Buscar

Apostila de Materiais de Construção P1 SUAM 2012.1

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 31 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 31 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 31 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

UNISUAM�MATERIAIS DE CONSTRUÇÃO – P 1�ENG. E ARQ.�GERALDO.M.PICCOLI�REVISÃO DE 2012�� PAGE �29� de 31��
UNISUAM - ENGENHARIA CIVIL E ARQUITETURA
MATERIAIS DE CONSTRUÇÃO 
PROF: GERALDO MORITZ PICCOLI - REVISÃO DE 2012
PARTE 1
PROGRAMA DA DISCIPLINA
1 – Condições a que deve satisfazer um material de construção
2 - Normalização	
3 – Aglomerantes inorgânicos
4 - Agregados
5 - Concreto 
6 –Argamassas
7 - Aço
 
Bibliografia básica
1 - BAUER, L. A. Falcão. "Materiais de Construção 1 e 2"
 Rio, LTC Editora. 
2 – ISAÍA, G.C.(editor). “Concreto – Ensino, Pesquisa e Realizações”
 São Paulo, IBRACON, 2005, 2v. 
3 – ISAÍA, G.C. (editor)“Materiais de Construção Civil”
 São Paulo, IBRACON, 2007, 2v. 
4 – NEVILLE, Adam, M. “Propriedades do Concreto”(tradução)
 São Paulo, PINI, 1997.
5 - PETRUCCI, Eládio G. R. "Concreto de cimento Portland”
 Porto Alegre, Globo,1978.
6 – PETRUCCI, Eládio G. R. "Materiais de Construção”
 Porto Alegre, Globo.
7 - SILVA, Moema Ribas. "Materiais de Construção"
 São Paulo, PINI. 
8 – SOUZA, Roberto de & TAMAKI, Marcos Roberto. “Gestão de Materiais de Construção”
 São Paulo, O Nome da Rosa, 2005.
1 –CONDIÇÕES A QUE DEVE SATISFAZER UM MateriaL DE CONSTRUÇÃO
Introdução
	A disciplina de Materiais de Construção estuda os materiais utilizados nas obras de engenharia. Neste estudo, é ressaltada a obtenção, os tipos, as propriedades, as condições para a correta aplicação e o campo de aplicação, bem como a durabilidade e a preservação/conservação. A correta aplicação é do escopo da disciplina de Construção Civil.
	
1.2 - Condições a que deve satisfazer um material de construção
	Um material, produto ou serviço tem qualidade quando for adequado ao uso a que se destina. Então, qualidade é adequação ao uso. Portanto, a qualidade também pode ser entendida como satisfação das necessidades explícitas e implícitas do usuário. 
	Decorre que o material, produto ou serviço precisa satisfazer certas condições e ter propriedades adequadas para este uso. Se escrevermos corretamente em uma especificação estas condições e os valores desejados das propriedades, podemos dizer que qualidade é o atendimento à especificação. Para muitos materiais se dispõe de norma técnica com caráter de especificação. O estudo das normas técnicas está no escopo do próximo capítulo desta apostila. 
	Como a qualidade varia de uso para uso, ela é relativa. Um material pode ter qualidade para um uso e não a ter para outro. Assim, por exemplo, um automóvel confortável, de bom desempenho, econômico e de reduzida manutenção tem muita qualidade em um centro urbano, mas não tem qualidade em uma fazenda com caminhos de acesso muito ondulados, provocando que este se arraste no chão. Nesta situação, o ideal é um carro de suspensão alta.
A qualidade de um produto não deve se restringir as suas características intrínsecas (propriedades mecânicas, elásticas, físicas e químicas, cor, textura, dimensões, regularidade dimensional, constância de propriedades, propriedades adequadas ao uso, etc.), mas deve ser estendida a outros itens como durabilidade, custo e atendimento.
A durabilidade é caracterizada pela manutenção da qualidade durante o tempo de vida útil desejado.
Não basta o produto ter características intrínsecas de qualidade, se seu custo não satisfaz as necessidades do usuário.
O atendimento é um outro item que deve ser considerado na qualidade. Por exemplo, não basta uma tinta ter todas as características intrínsecas desejadas e preço satisfatório, se ela, além de ter um vendedor mal humorado, é entregue na quantidade errada e muito depois do prazo combinado.
Fixando mais a atenção sobre as propriedades, a qualidade de um material resulta de sua aptidão em satisfazer certas condições, a saber:
CONDIÇÕES TÉCNICAS:
 
Propriedades mecânicas (que inclui a resistência mecânica), elétricas, térmicas, acústicas etc.
Trabalhabilidade (Facilidade de aplicação)
Durabilidade (Manutenção de suas propriedades com o tempo)
Higiene (Comportamento favorável à saúde do homem)
Conforto (Exemplo: Evitar vibrações demasiadas).
CONDIÇÕES ECONÔMICAS:
Custo de aquisição (está ligado à fabricação e ao transporte)
Custo de aplicação (está ligado à trabalhabilidade)
Custo de conservação (está ligado à durabilidade).
CONDIÇÕES ESTÉTICAS:
Cor
Textura
Dimensões
Desenho, etc.
	Por ser a qualidade a adequação ao uso, um material tem qualidade quando é adequado ao uso a que se destina, ou seja, quando satisfaz às condições técnicas, econômicas e estéticas necessárias.
	
	 
 2 – NORMALIZAÇÃO
2.1 – Considerações sobre a normalização
2.1.1 - Especificações técnicas
	
