas de papilas gustativas, cujas células sensoriais percebem os quatro sabores primários: doce, azedo, salgado e amargo. A presença de alimento na boca, como sua visão e cheiro, estimula as glândulas salivares a secretar saliva, que contém a enzima amilase salivar ou ptialina, além de sais e outras substâncias.
A amilase salivar digere o amido e outros polissacarídeos (como o glicogênio), reduzindo-os em moléculas de maltose (dissacarídeo). Os sais, na saliva, neutralizam substâncias ácidas e mantêm, na boca, um pH levemente ácido(6, 7), ideal para a ação da ptialina. O alimento, que se transforma em bolo alimentar, é empurrado pela língua para o fundo da faringe, sendo encaminhado para o esôfago, impulsionado pelas ondas peristálticas, levando entre 5 e 10 segundos para percorrer o esôfago. Através do peristaltismo, você pode ficar de cabeça para baixo e, mesmo assim, seu alimento chegará ao intestino. Entra em ação um mecanismo para fechar a laringe, evitando que o alimento penetre nas vias respiratórias. Quando a cárdia (anel muscular, esfíncter) se relaxa, permite a passagem do alimento para o interior do estômago.
No estômago, o alimento é misturado com a secreção estomacal, o suco gástrico (solução rica em ácido clorídrico e em enzimas). A pepsina decompõem as proteínas em peptídeos pequenos. A renina, produzida em grande quantidade no estômago de recém-nascidos, separa o leite em frações líquidas e sólidas. Apesar de estarem protegidas por uma densa camada de muco, as células da mucosa estomacal são continuamente lesadas e mortas pela ação do suco gástrico. Por isso, a mucosa está sempre sendo regenerada. Estima-se que nossa superfície estomacal seja totalmente reconstituída a cada três dias. O estômago produz cerca de três litros de suco gástrico por dia. O alimento pode permanecer no estômago por até quatro horas ou mais e se mistura ao suco gástrico auxiliado pelas contrações da musculatura estomacal. O bolo alimentar transforma-se em uma massa acidificada e semilíquida, o quimo. Passando por um esfíncter muscular (o piloro), o quimo vai sendo, aos poucos, liberado no intestino delgado, onde ocorre a parte mais importante da digestão.
O intestino delgado é um tubo com pouco mais de 6 m de comprimento por 4cm de diâmetro e pode ser dividido em três regiões: duodeno (cerca de 25 cm), jejuno (cerca de 5 m) e íleo (cerca de 1,5 cm). A digestão do quimo ocorre predominantemente no duodeno e nas primeiras porções do jejuno. No duodeno atua também o suco pancreático, produzido pelo pâncreas, que contêm diversas enzimas digestivas. Outra secreção que atua no duodeno é a bile, produzida no fígado e armazenada na vesícula biliar. O pH da bile oscila entre 8,0 e 8,5. Os sais biliares têm ação detergente, emulsificando ou emulsionando as gorduras (fragmentando suas gotas em milhares de microgotículas). O suco pancreático, produzido pelo pâncreas, contém água, enzimas e grandes quantidades de bicarbonato de sódio. O pH do suco pancreático oscila entre 8,5 e 9. Sua secreção digestiva é responsável pela hidrólise da maioria das moléculas de alimento, como carboidratos, proteínas, gorduras e ácidos nucléicos. A mucosa do intestino delgado secreta o suco entérico, solução rica em enzimas e de pH aproximadamente neutro. No suco entérico há enzimas que dão seqüência à hidrólise das proteínas. No intestino, as contrações rítmicas e os movimentos peristálticos das paredes musculares, movimentam o quimo, ao mesmo tempo em que este é atacado pela bile, enzimas e outras secreções, sendo transformado em quilo.
Absorção de nutrientes no intestino delgado 
O álcool etílico, alguns sais e a água podem ser absorvidos diretamente no estômago. A maioria dos nutrientes é absorvida pela mucosa do intestino delgado, de onde passam para a corrente sanguínea. Aminoácidos e açúcares atravessam as células do revestimento intestinal e passam para o sangue, que se encarrega de distribuí-los a todas as células do corpo. O glicerol e os ácidos graxos resultantes da digestão de lipídios são absorvidos pelas células intestinais, onde são convertidos em lipídios e agrupados, formando pequenos grãos, que são secretados nos vasos linfáticos das vilosidades intestinais, atingindo a corrente sanguínea. Depois de uma refeição rica em gorduras, o sangue fica com aparência leitosa, devido ao grande número de gotículas de lipídios. Após uma refeição rica em açúcares, a glicose em excesso presente no sangue é absorvida pelas células hepáticas e transformada em glicogênio e sendo convertida em glicose novamente assim que a taxa de glicose no sangue cai.
 Intestino grosso é o local de absorção de água, tanto a ingerida quanto a das secreções digestivas. Uma pessoa bebe cerca de 1,5 litros de líquidos por dia, que se une a 8 ou 9 litros de água das secreções. Glândulas da mucosa do intestino grosso secretam muco, que lubrifica as fezes, facilitando seu trânsito e eliminação pelo ânus. Mede cerca de 1,5 m de comprimento e divide-se em ceco, cólon ascendente, cólon transverso, cólon descendente, cólon sigmóide e reto. A saída do reto chama-se ânus e é fechada por um músculo que o rodeia, o esfíncter anal. Numerosas bactérias vivem em mutualismo no intestino grosso. Seu trabalho consiste em dissolver os restos alimentícios não assimiláveis, reforçar o movimento intestinal e proteger o organismo contra bactérias estranhas, geradoras de enfermidades. As fibras vegetais, principalmente a celulose, não são digeridas nem absorvidas, contribuindo com porcentagem significativa da massa fecal. Como retêm água, sua presença torna as fezes macias e fáceis de serem eliminadas. O intestino grosso não possui vilosidades nem secreta sucos digestivos, normalmente só absorve água, em quantidade bastante consideráveis. Como o intestino grosso absorve muita água, o conteúdo intestinal se condensa até formar detritos inúteis. A distensão provocada pela presença de fezes estimula terminações nervosas do reto, permitindo a expulsão de fezes, processo denominado defecação.

Outros materiais

Perguntas Recentes