Buscar

Av1 principios de materiais

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 5 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Avaliação: CCE0291_AV1_ » PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS
	Tipo de Avaliação: AV1
	Aluno: 
	Professor:
	JULIO CESAR JOSE RODRIGUES JUNIOR
	Turma: 
	Nota da Prova: 3,0 de 8,0        Nota do Trab.: 0        Nota de Partic.: 2        Data: 07/ /2013 
	
	 1a Questão (Ref.: 201301964310)
	Pontos: 0,5  / 0,5
	Os materiais formados por duas fases (uma matriz e uma dispersa), podendo ser uma combinação de materiais diferentes ou não, aliando as propriedades de ambos são classificados como:
		
	
	Polímeros
	
	Materiais avançados.
	 
	Compósitos;
	
	Metais
	
	Cerâmicas
	
	
	 2a Questão (Ref.: 201301974231)
	Pontos: 0,0  / 0,5
	Materiais que apresentam a estrutura cristalina CCC ( Cúbica de Corpo Centrado),quantos átomos existem na sua célula unitária?
		
	
	9
	 
	6
	
	8
	 
	2
	
	4
	
	
	 3a Questão (Ref.: 201301962988)
	Pontos: 0,5  / 0,5
	Entre as propriedades mecânicas dos materiais podemos citar a tenacidade, resiliência e a ductilidade. Em relação a essas propriedades podemos afirmar que:
		
	
	A resiliência mede a capacidade de um material absorver energia até sua fratura; enquanto a tenacidade mede a capacidade de um material absorver energia antes de se deformar permanentemente; já a ductilidade representa a medida da deformação total que um material pode suportar até sua ruptura.
	
	A ductilidade mede a capacidade de um material absorver energia até sua fratura; enquanto a resiliência mede a capacidade de um material absorver energia antes de se deformar permanentemente; já a tenacidade representa a medida da deformação total que um material pode suportar até sua ruptura.
	
	A tenacidade mede a capacidade de um material absorver energia até sua fratura; enquanto a ductilidade mede a capacidade de um material absorver energia antes de se deformar permanentemente; já a resiliência representa a medida da deformação total que um material pode suportar até sua ruptura.
	
	A ductilidade mede a capacidade de um material absorver energia até sua fratura; enquanto a tenacidade mede a capacidade de um material absorver energia antes de se deformar permanentemente; já a resiliência representa a medida da deformação total que um material pode suportar até sua ruptura.
	 
	A tenacidade mede a capacidade de um material absorver energia até sua fratura; enquanto a resiliência mede a capacidade de um material absorver energia antes de se deformar permanentemente; já a ductilidade representa a medida da deformação total que um material pode suportar até sua ruptura.
	
	
	 4a Questão (Ref.: 201301964443)
	Pontos: 0,0  / 0,5
	Nas cidades onde ocorrem grandes nevascas costuma-se utilizar sal para derreter o gelo mais rapidamente, evitando problemas com seu acumulo nas ruas. Ao se adcionar sal ao gelo, ocorre uma redução do ponto de fusão da água, fazendo com que o gelo derreta em temperaturas menores que a temperatura de fusão padrão (próximo a 0 ºC). Como nas cidades onde ocorrem as nevascas as temperaturas, geralmente, se mantem em níveis negativos por certo tempo, o gelo não iria derreter, pois isso so aconteceria ao atingir temperatura de fusão. Com adição de sal essa fusão pode ocorrer em temperaturas inferiores a 0 ºC, evitando o acumulo de gelo nas ruas. Assim, considere uma nevasca ocorrida em uma determinada cidade na qual a temperatura se mantem em -10 ºC. Com base no diagrama de fases H2O-NaCl, qual seria a concentração aproximada de sal para derreter o gelo sem grandes desperdícios do mesmo?
 
		
	 
	11% de sal.
	 
	15% de sal.
	
	26% de sal.
	
	6% de sal.
	
	19% de sal.
	