	Um projeto de engenharia é um conjunto de documentos que contém os dados necessários à materialização do empreendimento objeto do projeto. Deste modo, o projeto não é apenas um conjunto de desenhos (parte gráfica), mas deve conter outros documentos como tabelas, listas, memorial descritivo, especificações técnicas etc. Destes documentos, são indispensáveis em qualquer situação, os desenhos e as especificações técnicas.
	O memorial descritivo indica quais os materiais a usar e os locais de aplicação.
	As especificações técnicas fixam as exigências a serem observadas para os materiais e técnicas de construção. No caso das técnicas de construção, as especificações técnicas não devem ter caráter de procedimento de execução (que detalha a técnica construtiva e é do âmbito do construtor e não do projetista), mas tão somente apresentar exigências. Constituem um documento descritivo separado dos desenhos, mas, em obras menores, admite-se que as especificações constem como notas nos desenhos.
	Para a execução de uma obra de engenharia, as especificações são soberanas e específicas, devendo cobrir pontos omissos nas normas técnicas regulamentadas no país. É de boa prática que o atendimento a essas normas seja estabelecido nas próprias especificações técnicas, com citação do número da norma.
2.1.2 - Normas técnicas
	As normas técnicas são documentos que regulamentam materiais e serviços, permitindo maior padronização, melhor nível de qualidade e melhor entendimento entre produtores, consumidores e órgãos governamentais. As normas regulamentam, racionalizam e, até certo ponto, uniformizam atividades ou materiais específicos, com base no conhecimento tecnológico e tendo em vista a utilização segura destas.
 	No caso específico dos materiais de construção, as normas regulamentam a qualidade, a classificação, a produção e o emprego dos diversos materiais.
	Existem vários tipos de norma como:
I - Empresariais: visando padronização em uma empresa e de cumprimento exigido por esta em seus contratos com terceiros. Ex. Normas da Petrobrás.
II - De associação: válidas para um dado setor.
III - Nacionais: normas de cumprimento requisitado a nível nacional e coordenadas por uma entidade normalizadora oficial. Ex. Normas da ABNT. 
IV - Regionais: normas válidas para um conjunto de países. Ex. Normas Mercosul, coordenadas pela AMN (Associação Mercosul da Normalização).
V - Internacionais: normas estabelecidas por uma organização internacional. São normas com nível de utilização internacional como as normas ISO família 9000 para sistemas da qualidade.
	A ISO (International Standartization Organization) coordena as entidades normalizadoras dos diferentes países.
	No Brasil a entidade normalizadora representante da ISO é a ABNT (Associação Brasileira de Normas Técnicas). Fundada em 1940, a ABNT é uma entidade privada sem fins lucrativos e o órgão responsável pela normalização técnica no Brasil, reconhecida como Fórum Nacional de Normalização.
	Entre os objetivos da ABNT destacam-se:
Elaborar normas e efetuar as revisões para mantê-las atualizadas.
Fomentar o uso das normas, difundindo e incentivandoo uso nos campos científico, técnico, industrial, comercial e outros.
Representar o Brasil nas entidades internacionais de normalização.
	Em nosso país é usual o emprego de normas estrangeiras quando não se dispõe de normas ABNT sobre o assunto. Entre as entidades normalizadoras internacionais citam-se:
ASTM (American Society for Testing Materials) - Estados Unidos (para materiais);
ANSI ( American National Standards Institute) - Estados Unidos (para serviços);
AASHO ( American Association of State Highway Officials) - Estados Unidos (para obras rodoviárias);
BSI ( British Standards Institution) – Inglaterra;
AFNOR (Association Française de Normalisation) – França;
DIN ( Deutsch Industrie Normen) – Alemanha;
NFS (Norges Standardus Disering Forbound) – Noruega.
	Paralelamente a estas entidades, temos outras que atuam em campos específicos, muitas vezes como norma de caráter mais próximo de "práticas recomendadas", por não serem entidades normalizadoras, propriamente ditas, ou por não terem a força legal das primeiras entidades. Como exemplos brasileiros citam-se:
IBRACON (Instituto Brasileiro do Concreto);
Petrobras.
	A nível internacional citam-se:
CEB (Comité Européan du Béton);
RILEM (Réunion Internationale des Laboratoires d'Éssais et de Recherches sur les Materiaux et les Structures); 
ACI (American Concrete Institute);
PCA (Portland Cement Association).
	A norma deve ser elaborada através de consenso entre produtores, consumidores e entidades governamentais, cuidando-se de ser tecnicamente correta e adequada, fato que requer a participação de especialistas.
	As normas além de resultarem do consenso de todos os interessados que lidam com o que está sendo regulamentado, devem obedecer a exigências legais, serem coerentes com outras normas aprovadas e consagradas e serem revistas periodicamente para incorporar melhorias observadas na sua utilização, ou para introduzir avanços da tecnologia, ou ainda, para ficarem coerentes com outras normas editadas depois da norma em questão.
	 Para a normalização (elaboração das normas) a ABNT dispõe hoje de dezenas de comitês brasileiros, denominados de CB-01, CB-02 etc., cada um atuando em áreas específicas. Na área de construção civil pode-se destacar: CB-02 (Construção Civil), CB-18 (Cimento, concreto e agregados) e CB-22 (Impermeabilização).
	Quando da elaboração ou da revisão de uma norma, o comitê cria uma comissão de estudo formada pela participação voluntária de representantes dos segmentos envolvidos. A comissão parte de um texto básico escrito por um especialista (freqüentemente uma norma estrangeira adaptada, no caso de nova norma e a última versão da norma, no caso de revisão). Após a elaboração do texto final pela comissão, durante sucessivas reuniões, obtido por consenso, o texto vai para o comitê que analisa e aprova, transformando-se em projeto de norma.
	O projeto de norma é encaminhado à apreciação dos associados da ABNT e demais interessados no país, que por votação nacional a aprovam. Após a aprovação passa ser norma brasileira, sendo codificada, impressa e vendida pela ABNT aos interessados.
	Geralmente, a norma entra em vigor algum tempo após a publicação pela ABNT.
	Para as normas Mercosul existem os Comitês Setoriais Mercosul (CSM), nos quais se busca harmonizar normas brasileiras, argentinas, uruguaias e paraguaias.
2.1.3 - Tipos de normas 
	A ABNT utiliza os tipos de normas descritos a seguir, diferenciados pelas iniciais que precedem o número da norma, a saber:
CB (Classificação Brasileira): Descreve os tipos de um produto, designando-os, ordenando-os, classificando-os e subdividindo-os. Ex: CB-205: Madeiras serradas de coníferas provenientes de reflorestamento para uso geral. 
 EB (Especificação Brasileira): Fixa as condições que determinado material ou produto deve satisfazer, definindo, sempre que possível, valores numéricos das propriedades (determinadas em ensaios de amostras representativas, executados por métodos padronizados). Ex: EB-1: Cimento portland comum.
NOTA: Atualmente as especificações têm sido denominadas de requisitos. Por outro lado, freqüentemente em uma mesma norma estão presentes além dos requisitos outros tipos de exigências como métodos de ensaio e terminologia. 
 MB (Método de ensaio Brasileiro): descreve como determinar certa propriedade de um material ou a maneira de verificar condições ou requisitos. Ex: MB-1: cimento portland - determinação da resistência à compressão.
 NB (Procedimento Brasileiro):
NOTA:	 A letra N é a inicial da palavra Norma, que era o nome usado antigamente para procedimento.
	Uma norma NB fixa as condições exigidas para a execução de um dado serviço (elaboração de projeto, execução de construção específica, etc). Ex: NB-1: Projeto de estruturas de concreto.
 PB (Padronização Brasileira): fixa condições para uniformizar características, restringindo a variedade (materiais, desenhos etc.). Ex: PB-6: Bacia sanitária de material cerâmico de entrada horizontal e saída embutida vertical - Dimensões.
 SB (Simbologia Brasileira): fixa convenções gráficas para uso em projeto. Ex: SB-2: Símbolos gráficos para instalações elétricas prediais.
 TB (Terminologia Brasileira): regulariza nomenclatura técnica, definindo termos e expressões técnicas de um dado setor de atividade. Ex: TB-2: Terminologia de soldagem elétrica.
	Cabe ressaltar que em muitas das novas normas se utiliza o título “Requisitos” em substituição a “Especificação”. Por outro lado, atualmente são comuns normas que reúnem em um só documento requisitos e métodos de ensaio. 	
	Devido ao registro das normas da ABNT no INMETRO, as normas recebem opcionalmente outra identificação, todas precedidas pela sigla NBR (Norma Brasileira Registrada no INMETRO) seguido do número de identificação.
	A codificação NBR é mais usada na prática. 
	Exemplos: NBR 5732 : É a EB-1.
	 NBR 6118 : É a NB-1
	Quando for necessário, deve-se indicar entre parênteses o ano (ou seus dois últimos algarismos) em que a norma foi publicada ou alterada pela última vez. 
	Ex: NBR 5732 (91) ou EB-1(91).
	Atualmente muitas normas da ABNT estão sendo revisadas, a exemplo das normas IRAM da Argentina (podendo ter eventualmente o texto inteiramente mantido), para adequar o seu uso no Mercosul. Cada norma com a sigla do Mercosul cancela e substitui a norma correspondente do país de origem. No Brasil estas normas recebem a sigla NBR NM. Exemplo: NBR NM 67-1998. Concreto – Determinação da consistência pelo abatimento do tronco de cone. Esta norma cancela e substitui a NBR 7223(92). O texto destas normas é apresentado nas línguas portuguesa e espanhola, facilitando o uso pelos países do Mercosul.
	O CONMETRO (Conselho Nacional de Metrologia, Normalização e Qualidade Industrial), institui a seguinte classificação adicional para as normas da ABNT:
Norma Compulsória (classe 1) – de uso obrigatório no país. Ex. NBR 5930 (Transporte ferroviário de explosivo - Procedimento);
Norma Referendada (classe 2) – de uso obrigatório pelo poder público e serviços públicos concedidos. Ex. NBR 8000 (Ouro refinado – Especificação);
Norma Registrada (classe 3) – de uso voluntário e com registro. Ex. Todas as normas da ABNT utilizadas nas aulas de Materiais de Construção;
Norma Probatória (classe 4) – de vigência limitada e em fase experimental.
	Existem ainda as normas regulamentadoras (NR), que são documentos aprovados por órgãos governamentais e de observância obrigatória. Ex. NR-18 do Ministério do Trabalho que fixa, com caráter preventivo e ênfase no sistema de segurança do trabalho, diretrizes para o planejamento e organização dos canteiros de obra na indústria da construção. 
2.1.4 – Certificação
	A certificação consiste na emissão de marcas e certificados de conformidade para as empresas que demonstrem que seu (s) produto(s) ou serviço(s) estão conforme as normas brasileiras aplicáveis. A certificação atende a regras internacionalmenteestabelecidas. As certificações mais conhecidas são: 
I – Certificado ISO 9001
 Este certificado atesta a conformidade do sistema da qualidade de uma empresa com a norma NBR ISO 9001. Este certificado requer um acompanhamento por meio de auditorias periódicas para ser mantido. As empresas certificadoras devem ser credenciadas pelo Inmetro. Existem várias empresas certificadoras, tanto nacionais: ABNT, Fundação Vansollini, etc., como internacionais: BVQI (Bureau Veritas), BRTÜV, etc.
II - Certificado ISO 14001
	Este certificado atesta a conformidade do sistema de gestão ambiental de uma empresa com a norma NBR ISO 14001, requerendo também auditorias periódicas de empresas certificadoras credenciadas. 
III - Marca de conformidade
	Certifica a qualidade, segurança e aptidão ao uso de um produto de acordo com as normas aplicáveis. Materializa-se através da impressão da marca de conformidade ABNT na embalagem do produto, ou pela aplicação de selos etc.
