Buscar

Águas Subterrâneas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

QFL 3201 – Química das águas 2008 
 
Allan Hoster 
Alessandra Guiduce da Silva 
Gabriele Strano 
Regiane Sueko Nakamoto 
 
Águas Subterrâneas 
 
Introdução1,2 
 
 O mundo atual se depara com uma crise de escassez de água, o que implica em uma 
enorme ameaça ao desenvolvimento econômico e à estabilidade política do mundo nas próximas 
décadas. 
 A Organização das NaçõesUnidas (ONU) já alertou que por volta de 2025 cerca de 2,7 
bilhões de pessoas, em todo o planeta, enfrentarão falta d’água se as populações continuarem a 
tratá-la como um bem inesgotável. 
 Para solução desse problema, o passo inicial é a conscientização da população através 
do completo conhecimento do ciclo hidrológico, que possibilitará uma melhor avaliação da 
disponibilidade dos recursos hídricos de cada região. Uma das partes mais importantes desse 
estudo é entender o que acontece com as águas subterrâneas, sem dúvida a menos conhecida 
do referido ciclo. 
 A água subterrânea é a parcela da água que permanece no subsolo, onde flui lentamente 
até descarregar em corpos de água de superfície, ser interceptada por raízes de plantas ou 
ser extraída de poços. Tem papel essencial na manutenção da umidade do solo, do fluxo dos 
rios, lagos e brejos. É também responsável pelo fluxo de base dos rios e, consequentemente, 
pela sua perenização durante os períodos de estiagem. 
 Sabe-se que cerca de 97% da água doce disponível para uso da humanidade encontra-se 
na forma de água subterrânea. Atualmente, mais da metade da água de abastecimento público 
no Brasil provém das reservas subterrâneas. A crescente preferência pelo uso desses recursos 
hídricos se deve ao fato de que, em geral, eles apresentam excelente qualidade e menor custo. 
 
 - Distribuição da Água no Subsolo 
 
 A distribuição vertical da água após a sua infiltração no subsolo se verifica da seguinte 
forma: 
 a) Zona de Aeração: É a parte do solo que está parcialmente preenchida por água. 
Nesta zona as moléculas de água ficam aderidas aos grãos do solo. Quanto menores e mais 
finos os grãos, maior será a umidade do solo porque há uma maior superfície de contato entre a 
água e cada grão. 
 Na Zona de Aeração podemos distinguir três regiões: 
 - Zona de Umidade do Solo: Parte mais superficial, onde a perda da água para a 
atmosfera é intensa. 
 - Zona Intermediária: Região compreendida entre a Zona de Umidade do Solo e a 
Franja de Capilaridade, com umidade intermediária média. 
 
 - Franja de Capilaridade: É a região mais próxima ao nível de água do lençol freático, 
onde a umidade é maior. A água existente nesta zona é denominada água capilar. 
 b) Zona de Saturação: É a região abaixo do lençol freático, onde os poros e fraturas 
das rochas estão totalmente preenchidos por água. 
 
 - Aqüíferos 
 
 As águas subterrâneas estão contidas nos solos e formações geológicas permeáveis 
denominadas aqüíferos. A classificação dos diferentes tipos de aqüíferos se dá segundo a 
pressão de água e segundo a geologia do material saturado. 
 As formações Geológicas portadoras de água superpostas por camadas impermeáveis 
são denominadas aqüíferos confinados (ou artesianos). O seu reabastecimento ou recarga, 
através das chuvas, dá-se somente nos locais onde a formação aflora à superfície. Neles, o 
nível hidrostático encontra-se sob pressão, causando artesianismo nos poços que captam suas 
águas. Já os aqüíferos livres (ou freáticos) são aqueles constituídos por formações geológicas 
superficiais com recarga no próprio local, em toda a extensão da formação. Os aqüíferos livres 
têm a chamada recarga direta e os aqüíferos confinados, a recarga indireta. 
 Em relação à geologia do material saturado, os aqüíferos podem ser classificados em: 
 - Poroso: aquele no qual a água circula nos poros dos solos e grãos constituintes das 
rochas sedimentares ou sedimentos. 
 - Cárstico: aquele no qual a água circula pelas aberturas ou cavidades causadas pela 
dissolução de rochas, principalmente nos calcários. 
 - Fissural: aquele no qual a água circula pelas fraturas, fendas ou falhas nas rochas. 
 