	
	 5a Questão (Ref.: 201301931605)
	Pontos: 1,0  / 1,0
	Sabendo que materiais compósitos são aqueles que consistem em mais de um tipo de material, podem ser classificados como compósito:
		
	
	fibra de vidro
	
	tijolo
	 
	concreto
	
	aço carbono
	
	liga de alumínio
	
	
	 6a Questão (Ref.: 201302058550)
	Pontos: 1,0  / 1,0
	O ensaio de tração é muito utilizado em laboratório para se determinar algumas características dos materiais; consiste em submeter o corpo de prova a uma carga uniaxial, que é aumentada gradativamente, e observar a reação do material até sua ruptura. O comportamento é registrado em um gráfico tensão x deformação. Para que os resultados sejam comparáveis em todo o mundo científico, as características de execução deste ensaio, assim como a de outros, são padronizadas. O módulo de Young pode ser interpretado como uma espécie de rigidez do material a deformação elástica. Considerando a tabela a seguir e o ensaio anteriormente mencionado, assinale a opção que mostra a ordem crescente de resistência a deformação elástica dos materiais considerados.
	Liga Metálica
	Módulo de Elasticidade (GPa)
	Alumínio
	 69
	Magnésio
	45
	Tungstênio
	 407
	Aço
	 207
                     
		
	 
	Magnésio, alumínio, aço e tungstênio.
	
	Alumínio, magnésio, aço e tungstênio.
	
	Tungstênio, aço, alumínio e Magnésio.
	
	Magnésio, aço, alumínio e tungstênio.
	
	Magnésio, tungstênio, alumínio e aço.
	
	
	 7a Questão (Ref.: 201301962809)
	Pontos: 0,0  / 1,0
	Se o raio atômico do alumínio é 0,143 nm, os volumes de sua célula unitária nas estruturas CCC e CFC são respectivamente:
		
	 
	0,109 nm e 0,163 nm.
	 
	0,036 nm e 0,066 nm.
	
	0,404 nm e 0,330 nm.
	
	0,066 nm e 0,036 nm.
	
	0,330 nm e 0,404 nm.
	
	
	 8a Questão (Ref.: 201301961987)
	Pontos: 0,0  / 1,0
	1-     Considerando a célula unitária abaixo, se as esferas apresentam raio de 0,15 nm, qual o seu fator de empacotamento atômico? (Dado: VE= 1,33πR3).
		
	
	2,57%
	 
	38%
	
	0,38%
	
	25,7%
	 
	0,25%
	
	
	 9a Questão (Ref.: 201302058677)
	Pontos: 0,0  / 1,0
	No ensaio de tração ao qual o corpo é submetido, vários pontos de conhecimento essencial ao projeto que envolve o material são identificados, tais como tensão de escoamento (tensão a partir da qual o corpo sofre deformação plástica), limite de resistência a tração (é a tensão que se for aplicada e mantida acarretará fratura do material) e tensão de ruptura (que corresponde ao final do ensaio, ponto ao qual podemos associar a ruptura do material).
Considerando o gráfico a seguir, identifique CORRETAMENTE cada uma das tensões mencionadas.
 
 
 
 
 
		
	
	(1) corresponde ao mínimo de tensão elástica, (2) corresponde ao limite de resistência a tração e (3) a tensão de ruptura.
	
	(1) corresponde a tensão de escoamento, (2) corresponde a tensão de ruptura e (3) ao limite de resistência a tração.
	
	(1) corresponde ao limite de resistência a tração, (2) corresponde a tensão de escoamento e (3) a tensão de ruptura.
	 
	(1) corresponde a tensão de escoamento, (2) corresponde ao limite de resistência a tração e (3) a tensão de ruptura.
	 
	(1) corresponde a tensão de ruptura, (2) corresponde ao limite de resistência a tração e (3) a tensão de escoamento.
	
	
	 10a Questão (Ref.: 201302059666)
	Pontos: 0,0  / 1,0
	A taxa de resfriamento durante um tratamento térmico em aços é fundamental para a obtenção de uma microestrutura específica, assim como a possibilidade de manter a liga a uma determinada temperatura (resfriamento com etapa isotérmica) ou mesmo resfriamento contínuo. Analisando o gráfico a seguir, PODEMOS afirmar que:
		
	 
	Entre os pontos C e D, manteve-se o aço a temperatura constante.
	
	A linha pontilhada representa 60% da transformação de fase.
	
	Após o tempo relacionado ao ponto D, ainda há austenita na composição do aço.
	
	Entre os pontos C e D, existe somente austenita.
	 
	O diagrama representa um tratamento térmico com resfriamento contínuo.

Outros materiais