	A marca de conformidade tem caráter de reconhecimento público que o material atende às especificações. Esta certificação pode ser voluntária ou compulsória. Extintores de incêndio, barras e fios de aço para concreto armado, disjuntores, fios e cabos elétricos, interruptores elétricos, por exemplo, requerem certificação compulsória do produto. 
3 - AGLOMERANTES INORGÂNICOS 
3.1 - Aglomerante
	Aglomerante é um material ligante capaz de endurecer com o tempo e de aglutinar outros materiais (agregados), conferindo resistência ao conjunto. Exemplo: Cal, cimento e gesso.	O aglomerante é denominado de material ativo enquanto os agregados de materiais inertes.
	Os aglomerantes, particularmente os quimicamente ativos, também podem ser chamados de materiais cimentícios.
3.2 - Classificação dos aglomerantes
3.2.1 - Quanto ao processo de endurecimento
					 Aéreos
		 Quimicamente ativos
Aglomerantes				 Hidráulicos
		 Quimicamente inertes
Aglomerantes quimicamente ativos: endurecem por reação química.
		Exemplos: cal e cimento Portland.
Aglomerantes quimicamente inertes: endurecem por secagem.
		Exemplos: asfalto e argila.
Aglomerantes aéreos (quimicamente ativos): não resistem satisfatoriamente à água quando sólidos e, dentro da água não conseguem endurecer.
		Exemplos: cal e gesso.
Aglomerantes hidráulicos (quimicamente ativos): resistem à água quando sólidos e o endurecimento se processa através de reação com a água.
		Exemplos: cimento portland e cimento aluminoso.
3.2.2 - Classificação dos aglomerantes quimicamente ativos quanto à composição
Aglomerantes simples: um único produto.
		Exemplos: cal e cimento portland comum.
Aglomerantes compostos: mistura de aglomerante simples com adições ativas.
		Exemplos: cimento portland de alto forno e pozolânico.
NOTA: Adições ativas são materiais que têm comportamento aglomerante quando na presença de substâncias adequadas.
Aglomerantes mistos: misturas de aglomerantes simples.
Exemplo: mistura de cal e cimento portland (usados simultaneamente em argamassa de revestimento).
Aglomerantes com adições: aglomerantes simples com adições substanciais.
		Exemplo: cimento colorido (tem adição de pigmentos apropriados)
3.3 - Aglomerantes minerais ou inorgânicos
	Aglomerantes cuja composição química é de substâncias minerais.
		Exemplos: argila, cal e cimento portland.
NOTA: O asfalto não é um aglomerante mineral.
3.4 - Pega de um aglomerante mineral
	A pega é o período inicial de solidificação.
Início de pega: Instante em que começa a se solidificar.
Fim de pega: Instante em que se torna sólido.
3.5 - Endurecimento de um aglomerante mineral
	Período, após o fim de pega, em que as resistências a esforços mecânicos vão aumentando.
3.6 - Classificação dos aglomerantes minerais quimicamente ativos quanto ao tempo de pega
De pega rápida: Menos de 8 minutos (Exemplo: certos tipos de gesso);
De pega normal: Entre 8 minutos e 6 horas (Exemplo: cimento Portland);
De pega lenta: Maior que 6 horas (Exemplo: cal)
3.7 - Principais aglomerantes minerais aéreos
	Serão estudados a cal e o gesso.
3.8 - Cal
3.8.1 - Cal virgem (ou cal viva)
	A cal, também didaticamente conhecida como cal aérea, é um aglomerante aéreo utilizado desde a antiguidade. Tem cor branca. É apresentado para uso como cal hidratada (substância química de base – hidróxido de cálcio – Ca (OH)2) ou como cal virgem (substância química de base – óxido de cálcio – CaO).
	A cal virgem é resultante da calcinação de rochas calcárias. A cal virgem tem predominância em sua composição de óxido de cálcio (CaO). A NBR 6453 (2003) (Cal Virgem para Construção Civil – Requisitos) fixa teor mínimo de 88,0 % de CaO + MgO.
	A reação de calcinação do principal componente é:
CaCO3 + calor CaO + CO2 (cerca de 900º C)
NOTA: Se a temperatura for baixa, haverá resíduo do calcário e, se muito alta, ter-se-á a cal supercozida de extinção mais lenta e que deixa resíduos após a extinção. A extinção é a transformação química da cal virgem em cal hidratada, através da reação com a água.
	O carbonato de cálcio (CaCO3) não é a única substância presente no calcário e, por isso, a cal virgem resultante contém impurezas. O mineral predominante no calcário é a calcita (CaCO3), mas pode conter grande quantidade de dolomita – Ca.Mg (CO3)2.
	Resulta a seguinte classificação para a cal virgem de acordo com o teor de CaO:
	 Cálcica (mínimo: 90 % de CaO)
Cal virgem Magnesiana (menos de 90 % e não menos que 65 % de CaO)
	 Dolomítica (menos de 65 % de CaO)
	O calcário, após sua calcinação, mantém sua forma e reduz um pouco seu volume, devido à perda de CO2. Por isso, dependendo do processo de fabricação, é comum a cal virgem ser fornecida como pequenos blocos.
	A norma NBR 6453 (2003) classifica a cal virgem em:
CV-E → cal virgem especial, que contém, no mínimo, 90 % de CaO + MgO;
CV-C → cal virgem comum;
CV-P → cal virgem em pedra.
	A cal virgem deve atender às exigências da NBR 6453. Para tanto, quando recebida na obra ou na fábrica de cal hidratada, devem ser coletadas amostras de acordo com a NBR 6471, para verificação de suas propriedades.
	Na fabricação da cal virgem são utilizados vários tipos de fornos, os quais calcinam o calcário previamente britado.
	Na fabricação da cal virgem podem ser usadas, também, conchas e esqueletos de animais (sambaquis) que têm como substância química de base CaCO3.
3.8.2 - Cal extinta (Cal hidratada)
	A cal virgem não é usada diretamente como aglomerante na obra. Para uso como aglomerante, a cal deve se apresentar predominantemente na forma Ca(OH)2. A transformação química da cal virgem em cal diretamente utilizável, chama-se extinção. A cal virgem deve ser extinta para se obter a cal extinta ou apagada, esta sim como aglomerante de utilização direta na obra. Quando a extinção é feita na fábrica, compra-se diretamente o material seco e ensacado denominado “cal hidratada”, que se apresenta como um pó branco. A reação da extinção de cal é:
		CaO + H2O 		Ca(OH)2 + calor
	Se a extinção for feita com muita água, pode-se obter a “cal afogada”, que é mais magra (menos rendimento como aglomerante).
	Se, na extinção, a temperatura subir muito, pode-se obter a “cal queimada”, que é a mais gorda, mas tem propriedades prejudiciais.
	O tempo de extinção da cal pode variar desde menos de 5 minutos até mais de trinta minutos.
	As cais cálcicas são de extinção mais rápida.
	A cal extinta ou hidratada pode ser usada pura ou misturada com água (pasta de cal, ou, se muita água, leite de cal). Para uma dada consistência da pasta de cal, quanto maior o volume de pasta obtida para a mesma massa de cal, diz-se que a cal tem maior rendimento, ou é mais gorda.
	A cal dolomítica extinta, quetem extinção lenta, apresenta um certo teor de MgO livre, que, por hidratação, sofre expansão, podendo fissurar e até destruir a argamassa aplicada.
	Quando a extinção é feita na obra, a cal virgem é, normalmente, recebida em pedras e é misturada na água nos “tanques de queima” que, normalmente, são trapezoidais com fundo inclinado. Depois de extinta, a cal passa por peneiramento na boca de saída do tanque para os depósitos. A quantidade de água e a forma de colocá-la dependem do tipo de cal virgem, gerando muito calor. A temperatura obtida na extinção pode atingir 360ºC em tanque aberto e 450ºC em tanque fechado, resultando ser a extinção da cal, reação exotérmica perigosa. Com mais água a temperatura sobe menos. Para a extinção na cal de extinção rápida, deve-se adicionar cal à água, enquanto, nas outras cais, deve-se adicionar água à cal.
	A pasta de cal para emprego em argamassas de revestimento ou assentamento deve envelhecer de 7 a 14 dias para evitar aumento de volume da extinção dos resíduos.
	A cal hidratada apresenta-se na forma de pó branco com as seguintes massas específicas:
Massa unitária: 0,47 a 0,64 kg/dm3;
Massa específica dos grãos: 2,200 a 2,300 kg/dm3.
	A cal hidratada deve atender às exigências de NBR 7175. A NBR 7175 (2003) classifica a cal hidratada em: CH-I, CH-II e CH-III.
	Quanto às exigências físicas, tem-se a finura na peneira 0,075mm, com teor máximo de 15% de material retido (CH-II e CH-III) e 10% (CH-I), determinada conforme NBR 9289. Há exigências ainda quanto à finura na peneira 0,600 mm, estabilidade, retenção de água, plasticidade e incorporação de areia.
	Para o preparo de argamassas e alguns outros usos na construção civil, recomenda-se, preferencialmente, a CH-I. A cal CH-III, que tem considerável adição de carbonatos, também pode ser usada sem maiores inconvenientes. A cal CH-I tem maior capacidade de sustentação de areia que as demais, podendo até reduzir o custo das argamassas magras, embora custe mais caro. Existe no mercado cal CH-I com aditivos que aumentam o rendimento da cal nas argamassas (menos material por m2 de revestimento).
	A cal hidratada é fornecida em sacos, freqüentemente contendo 20 kg de cal.
	A cal extinta na obra costuma ser usada na forma de pasta (com água), enquanto a cal hidratada produzida industrialmente, na forma de pó. Entretanto, para algumas marcas de cal, recomenda-se também usá-la na forma de pasta, envelhecida por cerca de 3 dias, para evitar expansões provenientes da hidratação de resíduos de cal virgem.
	São comuns deficiências na qualidade das cais hidratadas. Aconselha-se adquirir somente cal, cujo fabricante participe do programa de qualidade ABPC (Associação Brasileira dos Produtores de Cal) e exigir certificados de ensaio que comprovem o atendimento às exigências da norma NBR 7175.
3.8.3 - Endurecimento da cal
	A cal endurece pela carbonatação ao reagir com o CO2 do ar. O Ca(OH)2 hidrata mais rapidamente que o Mg(OH)2. No caso do Ca(OH)2, tem-se:
		Ca(OH)2 + CO2 	 CaCO3 + H2O (Reação de recarbonatação).
	O uso de CO2 puro não melhora o endurecimento da cal, pois se formam cristais muito pequenos, decorrendo perda de resistência.
	O uso de cal pura não é ideal para melhorar o poder aglomerante, pois o endurecimento da superfície externa dificulta a entrada de CO2 para continuidade da reação. O ideal é usar argamassa (cal + areia + água). A areia possibilita o acesso do CO2 para a reação e também reduz a retração (contração da pasta quando da formação do CaCO3).
NOTA: Pasta é a mistura do aglomerante com a água.
	 Argamassa é a mistura do aglomerante com areia (agregado miúdo)
	 Concreto é a mistura de aglomerante, areia, agregado graúdo e água.
3.8.4 - Principais aplicações de cal na construção civil
	A cal é usada no preparo de argamassas, tanto nas feitas na obra como em algumas argamassas industrializadas. É utilizada também na forma de leite da cal (pasta fluida de cal) com eventuais adições, como tinta de baixo custo.
	Outro uso da cal é na estabilização de solos para adequar características geotécnicas. Este uso pode ser estendido à agricultura, na correção do pH do solo, reduzindo sua acidez, onde também se usa o calcário em pó.
	Registra-se também o uso da cal como aditivo em concretos asfálticos para pavimentação.
	Na fabricação de blocos de concreto celular e dos blocos sílico-calcários para alvenarias, a cal é uma das matérias-primas.
	Fora da construção civil, a cal tem uma utilização mais intensa. É utilizada na siderúrgica, no tratamento da água e em muitas outras aplicações.
3.9 - Gesso
3.9.1 - Conceito
	O gesso é o aglomerante mineral aéreo, de cor branca e em forma de pó, obtido da calcinação da gipsita seguida de moagem. É constituído, predominantemente, por sulfato de cálcio (CaSO4), podendo conter aditivos controladores do tempo de pega.
NOTA: A gipsita é o mineral que dá origem ao gesso. O minério chama-se gipso.
NOTA: No Pará e Nordeste (particularmente em Pernambuco) estão concentradas cerca de 90 % das jazidas de gipsita. É muito comum por aqui o uso de gesso industrializado produzido nesta região.
NOTA: No Sudeste também há produção de gesso usando o resíduo industrial conhecido como o fosfogesso, subproduto do processo de fabricação do ácido fosfórico e de fertilizantes.
 	