 
 A função tradicional e ainda de maior alcance de um aqüífero é como fornecedor de 
água naturalmente potável. Os processos de filtração e as reações bio-geoquímicas que 
ocorrem no subsolo fazem com que as águas subterrâneas apresentem, geralmente, boa 
potabilidade e sejam mais protegidas dos agentes de poluição. Ainda, os aqüíferos 
desempenham o papel de estocagem ao receberem água por recarga artificial durante os 
períodos de enchentes dos rios. Têm função de filtro natural ao proporcionar a filtragem física 
da água de superfície mediante técnicas de captação induzida reduzindo custos de 
tratamentos convencionais. 
 
Poluição das águas subterrâneas3 
 
 Historicamente na civilização humana, o solo tem sido utilizado para disposição dos 
resíduos gerados nas atividades cotidianas, tendo certa capacidade de atenuar e depurar a 
maior parte dos resíduos. Entretanto, a sociedade tem se tornado de tal forma complexa que a 
quantidade e a composição dos resíduos e efluentes gerados foram alteradas em ordem de 
grandeza nas últimas décadas, sendo que a capacidade do solo em reter os poluentes tem sido 
ultrapassada. Assim, apesar de serem mais protegidas que as águas superficiais, as águas 
subterrâneas podem ser poluídas ou contaminadas quando os poluentes atravessam a porção 
não saturada do solo. 
 As principais fontes potenciais de contaminação das águas subterrâneas são os lixões, 
acidentes com substâncias tóxicas, atividades inadequadas de armazenamento, manuseio 
inadequado e descarte de matérias primas, produtos, efluentes e resíduos, atividades 
minerárias que expõem o aqüífero, sistemas de saneamento "in situ", vazamento das redes 
coletoras de esgoto e o uso incorreto de agrotóxicos e fertilizantes, bem como a irrigação que 
pode provocar problemas de salinização ou aumentar a lixiviação de contaminantes para a água 
subterrânea. 
 Outra forma de poluição das águas subterrâneas dá-se quando poluentes são lançados 
diretamente no aqüífero, por meio de poços absorventes, sem passar pelas camadas de solo. 
Poços mal construídos ou operados tornam-se caminhos preferenciais para que os poluentes 
atinjam diretamente as águas subterrâneas. 
 O Potencial de poluição da água subterrânea depende: 
 • Das características, da quantidade e da forma de lançamento do poluente no solo. 
Quanto maior a persistência ou menor capacidade de degradação e maior sua mobilidade no 
meio solo e água subterrânea, maior o potencial. Aliado a isso, uma pequena quantidade de 
poluentes em regiões muito chuvosas, pode transportar rapidamente as substâncias para as 
águas subterrâneas, mesmo considerando a capacidade do solo em atenuar os efeitos. 
 • Da vulnerabilidade intrínseca do aqüífero. 
A vulnerabilidade de um aqüífero pode ser entendida como o conjunto de características que 
determinam o quanto ele poderá ser afetado pela carga de poluentes. São considerados 
aspectos fundamentais da vulnerabilidade: o tipo de aqüífero (livre a confinado), a 
profundidade do nível d'água, e as características dos estratos acima da zona saturada, em 
termos de grau de consolidação e litologia (argila a cascalho). 
 Uma vez poluídas ou contaminadas, as águas subterrâneas demandam um elevado 
dispêndio de recursos financeiros e humanos para sua remediação, o que de modo geral é 
atingido ao final de vários anos. Desta forma, devem ser tomadas medidas preventivas para sua 
proteção, associadas ao controle de poluição como um todo, definindo-secritérios de qualidade 
iniciando-se pelo estabelecimento de valores orientadores4. 
 