	A gipsita é um mineral natural constituído por sulfato de cálcio hidratado (CaSO4.2H2O).
	O gesso usado em construção civil é formado predominantemente por sulfato de cálcio hemidratado (CaSO4.½ H2O). Este sulfato é denominado hemidrato. Este gesso é também denominado gesso de estucador, Gesso Paris ou gesso rápido.
3.9.2 - Calcinação da gipsita
Formação do hemidrato:
	CaSO4.2H2O + calor 	 CaSO4.½ H2O + 1½H2O (entre 150ºC e 200ºC)
Formação da anidrita (gesso anidro = CaSO4):
	CaSO4.2H2O + calor 	 CaSO4 + 2H2O (entre 200ºC e 300ºC)
	Esta anidrita é solúvel e hidrata-se com facilidade até com a umidade do ar (fortemente higroscópica).
Formação da anidrita insolúvel:
	CaSO4.2H2O + calor 	 CaSO4 + 2H2O (temperatura entre 700ºC e 800ºC)
	Esta anidrita é quase inerte e endurece muito lentamente. Para acelerar a pega e o endurecimento pode-se usar o alúmen (sulfato duplo de alumínio e potássio) ou sulfato de alumínio ou o sulfato de potássio.
Formação do gesso lento (ou gesso hidráulico ou gesso de pavimentação)
	CaSO4.2H2O + calor 	 CaSO4 (com resíduos de CaO e SO3 devido à decomposição do CaSO4) + 2H2O (temperatura entre 1100ºC e 1200ºC.		Este gesso tem endurecimento lento, mas resiste melhor à água e tem resistência mecânica superior. O CaO presente contribui na aceleração do endurecimento.
	Com temperaturas acima de 1450 ºC não haverá mais CaSO4, o qual se decompõe em CaO + SO3.
3.9.3 - Endurecimento do Gesso
	O gesso endurece por reação com a água.
	2 (CaSO4.1/2H2O) + 3H2O 		 2 (CaSO4.2H2O) + calor
	O calor gerado provoca dilatação da pasta de gesso e, por esta razão, o gesso é muito empregado em serviços de modelagem (preenche bem os moldes).
	Na hidratação há cristalização.
	A pega é muito rápida. Podendo iniciar em cerca de 2 minutos, mas, geralmente, em tempo maior, até porque o fabricante freqüentemente adiciona retardadores de pega para se adequar ao uso e às exigências da norma NBR 13207, a qual exige tempo de início de pega mínimo de 10 minutos. O aumento de temperatura ou o uso de água quente acelera a pega. Alguns produtos como o sulfato de alumínio aceleram a pega.
	A queratina (produto obtido de chifres e cascos de animais), a cola animal, o bórax, o açúcar, o sulfato de sódio e o álcool retardam a pega. A pega também é retardada pelo aumento da relação água/gesso na pasta.
Os gessos de uso na obra podem conter retardadores de pega, proporcionando tempo de pega maior que 10 minutos, como comentado anteriormente.
	A pasta de gesso é empregada, geralmente, comum fator água/aglomerante de 0,60 a 0,85. Quanto mais água, mais lenta é a pega, menor é a resistência mecânica e mais plástica é a pasta. A resistência à compressão pode superar 14 MPa, sendo desta ordem de grandeza para o fator água/aglomerante em torno de 0,60. Com fator água/aglomerante igual a 0,85, a resistência cai para um pouco menos da metade desse valor.
	O gesso é normalmente usado em pasta nos serviços de revestimento. Na forma de argamassa (com areia) a sua resistência mecânica cai bastante e não é usual. O acabamento obtido com a pasta de gesso é muito liso e de bom aspecto. É usado em emboço e em reboco fino de interiores. Não deve ser usado em exteriores, pois é atacado pela água.
	Existem, ainda, produtos pulverulentos fornecidos prontos, normalmente contendo gesso, calcário, aditivos e adições, que são largamente utilizados em revestimentos de paredes e tetos. Lançados à máquina produzem emboço de reduzida espessura com mínimo desperdício.
3.9.4 - Gesso na construção civil
	O gesso (hemidratado) é usado na forma de pó e fornecido, normalmente, em sacos de 40 kg para o uso na obra.
	O gesso para construção civil deve atender às exigências da norma NBR 13207 da ABNT.
	O gesso corrói o aço e, por isso, em placas de gesso armadas com aço e em tirantes para suportes de placas de gesso, deve-se usar aço galvanizado ou outro metal adequado.
	Um uso de gesso é a proteção contra incêndio. Revestindo-se a peça a proteger com pasta de gesso, esta funcionará como camada de sacrifício. O calor é desviado para a eliminação da água de cristalização do gesso.
	As pastas de gesso usadas como revestimento são chamadas de estuque.
	Na construção civil o gesso comumente é utilizado em placas para uso em tetos, divisórias ou painéis de revestimento de colunas e paredes. Estas placas são fornecidas prontas.
	As placas são armadas com papelão ou outro material adequado. Nem sempre as placas são de gesso puro externamente (acabamento muito liso). São comuns a placas de gesso acartonado, que, para terem acabamento muito liso, recomenda-se serem emassadas antes da pintura. São muito usadas nas paredes tipo “dry wall”.
	Outro uso do gesso é na proteção de pisos de concreto, granito e afins. Para evitar danos no piso durante a obra, este pode ser recoberto com aniagem ou folha de polietileno sobreposta com pasta de gesso. Na conclusão da obra, a proteção é removida.
3.10 – Aglomerantes minerais hidráulicos
3.10.1 - Hidraulites
- Conceito
	As hidraulites ou adições ativas não são aglomerantes propriamente ditos, mas se transformam em aglomerantes na presença de determinadas substâncias. Estas substâncias podem estar presentes ou serem liberadas na hidratação de outros aglomerantes. Decorre que as hidraulites são adições ativas usadas para formar aglomerantes compostos.
	As hidraulites são, portanto, materiais cuja hidraulicidade é desperta na presença de certas substâncias, particularmente na presença de outro aglomerante.
	A adição de hidraulites pode ser efetuada na fábrica do aglomerante composto, que já fornece o aglomerante com a adição, ou na própria obra.
	As principais hidraulites são a escória granulada de alto forno e as pozolanas.
	Para serem eficientes, as hidraulites devem se apresentar como pó muito fino, sendo desejável que seja mais fino que o aglomerante a sofrer sua adição.
- Escória Granulada de Alto Forno
	Uma das fases da fabricação do aço é a produção do ferro gusa no alto forno. O alto forno é alimentado por minério de ferro, coque e fundentes, produzindo ferro gusa e a escória.
	A escória é formada com a contribuição da ganga (impurezas do minério), das cinzas do coque e dos fundentes.
	Se a escória for resfriada lentamente, ela se cristaliza, resultando a escória bruta de alto forno. Se for resfriada bruscamente, se torna amorfa, resultando na escória granulada de alto forno, que tem aparência semelhante à da areia. No Brasil, o teor de material amorfo é de cerca de 95 %.
	Composição química da escória de alto forno:
SiO2 → 30 a 40 %;
CaO → 40 a 55 %;
Al2O3 → 8 a 20 %;
MgO → 0 a 8 %;
S (enxofre) → aproximadamente igual a 1,7 %.
	Quando CaO/SiO2 for menor que 1 é escória ácida e se for maior que 1, a escória é básica, que é o caso da escória de alto forno que utiliza coque de carvão mineral como ocorre nas grandes siderúrgicas. Apenas a escória básica é considerada no presente item.
	A escória granulada de alto forno endurece muito lentamente na presença de água. Para uso como aglomerante de endurecimento normal, precisa ser pulverizada e ter um ativador (funciona como catalisador, acelerando a hidratação da escória).
	Como ativadores da escória granulada de alto forno, tem-se a soda, a cal e os sulfatos. Os ativadores solubilizam a escória, permitindo a cristalização da fase aquosa. O principal ativador da escória é a cal gerada na hidratação do cimento portland, formando um aglomerante composto muito comum (Ex.: Cimento portland de alto forno).
	Menos comum é a mistura de cal e escória granulada de alto forno, formando um produto denominado cal metalúrgica que pode ser usado como cimento de alvenaria.
	Na hidratação da escória granulada de alto forno são formados silicatos e aluminatos hidratados.
- Pozolanas ou Materiais Pozolânicos
	As pozolanas são materiais silicosos ou sílico-aluminosos que, por si só, possuem pouca ou nenhuma atividade aglomerante, mas, quando finamente divididos e em presença da água, reagem com o Ca(OH)2 à temperatura ambiente para formar compostos com propriedades aglomerantes.
	As pozolanas podem ser naturais, geralmente requerendo moagem (cinzas vulcânicas, terras diatomáceas etc.) ou artificiais (argila calcinada, cinzas volantes, sílica ativa, cinzas de casca de arroz, metacaulim etc.).
- Argilas Calcinadas: São obtidas por calcinação de argilas à temperatura de 600ºC a 900ºC. São fabricadas no Brasil, com destaque para o Nordeste.
- Cinzas Volantes: São os resíduos pulverulentos mais finos arrastados pelos gases resultantes da queima do carvão pulverizado em centrais termelétricas. São subprodutos disponíveis em larga escala no Sul do Brasil.
	Composição química média das cinzas volantes:
	SiO2: 48 %
	MgO: 2 %
	Al2O3: 32 %
	SO3: 0,5 %
	Fe2O3: 8 %
	Na2O + K2O: 4,5 %
	CaO: 2 %
	
As cinzas volantes têm massa específica da ordem de 2,400 kg/m3, podendo variar de 1,800 a 3,000 kg/m3, tendo os grãos de menor volume, maior massa específica. A massa unitária no estado solto varia de 0,55 a 0,75 kg/m3.
- Sílica ativa: A sílica ativa (“sílica fume”), também conhecida como microssílica (nome comercial de um dos fabricantes), é um pó finíssimo (área específica da ordem de 20.000 m2/kg contra 350 a 600 m2/kg do cimento Portland) de cor acinzentada, constituída por 75 a 99 % de sílica amorfa, subproduto da fabricação de ligas de ferro-sílico metálico. É produzida no Brasil. A massa específica de seus grãos é da ordem de 2,200 kg/dm3 e a massa unitária é muito reduzida. Variando com o tipo, a saber, a densificada (por volta de 550kg/m3) e a não densificada (cerca de 360 kg/m3 ou menos). A adição de sílica ativa no concreto ou argamassa de cimento portland, leva a substanciais incrementos na resistência mecânica e reduz bastante a permeabilidade.
Embora seja um material pozolânico, não é seu efeito pozolânico a principal vantagem de sua adição, mas sim a sua capacidade de funcionar como ponto de nucleação dos produtos de hidratação do cimento portland (reduzindo vazios).
A NBR 13956 estabelece as condições exigíveis para a sílica ativa a ser usada em concreto, argamassa e pasta de cimento portland. Esta norma fixa o teor mínimo de SiO2 em 85 %. Os ensaios para determinação das propriedades exigidas devem ser conduzidos conforme a NBR 13957.
A sílica ativa pode ser fornecida em pó (geralmente em sacos de 15, 20 ou 25 kg), ou na forma de lama espessa (pasta) contendo sílica ativa, água e aditivosuperplastificante.
O principal uso da sílica ativa é em concreto de alto desempenho.
Atualmente já se dispõe da Nanosílica, com partículas em escala molecular em mistura estável com a água.
Outro material pozolânico bastante fino que é usado com efeitos semelhantes aos da sílica ativa é o metacaulim. O metacaulim é obtido pela callcinação de alguns tipos de argilas cauliníticas e tem cor geralmente avermelhada.
As pozolanas são usadas na fabricação de aglomerantes compostos (Ex: cimento portland pozolânico) ou como componentes no preparo de concreto de cimento portland (comum na construção de grandes barragens).
	Menos comuns são outros aglomerantes compostos como a cal pozolânica (mistura de cal hidratada e pozolana).
3.10.2 - Cimento Portland
- Histórico
	Aglomerante hidráulico, mais importante entre todos os aglomerantes, patenteado em 1824, por Joseph Aspdin.	Com temperaturas de cozimento e características semelhantes às atuais se deve a Isaac Johnson, em 1845.	O nome Portland se deve a semelhança com certas rochas procedentes da ilha de Portland, na Inglaterra.
	No Brasil é produzido desde 1898, sendo o cimento Santo Antônio da usina Rodovalho, o pioneiro. Atualmente (índices computados em 1998), o Brasil é o sexto maior produtor mundial de cimento portland.
NOTA: Costuma-se escrever cimento Portland. Tomamos a liberdade de adotar também a forma cimento portland, a exemplo da expressão óleo diesel.
- Conceito
	Cimento portland é um material pulverulento de cor cinza ou branca, constituído, principalmente, por silicatos e aluminatos de cálcio, que, misturados com água, hidratam-se com efeitos aglomerantes. Resulta da moagem do clínquer portland, com adições de gesso para regular a pega, eventuais hidraulites e materiais carbonáticos em teores limitados.
NOTA 1: O clínquer portland é um material resultante do cozimento, até fusão incipiente (cerca de 30% de fase líquida), de uma mistura de calcário e materiais argilosos (ou parte em escória bruta de alto forno) convenientemente proporcionada (cerca de 3:1) e homogeneizada. A dosagem da mistura crua para formar o clínquer, varia conforme as características das matérias-primas e as propriedades desejadas para o cimento. A análise química é fundamental no processo de produção. Os teores das substâncias presentes nas matérias-primas têm que atender determinadas relações denominadas de módulos. Por exemplo, o módulo de silício SiO2 / (Fe2O3 + Al2O3), preferencialmente deve estar compreendido entre 2,0 e 3,0. Decorrente da necessidade de atender aos módulos, o calcário e a argila geralmente não são as únicas matérias-primas para a produção de clínquer. Também são utilizadas a areia (para corrigir a deficiência de SiO2 na argila) e o minério de ferro (para corrigir deficiência de Fe2O3 na argila).
NOTA 2: Os materiais carbonáticos adicionados assumem a forma de “filler” (forma pulverulenta) e não são adições ativas. Esta adição permite melhorar um pouco a trabalhabilidade das pastas, argamassas e concretos, funcionando como lubrificante do pó, pois se aloja entre as partículas dos outros componentes.
NOTA 3: A adição de gesso, ao contrário dos materiais carbonáticos, é indispensável. Sem o gesso, a pega do cimento seria praticamente instantânea, devido a um componente denominado aluminato tricálcico. A quantidade de gesso adicionada é da ordem de 3%, sendo maior em cimentos mais finos, para fazer frente a maior superfície específica (área/volume ou massa) dos aluminatos.
- Fabricação
Extração das matérias-primas (calcário e argila).
Britagem do calcário (Dmax = 30 mm).
Dosagem da mistura crua, moagem e homogeneização:
Via seca (predominante);
Via semi-seca;
Via semi-úmida;
Via úmida (pasta com água que gasta mais combustível).
Moagem da mistura crua no moinho de bolas (obtendo-se 80 a 90 % de material passando na peneira ABNT de abertura de 0,075 mm).
Correção da farinha crua (adições de minério de ferro, bauxita, areia etc., para adequar a composição através de faixa de valores ideais para os módulos, que são calculados com base nela).
Cozimento em fornos rotativos por cerca de 2 a 3 horas em uma temperatura gradativamente crescente ao longo do forno até cerca de 1400ºC, obtendo-se bolas escuras chamadas clínquer.
NOTA: O combustível pode ser o carvão ou o óleo. Atualmente estão sendo desenvolvidos estudos para utilização de resíduos como lamas siderúrgicas, raspas de pneus usados, borro de tinta, bagaço de cana e casca de arroz, bem como o gás natural. Algumas fábricas já implantaram combustíveis desta natureza, inclusive no Brasil. Com o uso destes produtos, reduz-se o consumo do combustível principal. O carvão ou o óleo são usados no forno de clínquer, eventualmente misturados com combustíveis alternativos como os descritos, enquanto estes resíduos geralmente são empregados nos pré-calcinadores (antes das matérias-primas irem para o forno).
Resfriamento e estocagem do clínquer.
Moagem do clínquer com suas adições (ou moagem das adições separadamente).
NOTA: A moagem separada conduz a melhores resultados, pois os grãos de clínquer e das adições têm durezas distintas (a escória, por exemplo, é mais dura que o clínquer, enquanto o calcário é menos duro) e é desejável que as hidraulites sejam mais finas que o clínquer no produto final.
Estocagem em silos.
Empacotamento ou fornecimento a granel.
	O cimento portland pode ser fornecido a granel (carretas transportando cerca de 30 toneladas), em containers ou bags, ou em sacos de papel contendo 50 kg líquidos de cimento. Algumas fábricas estão introduzindo sacos com 25 kg e 40 kg. O cimento portland branco não estrutural, de menor consumo na obra, pode ser encontrado em embalagens de 1 kg.
- Pega e Endurecimento
Ao adicionarmos água ao cimento ele começa a enrijecer depois de um certo tempo. O instante que este processo começa chama-se início de pega. Quando se obtém solidez, tem-se o fim da pega.
	A partir do fim de pega inicia-se o endurecimento com a resistência mecânica crescendo com o passar do tempo devido à contínua hidratação do cimento. A velocidade de crescimento da resistência é continuamente decrescente, mas, dependendo das condições, pode durar mais de 50 anos (condições ideais em laboratório).
Durante a pega há forte liberação de calor. O calor de hidratação continua a ser liberado após o fim de pega e com velocidade cada vez menor.
Quanto maior a temperatura, mais rápida é a pega (influência mais forte). O aumento de temperatura também acelera o endurecimento. Na prática se tira partido deste fenômeno na cura térmica do concreto, que permite a obtenção de resistências maiores nas primeiras idades.
Quanto mais água, mais lenta é a pega (influência mais fraca).
Os tempos de início e de fim de pega podem ser determinados pelo aparelho de Vicat, através do método de ensaio da norma NBR NM 65.
Qualquer que seja o tipo de cimento portland, o tempo de início de pega não se pode dar em menos de 1 hora, conforme as normas da ABNT, para assegurar um tempo razoável de trabalho com as pastas, argamassas e concretos, sem riscos.
O fim de pega costuma ocorrer cerca de pouco mais de uma hora a duas horas depois do início de pega. As normas da ABNT recomendam valores máximos para o tempo de fim de pega, variáveis com o tipo de cimento portland.
Falsa pega – Fenômeno que pode acontecer e é devido à desidratação do gesso (ao ter contato com o clínquer quente) e se hidrata com a água adicionada. Desaparece com remistura.
- Finura
	Quanto mais fino for o cimento, mais superfície por unidade de volume (ou por unidade de massa) está habilitada a ser hidratada pela água. Decorre maiores resistências mecânicas iniciais das pastas, argamassas e concretos.
	A finura é determinada indiretamente pela área específica dos grãos e diretamente por peneiramento.
	Área específica = Área externa dos grãos 	
			 Volume ou massados grãos
	A área específica do cimento é determinada indiretamente pelo permeabilímetro de Blaine, conforme a norma NBR NM 76.
	A finura do cimento é feita pelo resíduo na peneira ABNT de abertura de malha 0,075mm (Peneira nº 200), conforme a norma NBR 11579.
	A hidratação se inicia na superfície do grão. Se o grão for muito grande, perde parte de sua atividade pela não hidratação total do grão.
	A hidratação dos cimentos portland com adições substanciais de hidraulites (escória granulada de alto forno ou pozolana) é mais lenta. Para compensar este fato, as normas exigem destes cimentos uma finura maior. O mesmo tipo de exigência se faz para o cimento portland de alta resistência inicial, onde se deseja aumentar as resistências nas primeiras idades.
	As normas de cimento portland fazem exigências variáveis de finura e área específica conforme o tipo de cimento portland, variando os valores máximos especificados de resíduo na peneira 0,075 mm de 6,0 % a 12,0 % e os valores mínimos exigidos de área específica de 240 m2/kg a 300 m2/kg.
- Massa Específica
	A massa específica é determinada no frasco de Lê Chatelier, conforme a norma NBR NM 23.
	A massa específica do cimento portland é da ordem de 3,100 a 3,150 kg/dm3. A adição de material carbonático, permitida pelas normas, reduz um pouco estes valores.
	Quando o cimento portland contém adições substanciais de hidraulites, a massa específica passa para valores da ordem de 3,000 kg/dm3, ou menos, pois as hidraulites têm massa específica inferior à do clínquer moído.
	A massa específica refere-se aos grãos de cimento. Se considerarmos os vazios entre os grãos de cimento também como volume no denominador, a massa específica passa a se chamar massa unitária, de valor menor e variável com o grau de compactação do cimento (quanto maior o grau de compactação, maior é a massa unitária). A massa unitária no estado solto, que é a forma utilizada quando se mede cimento em volume no preparo de argamassas, é da ordem de 1,15 kg/dm3 a 1,20 kg/dm3. É um erro comum adotar o volume de 50kg de cimento como de 35 litros a 36 litros, que conduz a massas unitárias maiores.
- Expansibilidade
	O cimento não deve ser expansivo para não provocar tensões, fissuração e aumento prejudicial de volume.
	Os principais responsáveis pela expansão são o CaO e o MgO.
	As normas fixam limites máximos para a expansão (a frio ou a quente) com as agulhas de Le Chatelier, conforme a norma NBR 11582.
- Resistência à Compressão
	Mede-se a resistência à compressão do cimento através de uma argamassa padrão de uma parte de cimento e 3 partes de areia padronizada (areia normal), em peso, obtida pela mistura de quatro faixas granulométricas. Como a quantidade de água influi na resistência mais ainda que a areia, usa-se uma relação fixa água/cimento de 0,48, em peso, de forma que o único material que afeta a resistência é o cimento, objetivo da medida.
	Para a medida da resistência à compressão são usados corpos de prova cilíndricos de 5 cm de diâmetro e 10 cm de altura, conforme NBR 7215.
	As normas fixam valores mínimos para as resistências nas idades de 3, 7 e 28 dias e, em alguns casos, para 1 dia e para 90 dias.
	A maioria dos tipos de cimento portland é identificada por uma sigla que inclui um número no final. Este número indica a resistência mínima em MPa que o cimento deve ter, no ensaio pela NBR 7215, na idade de 28 dias, conforme as exigências da norma correspondente ao tipo de cimento.
	Exemplo: CPII-F-32, CPII-E-40 (32 MPa e 40 MPa, respectivamente).
NOTA: Muitos cimentos utilizados no sudeste superam estes valores mínimos especificados de resistência com bastante folga. Há, por exemplo, cimentos de classe 32 que às vezes superam 40 MPa aos 28 dias.
- Composição Química
	Antes de se hidratar (cimento portland comum):
	CaO – 60 a 67 %
	Fe2O3 – 0,5 a 6 %
	Há ainda presença de Na2O,
	SiO2 – 17 a 25 %
	SO3 – 1 a 2,5 %
	K2O, TiO2 e outras substâncias.
	Al2O3 – 3 a 8 %
	MgO – 0,8 a 6,0 %
	