 
 
 
 
Proteção da qualidade5 
 
 Considerando que a água subterrânea apresenta-se em geral, em condições adequadas 
para o uso "in natura", necessitando apenas de simples desinfeção, e que de acordo com a 
legislação, o uso prioritário da água é o abastecimento humano, é fundamental a proteção e 
controle da qualidade da água subterrânea. A fim de executar esta atribuição, os Órgãos 
Ambientais utilizam os seguintes instrumentos: 
• Licenciamento ambiental e fiscalização de fontes potenciais de poluição; 
• Monitoramento da qualidade para subsidiar as ações de proteção e controle; 
• Estabelecimento de padrões de qualidade ambiental; 
• Mapeamento da vulnerabilidade ao risco de poluição das águas subterrâneas; 
• Zoneamento ambiental por meio da delimitação áreas de proteção de zonas de recarga de 
aqüíferos, áreas de restrição e controle do uso da água e de perímetros proteção de poços; 
• Elaboração de sistemas integrados de informação; 
• Planos de Recursos Hídricos; 
• Classificação e enquadramento das águas subterrâneas; 
• Projetos especiais de caracterização dos aqüíferos; e 
• Controle da contaminação de solo e águas subterrâneas. 
 
Remediação6 
 A remediação de áreas comprovadamente contaminadas visam retirar e/ou atenuar a 
concentração do contaminante em solo ou água subterrânea, a partir de diversos métodos, para 
que a concentração fique abaixo do limite determinado em lei ou norma aplicável do CONAMA. 
Metodologia RBCA7 
 
 A metodologia RBCA (Risk-Based Corrective Action) descreve uma seqüência lógica de 
atividades e decisões a serem tomadas desde a suspeita da contaminação até o alcance das 
metas de remediação. Estas atividades são realizadas em três etapas que se tornam 
progressivamente mais específicas e complexas, exigindo um maior grau de detalhamento da 
investigação ambiental do local avaliado. Na Etapa 1, a avaliação de risco é realizada através 
da comparação das concentrações dos contaminantes medidas na fonte com valores de 
referência baseados no risco. Na Etapa 2, o risco é determinado considerando as 
características específicas do local. Nesta etapa o ponto de exposição pode estar sobre a 
fonte ou afastado desta. Os modelos matemáticos de transporte e transformação de 
contaminantes utilizados nesta etapa, na grande maioria unidimensionais e de solução analítica, 
permitem a avaliação do deslocamento dos contaminantes em relação aos pontos de exposição. 
Se os resultados desta etapa indicarem riscos superiores aos limites estabelecidos, deverão 
ser adotadas medidas para controle do risco ou a realização da Etapa 3. Na Etapa 3 é 
recomendada a coleta de dados ainda mais específicos do local e da população exposta, o que 
permite a avaliação mais aprofundada do cenário de risco potencial. 
 