	As normas fixam exigências para a composição química e ainda para os teores máximos de perda ao fogo (que denuncia a presença de CaCO3 e umidade de grãos hidratados, pois o calor os elimina) e de resíduo insolúvel no ácido clorídrico (certas adições silicosas e pozolanas são insolúveis). Este ensaio dá indícios também da eficiência da combinação.
	Quando o cimento for usado em agregados potencialmente reativos aos álcalis (Na2O e K2O) e se não forem adotadas fortes adições de pozolana ou escória granulada de alto forno que inibem o caráter expansivo desta reação (reação álcali-agregado), recomenda-se ter teor total de álcalis no concreto menor que 3 kg/m3, ou também:
	Na2O + 0,658 K2O < 0,6 %.
	A soma Na2O + 0,658 K2O é denominada equivalente alcalino em Na2O.
	
NOTA: As reações entre os álcalis do cimento com a sílica não perfeitamente cristalizada, ou com alguns silicatos, ou, ainda, com a dolomita dos agregados, levam a fissuração e expansão da estrutura de concreto. Não se manifestam muito rápido, mas podem levar a destruição da estrutura em alguns anos.
 - Composição potencial (antes de se hidratar).
	Recebe este nome por supor que todos os óxidos estão combinados formando cristais e desprezam-se as substâncias amorfas (vidro) existentes no cimento.
Silicato tricálcico (alita): (3CaO.SiO2) = C3S
Silicato dicálcico (belita): (2CaO.SiO2) = C2S
Aluminato tricálcico (3CaO.Al2O3) = C3A
Ferroaluminato tetracálcico (4CaO. Al2O3.Fe2O3) = C4AF
	O C3S e o C2S formaram cristais relativamente grandes e entre eles (matéria intersticial) estão o C3A, o C4AF e o material amorfo.
Ocorrem, ainda, CaO e MgO livres. O CaO livre é expansivo e o MgO como cristais de periclásio é também expansivo.
	Pode-se estimar, grosseiramente, a composição potencial do cimento que não contenha adições ativas (hidraulites) exceto gesso, pelas fórmulas de Bogue (subestimam o C3S, superestimam o C2S e desprezam o vidro), a saber:
	C3S = 4,07 (CaO) – 7,60 (SiO2) – 6,72 (Al2O3) – 1,43 (Fe2O3) – 2,85 (SO3)
	C2S = 2,87 (SiO2) – 0,754 (C3S)
	C3A = 2,65 (Al2O3) – 1,69 (Fe2O3)
	C4AF = 3,04 (Fe2O3)
	Estas fórmulas serão válidas para Al2O3 < 0,64.
					 Fe2O3
	A determinação mais correta da composição potencial emprega difração por raios x e análise térmica diferencial.
 - Composição química (depois da hidratação):
Formam-se: Tobermorita, portlandita, etringita e aluminato de cálcio hidratado.
Tobermorita é o nome genérico dos cristais de silicato de cálcio hidratado (C-S-H), onde H representa H2O.
		Exemplo: C3S2H3
Portlandita é o hidróxido de cálcio Ca(OH)2, maior responsável pelo elevado pH da solução presente (normalmente superior a 11) e uma das substâncias mais frágeis quanto às agressões de natureza química.
Etringita é o sulfoaluminato de cálcio hidratado que se forma na reação entre o C3A e o gesso presente.
	Forma-se, ainda, o aluminato de cálcio hidratado, maior responsável pela reduzida resistência aos sulfatos.
		Exemplo: C3AH6.
Influência dos componentes na resistência mecânica: O C3S e o C2S respondem pelo crescimento da resistência. O C3S nas idades iniciais e o C2S nas avançadas. O C3A tem fraca contribuição na resistência e o C4FA menos ainda.
- Calor de Hidratação
	Ao se hidratar, o cimento gera calor em quantidade gradativamente decrescente com o tempo. Em 3 dias gera cerca de 50 % de total do calor de hidratação (que leva muitos anos).
	O calor de hidratação até a idade de 7 dias é da ordem de 50 a 100 cal/g..
	O componente de maior geração de calor é o C3A seguido pelo C3S. Mas como o cimento contém maior teor de C3S, resulta, na verdade, ser este componente o maior gerador de calor.
	A adição de hidraulites reduz o calor de hidratação.
	O calor de hidratação do cimento é determinado em ensaio. Contudo, pode ser grosseiramente estimado por meio de fórmulas em função da composição química.- Tipos de Cimento Portland
Cimento Portland Comum (normalizado pela NBR 5732):
Designação: CPI e CPI-S
	O CPI não contém adições e o CPI-S contém adição de 1 a 5 % de materiais carbonáticos, escória granulada de alto forno ou matérias pozolânicos.
Classes de resistência:
	CPI-25, CPI-32 e CPI-40, CPI-S-25, CPI-S-32 e CPI-S-40.
	O cimento portland comum já foi o de maior produção no Brasil e hoje em dia é de produção reduzida, sendo substituído pelo cimento portland composto (CPII).
	As tabelas que se seguem mostram as exigências físicas e químicas da norma NBR 5732 para este tipo de cimento portland. Nas exigências químicas comparecem a perda ao fogo e o resíduo insolúvel no ácido clorídrico. A perda ao fogo permite detectar grãos hidratados ou mal cozidos. Adições de material carbonático aumentam a perda ao fogo. O resíduo insolúvel detecta adições estranhas que não se dissolvem no HCl, como o pó de pedra silicoso.
Tabela 1 – Exigências Químicas
	Determinações químicas
	Limites (% da massa)
	
	CPI
	CPI-S
	Resíduo insolúvel (RI)
	≤ 1,0
	≤ 5,0
	Perda ao fogo (PF)
	≤ 2,0
	≤ 4,5
	Óxido de magnésio (MgO)
	≤ 6,5
	Trióxido de enxofre (SO3)
	≤ 4,0
	Anidrido carbônico (CO2)
	≤ 1,0
	≤ 3,0
Tabela 2 – Exigências Físicas e Mecânicas
	Características e propriedades
	Unidade
	Limites de classe
	
	
	25
	32
	40
	Finura
	Resíduo na peneira 75μm
	%
	≤ 12,0
	≤ 10,0
	
	Área específica
	m2/kg
	≥ 240
	≥ 260
	≥ 280
	Tempo de início de pega
	h
	≥ 1
	Expansibilidade a quente
	mm
	≤ 5
	Resistência a compressão
	3 dias de idade
	MPa
	≥ 8,0
	≥ 10,0
	≥ 15,0
	
	7 dias de idade
	MPa
	≥ 15,0
	≥ 20,0
	≥ 25,0
	
	28 dias de idade
	MPa
	≥ 25,0
	≥ 32,0
	≥ 40,0
Tabela 3 – Exigências Físicas e Mecânicas (facultativas)
	Características e propriedades
	Unidade
	Limites
	
	
	CPI
	CPI-S
	Expansibilidade a frio
	Mm
	≤ 5
	Tempo de fim de pega
	H
	≤ 10
	Teor de material pozolânico + escória + mateial carbônico
	%
	0
	≤ 5
Cimento Portland Composto (normalizado pela NBR 11578):
Designação: CPII-E, CPII-Z e CPII-F.
CPII-E  6 a 34 % de escória granulada de alto forno e 0 a 10 % de materiais carbonáticos;
CPII-Z  6 a 14 % de materiais pozolânicos e 0 a 10 % de materiais carbonáticos;
CPII-F  6 a 10 % de material carbonático.
Classes de resistência: 25,32 e 40. Exemplo: CPII-F-32.
	As tabelas que se seguem mostram as exigências físicas e químicas da NBR 11578 para este tipo de cimento portland.
Tabela 4 – Exigências Químicas
	 Determinações químicas
	Limites (% da massa)
	
	CPII-E 
	CPII-Z 
	CPII-F 
	 Resíduo insolúvel (RI)
	≤ 2,5
	≤ 16,0
	≤ 2,5
	 Perda ao fogo (PF)
	≤ 6,5
	 Óxido de magnésio (MgO)
	≤ 6,5
	 Trióxido de enxofre (SO3)
	≤ 4,0
	 Anidrido carbônico (CO2)
	≤ 5,0
Tabela 5 – Exigências Físicas e Mecânicas
	Características e propriedades
	Unidade
	Limites de classe
	
	
	25
	32
	40
	Finura
	Resíduo na peneira 75μm
	%
	≤ 12,0
	≤ 12,0
	≤ 10,0
	
	Área específica
	m2/kg
	≥ 240
	≥ 260
	≥ 280
	Tempo de início de pega
	h
	≥ 1
	≥ 1
	≥ 1
	Expansibilidade a quente
	mm
	≤ 5
	≤ 5
	≤ 5
	Resistência a compressão
	3 dias de idade
	MPa
	≥ 8,0
	≥ 10,0
	≥ 15,0
	
	7 dias de idade
	MPa
	≥ 15,0
	≥ 20,0
	≥ 25,0
	
	28 dias de idade
	MPa
	≥ 25,0
	≥ 32,0
	≥ 40,0
Tabela 6 – Exigências Físicas e Mecânicas (facultativas)
	Características e propriedades
	Unidade
	Limites
	
	
	CPII-E
	CPII-Z
	CPII-F
	Tempo de fim de pega
	H
	≤ 10
	≤ 10
	≤ 10
	Expansibilidade a frio
	Mm
	≤ 5
	≤ 5
	≤ 5
	Teor da escória
	%
	6 – 34
	–
	–
	Teor de material pozolânico
	%
	–
	6 – 14
	–
	Teor de material carbonático
	%
	0 – 10
	0 – 10
	6 – 10
Cimento Portland de Alto Forno (normalizado pela NBR 5735):
Designação: CPIII.
Classes de resistência: CPIII-25, CPIII-32 e CPIII-40.
Características: resistências iniciais (até 7 dias) mais baixas, resistências finais mais altas e maior resistência química.
Teores permitidos de adições:
Escória granulada de alto forno: 35 a 70 %;
Materiais carbonáticos: 0 a 5 %.
NOTA: A escória granulada de alto forno deve obedecer à relação:
 > 1
	As tabelas que se seguem mostram as exigências físicas e químicas da NBR 5735 para este tipo de cimento portland.
Tabela 7 – Exigências Físicas e Mecânicas
	Características e propriedades
	Unidade
	Limites de classe
	
	
	CPIII-25
	CPIII-32
	CPIII-40
	Finura (Resíduo na peneira 75μm)
	%
	≤ 8,0
	≤ 8,0
	≤ 8,0
	Tempo de início de pega
	h
	≥ 1
	≥ 1
	≥ 1
	Expansibilidade a quente
	mm
	≤ 5
	≤ 5
	≤ 5
	Resistência à compressão
	3 dias de idade
	MPa
	≥ 8,0
	≥ 10,0
	≥ 12,0
	
	7 dias de idade
	MPa
	≥ 15,0
	≥ 20,0
	≥ 23,0
	
	28 dias de idade
	MPa
	≥ 25,0
	≥ 32,0
	≥ 40,0
Tabela 8 – Exigências Químicas, Físicas e Mecânicas (facultativas)
	Características e propriedades
	Unidade
	Limites
	
	
	CPIII-25
	CPIII-32
	CPIII-40
	Expansibilidade a frio
	Mm
	≤ 5
	≤ 5
	≤ 5
	Tempo de fim de pega
	H
	≤ 12
	≤ 12
	≤ 12
	Resistência à compressão aos 91 dias de idade
	MPa
	≥ 32
	≥ 40
	≥ 48
	Teor de escória
	%
	≥ 35
≤ 70
	≥ 35
≤ 70
	≥ 35
≤ 70
	Teor de enxofre sob a forma de sulfeto
	%
	≤ 1,0
	≤ 1,0
	≤ 1,0
Tabela 9 – Exigências Químicas
	 Determinações químicas
	Limites (% da massa)
	 Perda ao fogo (PF)
	≤ 4,5
	 Resíduo insolúvel (RI)
	≤ 1,5
	 Trióxido de enxofre (SO3)
	≤ 4,0
	 Anidrido carbônico (CO2)
	≤ 3,0
Cimento Portland Pozolânico (normalizado pela NBR 5736):
Designação: CPIV.
Classes de resistência: CPIV-25 e CPIV-32.
Características: resistências iniciais (até 7 dais) mais baixas, resistências finais mais altas e maior resistência química.
Teores permitidos de adições:
Materiais pozolânicos: 15 a 50 %;
Materiais carbonáticos: 0 a 5 %.
	As tabelas que se seguem mostram as exigências da NBR 5736 para este tipo de cimento portland.
Tabela 10 – Exigências Físicas e Mecânicas
	Características e propriedades
	Unidade
	Limites de classe
	
	
	CPIV-25
	CPIV-32
	Finura (Resíduo na peneira 75μm)
	%
	≤ 8,0
	≥ 8,0
	Tempo de início de pega
	h
	≥ 1
	≥ 1
	Expansibilidade a quente
	mm
	≤ 5
	≤ 5
	Resistência à compressão
	3 dias de idade
	MPa
	≥ 8,0
	≥ 10,0
	
	7 dias de idade
	MPa
	≥ 15,0
	≥ 20,0
	
	28 dias de idade(A)
	MPa
	≥ 25,0
	≥ 32,0
Ver anexo.
Tabela 11 – Exigências Físicas e Mecânicas (facultativas)
	Características e propriedades
	Unidade
	Limites
	
	
	CPIV-25
	CPIV-32
	Resistência à compressão aos 91 dias de idade
	MPa
	≥ 32,0
	≥ 40,0
	Tempo de fim de pega
	H
	≤ 12
	Expansibilidade a frio
	Mm
	≤ 5
Cimento Portland de Alta Resistência Inicial (normalizado pela NBR 5733):
Designação: CPV-ARI.
Características: resistências iniciais (até 28 dias) mais altas que o de classe 40.
Teores permitidos de adições:
Materiais carbonáticos: 0 a 5 %.
Tipos especiais de CPV-ARI:
ARI-PLUS  Resistências iniciais mais altas que o CPV-ARI;
ARI-RS  CPV-ARI resistente aos sulfatos, por conter adição de até cerca de 25 % de escória granulada de alto forno.
	As tabelas que se seguem mostram as exigências física e químicas da NBR 5733 para este tipo de cimento portland.
NOTA: A NBR 5733 não fixa o valor mínimo para a resistência aos 28 dias. Nesta idade, observam-se os valores de resistência superiores aos cimentos de classe 40. Os valores obtidos têm sido superiores a 45 MPa e muitas vezes a 50 MPa .
Tabela 12 – Exigências Químicas
	Determinações químicas
	Limites (% da massa)
	Resíduo insolúvel (RI)
Perda ao fogo (PF)
Óxido de magnésio(MgO)
Trióxido de enxofre (SO3)
- quando C3A do clínquer ≤ 8%
- quando C3A do clínquer ≥ 8%
Anidrido carbônico (CO2)
	≤ 1,0
≤ 4,5
≤ 6,5
≤ 3,5
≤ 4,5
≤ 3,0
Nota: O cálculo da porcentagem do aluminato tricálcico contido no clínquer deve ser feito pela seguinte fórmula: (C3A%) = 2,65 x (Al2O3%) – 1,692 x (Fe2O3%).
Tabela 13 – Exigências Físicas e Mecânicas
Ver anexo.
Tabela 14 – Exigências Físicas e Mecânicas (facultativas)
	Características e propriedades
	Unidade
	Limites
	Expansibilidade a frio
	mm
	≤ 5
	Teor de material carbonático
	%
	≤ 5
	Tempo de fim de pega
	h
	≤ 10
Cimento Portland Resistente a Sulfatos (normalizado pela NBR 5737):
Designação: É qualquer outro tipo de cimento, desde que atenda às exigências da NBR 5737. Assim, a designação é: CPV-ARI-RS, CPIII-32-RS etc.
NOTA: A abreviação RS significa “resistente aos sulfatos”.
Características: maior resistência aos sulfatos habilitados a fornecerem sulfoaluminatos de cálcio hidratados expansivos (sal de Candlot ou bacilo do cimento).
Deve ter teor de C3A no clínquer menor ou igual a 8%, cujo teor de adições carbonáticas seja igual ou inferior a 5 %.
Se for CPIII, o teor de escória deve estar entre 60 e 70 %.
Se for CPIV, o teor de materiais pozolânicos deve estar entre 25 e 40 %.
Cimento Portland de Baixo Calor de Hidratação (normalizado pela NBR 13116):
Designação: É qualquer tipo de cimento, desde que atenda às exigências da NBR 13116. Assim, a designação é: CPIII-32-BC, CPIV-32-BC etc.
NOTA: A abreviação BC significa “baixo calor”.
Características: gera menor quantidade de calor de hidratação. A NBR 13116 fixa o máximo de 260 J/g aos 3 dias e 300 J/g aos 7 dias (cerca de 72 cal/g).
Cimento Portland Branco (normalizado pela NBR 12989):
Designação: CPB.
Classes de resistência: CPB-25, CPB-32 e CPB-40 (Dos chamados cimentos portland brancos estruturais. A norma admite mais de um tipo de cimento portland branco, o não estrutural, de sigla CPB).
Características: Pó de cor branca usado em concretos aparentes mais claros ou coloridos (adição de pigmentos) e em estucagem de estruturas de concreto aparente. O tipo não estrutural CPB é muito usado em rejuntamento de azulejos.
Teores permitidos de adições:
Materiais carbonáticos: 0 a 25 % no estrutural e 26 a 50 % no CPB.
	As tabelas que se seguem mostram as exigências físicas e químicas da NBR 12989 para este tipo de cimento portland.
Tabela 15 – Teores dos Componentes dos Cimentos Portland Brancos
	Denominação
	Classe
	Componentes (% em massa)
	