Métodos de remediação 
 
 Dentre os métodos de remediação podemos citar: a Biorremediação; Escavação, 
Remoção e Destinação do solo; Bombeamento e Tratamento das água subterrânea (Pump and 
Treat); Extração Multifásica (Biosplurping e MPE); Extração de Vapores do Solo; Injeção de 
Ar (Air Sparging); Barreiras Reativas Permeáveis (PRB's); Estabilização; Tecnologias Térmicas 
(Thermal Enhanced); Oxidação Química, entre outras. 
Referente as técnicas supracitadas podemos detalha-las, como segue: 
Biorremediação - Utilização de microorganismos na degradação de contaminantes em solo e 
água subterrânea. Microorganismos estes que podem ser adicionados ao meio ou estimilados ao 
crescimento por meio de adição de nutrientes; 
Escavação, Remoção e Destinação do solo - Consiste na substituição de solo contaminado por 
solo limpo, que é escavado e destinado para tratamento adequado. Como formar de destinação 
adequada podemos citar co-processamento, disposição final em aterro classificado, incineração 
entre outras; 
Bombeamento e Tratamento (P&T) - Utiliza sistema provido de bombas, elétrica ou 
pneumáticas, para captação das águas subterrâneas impactadas com tratamento adequado para 
os compostos de interesse. O bombeamento e tratamento também pode ser utilizado como 
espécie de barreira de contenção (linha de poços de bombeamento conhecida como barreira 
hidráulica), que altera as codições hidrológicas do local e impedindo que a contaminação siga o 
fluxo subterrâneo natural; 
Extração Multifásica - Utiliza sistema de extração a vácuo que capta as fases: líquida, vapor e 
dissolvida presentes no solo e água subterrânea. Esta técnica é mais utilizada na remediação 
de hidrocarbonetos do petróleo, e promove a extração simultânea dos combustíveis (gasolina, 
diesel e etc.), dos vapores orgânicos voláteis (VOC's) presentes na zona não saturada do solo e 
também da fase dissolvida nas águas subterrâneas. A extração multifásica promove um efeito 
secundário na área contaminada uma vez que a extração a vácuo promove uma circulação de ar 
forçada na zona não saturada do solo estimulando por sua vez as atividades bacterianas 
aeróbias (Biorremediação); 
Extração de Vapores do solo - Promeve a extração, a vácuo, dos contaminantes voláteis 
presentes na camada não saturada do solo concomitante ao estimulo das atividades bacterianas 
aeróbias; 
Injeção de Ar (Air Sparging) - Utiliza o insuflamento de ar ou oxigênio na zona saturada do 
solo com o objetivo de promover uma espécie de "stripping" na água subterrânea e 
desprendendo os composto orgânicos voláteis a serem captados em superfície geralmente por 
sistema de Extração de Vapor. A injeção de ar no solo também promove a biodegradação dos 
contaminates Biorremediação pela atividade bacteriana aeróbia; 
Barreiras Reativas Permeáveis (PRB's) - Consiste na criação de barreira física a jusante da 
pluma de contaminação que têm como objetivo "filtrar" os contaminantes que atravessam a 
mesma e promovem o tratamento por meio de reações químicas e/ou biológicas; 
Estabilização - Utiliza a adição de compostos químicos ao solo e água subterrânea que por meio 
de reações químicas estabilizam ou modificam quimicamente os contaminates tornando-os 
menos perigosos a saúde humana; 
Tecnologias Térmicas (Thermal Enchanced) - Utiliza o calor como forma de remediar 
compostos orgânicos persistentes ao meio, como borras de óleo e compostos clorados de difícil 
biodegradação. O calor utilizado objetiva a redução da pressão de vapor dos contaminantes, 
redução da viscosidade, tensão superficial e aumento da solubilidade da maioria dos compostos, 
além de acelerar o processo de Biorremediação. Esta técnica geralmente é empregada 
concomitante a outras tecnologias para captação dos contaminates desprendidos no 
aquecimento tais como Extração Multifásica, Extração de Vapores e Bombeamento e 
Tratamento. As formas mais conhecidas que utilizam o emprego do calor no solo e água 
subterrânea são: a Injeção de Vapor de Água, Injeção de Ar Quente, Aquecimento por Radio-
frequência; Aquecimento por Eletrodos e por Resistência Elétrica; 
Oxidação Química - Uma das téncicas mais inovadoras e emergentes para remediação de áreas 
contaminadas, que utiliza compostos químicos altamente oxidantes, como Peróxido de 
Hidrogênio, Permanganato de Potássio entre outros. A sua aplicação no solo e água subterrânea 
promove reação química de oxi-redução dos composto orgânicos transformando-os em água, gás 
carbnonico e sais. 
 O método a ser empregado dependerá de fatores físicos, geológicos, hidrogeológicos, 
bioquímicos e espaço físico para seu desenvolvimento. Além de fatores socio-econômicos tais 
como riscos a saúde humana, viabilidade econômica e legislações ambientais vigentes. 
 
Remediação natural8Uma nova abordagem para a contaminação de solos e águas subterrâneas, chamada 
de remediação natural, vem, recentemente, ganhando aceitação principalmente em locais 
contaminados por derramamentos de derivados de petróleo, como o que acontece em 
postos de gasolina. A remediação natural é uma estratégia de gerenciamento que baseiase 
em mecanismos naturais de atenuação para remediar contaminantes dissolvidos na 
água. A atenuação natural refere-se aos processos físicos, químicos e biológicos que 
facilitam a remediação natural (WIEDMEIER ET AL., 1996). Dados de campo de vários 
pesquisadores (BARKER, ET AL., 1987, CHIANG ET AL., 1989; CHAPELLE, 1994; 
DAVIS & KLIER 1994; WIEDEMEIER, ET AL. 1995) tem comprovado que a atenuação 
natural limita bastante o deslocamento dos contaminantes e portanto reduz a extensão da 
contaminação ao meio ambiente. A remediação natural não é uma alternativa de 
"nenhuma ação de tratamento", mas uma forma de minimizar os riscos para a saúde 
humana e para o meio ambiente, monitorando-se o deslocamento da pluma e 
assegurando-se que os pontos receptores (poços de abastecimento de água, rios, lagos,etc) 
não serão contaminados. 
 Após a contaminação do lençol freático, a pluma irá se deslocar e será atenuada por 
diluição, dispersão, adsorção, volatilização e biodegradação, que é o único destes 
mecanismos que transforma os contaminantes em compostos inócuos a saúde. A 
biodegradação dos compostos BTEX (hidrocarbonetos monoaromáticos, benzeno, tolueno, 
etilbenzeno e os três xilenos orto, meta e para) pode ser representada por uma uma reação 
química onde os hidrocarbonetos, em presença de um aceptor de elétrons, nutrientes e 
microrganismos são transformados em água, dióxido de carbono, e mais microrganismos. 
 Os aceptores de elétrons, compostos que recebem elétrons e são portanto reduzidos, 
são 
principalmente o oxigênio, nitrato, ferro férrico e sulfato (CORSEUIL et al., 1996). A 
mineralização de tolueno e xileno também pode ocorrer em condições 
metanogênica/fermentativas ( CHAPELLE, 1993). 
 Dependendo das condições hidrogeológicas do local contaminado, a taxa da reação 
de biodegradação será mais rápida ou mais lenta. Uma vez que a biodegradação é o 
principal mecanismo de transformação dos hidrocarbonetos de petróleo, a determinação 
da taxa de transformação é de grande importância para se prever até onde a pluma irá se 
deslocar. Quando a taxa de biodegradação for igual ou maior que a taxa de deslocamento 
dos contaminantes a pluma deixará de se deslocar e diminuirá de tamanho. 
 Neste caso, se a fonte receptora não fosse atingida, não haveria a necessidade de 
implantação de tecnologias ativas de remediação, como as citadas acima, e a remediação 
natural seria a opção mais econômica de recuperação da área contaminada. 
Para que se possa demonstrar que a remediação natural é uma forma adequada de 
descontaminação de hidrocarbonetos de petróleo é necessário que se faça uma completa 
caracterização hidrogeológica da área degradada, se determine a magnitude e extensão da 
contaminação e se demonstre que a pluma não irá migrar para regiões de risco potencial. 
 Para tal, é necessário que se determine as taxas de migração e de redução de tamanho 
da 
pluma através de estudos de campo e de laboratório. No entanto, se o processo natural de 
atenuação não evitar o deslocamento da pluma até locais de risco, tecnologias que 
acelerem a transformação dos contaminantes deverão ser implementadas. 
 
Aqüífero Guarani9,10,11 
 
O aqüífero tem 1,2 milhão de km2 de área linear, o equivalente à soma dos territórios 
da Inglaterra, França e Espanha. A espessura dessa manta de água varia 100 metros a 130 
metros em algumas regiões. 
Dois terços do aqüífero (840 mil km2) estão em território brasileiro e o restante 
dividido entre o Paraguai e Uruguai (com 58.500 km 2 cada um) e Argentina (255.000 km2). No 
Brasil, ele está sob os estados de Goiás, Mato Grosso do Sul, Minas Gerais, São Paulo, Paraná, 
Santa Catarina e Rio Grande do Sul. 
A população atual na área de ocorrência do Aqüífero Guarani está estimada em 
aproximadamente 29,9 milhões de habitantes. Nas áreas de afloramento a população é de 
cerca de 3,7 milhões de pessoas (12,5 % do total). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A área de reposição (captação), pela qual a água entra no aqüífero, é de apenas 150 mil 
km2. A recarga natural do aqüífero ao longo de um ano é de 160 km3 de água e, desse total, 
calcula-se que 40 km3 (40 bilhões de litros) podem ser usados a cada ano, sem comprometer o 
aqüífero. 
O aqüífero é uma manta de rocha porosa, que se encharca de água da superfície e a 
filtra, o que permite que ela seja puxada pela força da gravidade. Em algumas áreas, essa 
camada de rocha aflora na superfície, como uma espécie de filtro captador exposto. 
 Na área em que se estende para o sul do Brasil, uma outra camada de rocha, esta de 
origem basáltica (vulcânica), muita dura e pesada, cobre a manta porosa e funciona como uma 
tampa. 
Puxada pela gravidade, essa rocha basáltica faz tanta pressão sobre a água que, às vezes, ao se 
perfurar um poço nessas regiões, não é preciso utilizar bombas para puxar a água, que sobe ou 
esguicha sozinha. 
 O confinamento do aqüífero impõe condições de surgência natural (artesianismo) a 
partir de algumas dezenas de quilômetros de distância das áreas de afloramento. A explotação 
da água através de poços profundos permite a extração por unidade de captação de até 
1.000.000 L/h (1.000 m³/h), como por exemplo, em um no município de Pereira Barreto (SP). 
Nas áreas de maior confinamento, as águas do Guarani não são, sem tratamento, adequadas 
para o consumo humano devido ao elevado teor de sólidos totais dissolvidos, bem como por 
causa de uma concentração elevada de sulfatos e presença de flúor acima dos limites 
recomendáveis. 
 A área de ocorrência do Guarani caracteriza-se por concentrar as zonas agropecuárias 
mais importantes de cada país. Além disso, a região caracteriza-se por terras férteis e solos 
com altos índices de produtividade onde são desenvolvidas as culturas de soja, milho, trigo, 
cevada, sucro-alcooleira, etc., e com excelente potencial de desenvolvimento da pecuária de 
corte de grande diversidade de raças, além de uma indústria bastante diversificada, 
destacando-se a automobilística e a de beneficiamento de produtos agropecuários 
(agroindústria - frigoríficos, laticínios). 
 Entre os vários usos das águas captadas desse aqüífero e as possibilidades de 
incrementar outras modalidades que favoreçam a implantação de empreendimentos na região, 
têm-se basicamente o abastecimento público, o desenvolvimento de atividades industriais e 
agroindustriais (climatização de ambientes; secagem de madeira; fermentação da cevada para 
a produção de cerveja; culturas em estufas; proteção contra geadas combinada com a 
irrigação; armazenamento de grãos; evisceração de aves; aqüicultura; elaboração de produtos 
lácteos; esterilização; destilação; operações intensas de descongelamento; biodegradação, 
entre outras) e o desenvolvimento do turismo com a instalação de estâncias hidrotermais. 
 Os aspectos relevantes do Aqüífero Guarani são a sua extensão e volume; a sua 
transnacionalidade parcial envolvendo os quatro países do Mercosul; o enorme potencial de suas 
águas para o abastecimento público e principalmente o seu uso termal com múltiplas aplicações 
gerando desenvolvimento socioeconômico; a falta de cultura de uso de águas subterrâneas com 
o conseqüente uso restrito com relação ao seu potencial em volume e nas aplicaçõesgeotermais; e a preocupação com a possibilidade da sobre exploração do recurso, determinando 
possíveis contaminações e a degradação do mesmo, bem como a sua importância ambiental nas 
áreas de afloramento. 
 
Referências 
 
1. www.meioambiente.pro.br 
2. www.drm.rj.gov.br/projeto.asp?chave=6 
3. http://www.cetesb.sp.gov.br/Solo/agua_sub/poluicao.asp 
4. http://www.cetesb.sp.gov.br/Solo/relatorios/tabela_valores_2005.pdf 
5. http://www.cetesb.sp.gov.br/Solo/agua_sub/protecao.asp 
6. http://pt.wikipedia.org/wiki/Remedia%C3%A7%C3%A3o_de_%C3%A1reas 
7. http://pt.wikipedia.org/wiki/Remedia%C3%A7%C3%A3o_ambiental 
8. http://www.amda.org.br/assets/files/contaminacaoaguassubeterraneasporgasolina.pdf 
9. www.moderna.com.br/moderna/didaticos/projeto/2006/1/aquifero/ 
10. pt.wikipedia.org/wiki/Aqüífero_Guarani 
11. www.oaquiferoguarani.com.br/

Outros materiais