	
	Clínquer branco + sulfatos de cálcio
	Materiais carbonáticos
	Cimento Portland branco estrutural
	25
32
40
	100 – 75
	0 – 25
	Cimento Portland branco não-estrutural
	-
	74 – 50
	26 – 50
Tabela 16 – Exigências Químicas
	Determinações químicas
	Limites (% da massa)
	
	CPB-25
	CPB-32
	CPB-40
	CPB
	 Resíduo insolúvel (RI)
 Perda ao fogo (PF)
 Óxido de magnésio (MgO)
 Trióxido de enxofre (SO3)
 Anidrido carbônico (CO2)
	≤ 3,5
≤ 12,0
≤ 6,5
≤ 4,0
≤ 11,0
	≤ 7,0
≤ 27,0
≤ 10,0
≤ 4,0
≤ 25,0
 
Tabela 17 – Exigências Físicas e Mecânicas
	Características e propriedades
	Unidade
	Limites
	
	
	CPB-25
	CPB-32
	CPB-40
	CPB
	Resíduo na peneira 45μm
	%
	≤ 12,0
	≤ 12,0
	Tempo de início de pega
	h
	≥ 1
	≥ 1
	Expansibilidade a quente
	mm
	≤ 5
	≤ 5
	Resistência à compressão
	3 dias de idade
	MPa
	≥ 8,0 ≥ 10,0 ≥ 15,0
≥ 15,0 ≥ 20,0 ≥ 25,0
≥ 25,0 ≥ 32,0 ≥ 40,0
	≥ 5
≥ 7
≥ 10
	
	7 dias de idade
	
	
	
	
	28 dias de idade(A)
	
	
	
	Brancura(A)
	%
	≥ 78
	≥ 82≥
Cimento Portland Destinado à Cimentação de Poços Petrolíferos (normalizado pela NBR 9831):
	É um cimento portland especial para uso em poços de petróleo, de denominação CPP-classe G, cujos detalhes estão fora do escopo do programa de Materiais de Construção.
Outros tipos de cimentos Portland
	Existem outros tipos de cimentos Portland ainda não normalizados como o de muito reduzido calor de hidratação, os de elevadas resistências mecânicas, os muito finos, etc.
Escolha do Cimento Portland
	Pode-se usar qualquer tipo de cimento portland no preparo das argamassas e concretos, não havendo propriamente um tipo obrigatório nos casos comuns, podendo haver tipos proibidos em casos especiais. Em muitas situações a escolha de um tipo de cimento portland ao invés de outro, se deve ao primeiro ser mais apropriado ou que possa ser usado em dosagens mais econômicas.
	Assim, por exemplo:
Preferir o CPV-ARI quando se desejar resistências iniciais mais elevadas e desformas mais rápidas;
Preferir os cimentos de classe 40 ou os CPV-ARI em concreto de alto desempenho, embora haja também uso dos de classe 32, em face das menores retrações plástica e autógena;
Preferir os cimentos CPIII e CPIV em ambientes mais agressivos, em fundações e na água do mar;
Evitar usar CPIII em argamassa de assentamento de certas cerâmicas e azulejos, pois há risco de surgirem manchas (na realidade, o risco existe também, em dose menor, em outros cimentos portland. Hoje em dia, é raro o emprego destas argamassas, sendo utilizada e recomendada argamassa colante industrializada);
Reservar o CPB para concretos claros coloridos ou ornamentais, face ao seu preço mais elevado;
Preferir cimento BC em estruturas massivas;
Não usar o CPIII e o CPII-E em caldas de injeção para bainhas de protendidos ou em concreto protendido com aderência inicial, em face da possível presença de sulfetos.
Evitar usar o CPIII e o CPIV na dosagem de argamassa para chapisco em dias quentes e ensolarados, pois pode haver perda de água por evaporação, antes mesmo da pega, tornando o chapisco fraco.
Estocagem do Cimento Portland
	O cimento é embalado em sacos, constituídos de várias folhas de papel, que confere um pouco de proteção contra a umidade, mas não o suficiente. Para a embalagem de 50 kg líquidos, geralmente utilizam-se duas folhas, obtendo-se normalmente saco de dimensões: (60 a 70) cm x (40 a 50) cm x (8 a 15) cm. Com a massa do saco, a massa bruta é maior que a massa líquida, fator que deve ser levado em conta na conferência do peso de cimento recebido. A massa do saco vazio de 50 kg é cerca de 175 g. De acordo com as normas, a massa líquida de cada saco deve estar compreendida entre 49 e 51 kg. Entretanto, elas exigem que a massa líquida média, obtida em 30 sacos, seja, no mínimo, 50 kg.
	Para evitar hidratação, o cimento deve ser estocado ao abrigo do contato direto com a água, em local seco e coberto, afastado do piso, das paredes externas, de tanques, torneiras etc..
	Pode-se armazenar o cimento sobre um estrado de madeira seca, a pelo menos 30cm do piso, em pilhas de, no máximo, 10 sacos (a pressão acelera a hidratação). Usar o cimento em ordem cronológica de chegada à obra. Quando bem armazenado, o cimento pode ficar estocado por períodos relativamente longos (às vezes, superiores a uma quinzena). Contudo, nas obras, é recomendável renovar semanalmente o estoque de cimento em sacos, evitando-se, assim, cimentos “mais velhos”, os quais têm menor resistência.
	Durante o armazenamento, principalmente devido à hidratação dos grãos, o cimento portland reduz gradativamente de resistência. A queda de resistência pode ser considerável, se o tempo de armazenamento for muito longo e/ou houver presença de grumos de cimento hidratado.
3.10.3 - Cimento Aluminoso
 - Definição
	São cimentos de aluminato de cálcio. O tipo usado na construção civil tem cor cinza, quase preta, finura semelhante a do portland e com teor de aluminato de cálcio em torno de 40%, sendo obtido pela fusão completa de uma mistura de bauxita (minério de alumínio) e calcário. Por ocorrer fusão completa na obtenção do clínquer aluminoso, o cimento aluminoso também é chamado de cimento fundido.A massa específica de seus grãos é da ordem de 3,2 kg/dm3.
NOTA: Para a fabricação de produtos refratários (resistentes a elevadas temperaturas) existem outros tipos de cimento de aluminato de cálcio, nos quais o teor deste composto pode superar 60 %.
 - Características
	O custo do cimento aluminoso é cerca de seis vezes maior que o do cimento portland e gera calor de hidratação da mesma ordem de grandeza que o cimento portland, mas em velocidade muito maior, podendo provocar superaquecimento das argamassas e concretos.
	Estas duas características restringem o uso deste tipo de cimento para aplicações específicas. Normalmente, não se aconselha seu uso em peças com espessura superior a cerca de 20 cm, devido ao superaquecimento. O seu uso em concreto armado é questionado por alguns estudiosos. O cimento aluminoso confere alguma proteção anticorrosiva às armaduras, mas em escala menor que o cimento portland.
 - Principais Vantagens
- Não libera cal durante a hidratação;
- Tem resistência química maior que o cimento portland;
- Tem resistência aos sulfatos maior que qualquer cimento portland resistente a sulfatos;
- Produz concretos de maior resistência à abrasão;
- Tem endurecimento rápido (e pega lenta normal), promovendo altas resistências iniciais para o concreto com idades inferiores a 24 horas. Suas resistências iniciais são muito superiores às obtidas com cimento portland. Depois da idade de 1 dia, o crescimento de resistência é pouco expressivo, ao contrário do cimento portland;
-Em igualdades de relações água/cimento e grau de adensamento, produz concretos de maior resistência mecânica que os preparados com cimento portland.
NOTA: Não devem ser usadas relações água/cimento superiores a 0,40 l/kg com o cimento aluminoso, para evitar conseqüências indesejadas.
- Principais Desvantagens
Custo elevado;
Leva com facilidade as argamassas e concretos a superaquecimentos com conseqüências que podem ser prejudiciais;
Não resiste a álcalis;
Apresenta o fenômeno de conversão que é transformação dos aluminatos hidratados onde ocorrem mudanças no sistema cristalino, resultando quedas das resistências mecânica e química (pode reduzir a resistência com a idade, que depois estabiliza).
 - Composição Química
	Al2O3 – 38 a 40 %
	Fe2O3 + FeO – 15 a 18 %
	CaO – 37 a 39 %
	TiO2 < 4 %
	SiO2 – 3 a 5 %
	
 - Principais Utilizações
Em argamassas e concretos refratários, resistindo a temperaturas de até 1600ºC;
Argamassas e concretos anticorrosivos;
Reparos estruturais;
Pisos industriais.
Reparos de pisos com necessidade de rápida liberação do tráfego.
	Embora de proteção anticorrosiva das armaduras questionada por alguns especialistas, ele pode ser usado em concreto armado, pois o pH do meio fica próximo de 12, superior ao valor crítico mínimo (pH = 9,4) para a passivação da armadura. 
3.10.4 - Cimentos Especiais
	A bibliografia cita muitos tipos de cimentos especiais, indicando sua composição e características. Contudo, de grande parte deles, não se conhece muitos detalhes da composição, mas apenas as propriedades, por se tratar de segredo industrial.
	Como exemplos de cimentos especiais pode-se citar:
 - Cimento de Pega Rápida
	Vários tipos existem, com o início de pega ocorrendo em menos de 5 minutos.
	O cimento obtido misturando-se cimento portland com cimento aluminoso em proporções adequadas pode dar pega quase instantânea.
 - Cimentos de Alvenaria
	São cimentos para usar no preparo de argamassas para assentamento e revestimento. São semelhantes ao cimento portland, porém, com resistências mecânicas menores, contendo este cimento, em sua composição, bem como adições ativas como escória granulada de alto forno e pozolânica, adições inertes como materiais pulverulentos e aditivos que melhoram o desempenho nas propriedades desejadas das argamassas de assentamento e de revestimento de alvenarias. No Brasil, em vez do cimento de alvenaria, observou-se a preferência de uso, para o próprio cimento portland, cal hidratada ou argamassas prontas em pó, bastando adicionar água.
	A ABNT normalizou esse tipo de cimento pela NBR 10907 em 1989, porém, sua produção foi suspensa no Brasil.
 - Cimento de Endurecimento Rápido
	De utilização em reparos estruturais que requerem pouco tempo para liberação do uso (reparos em pontes, viadutos ou pavimentos de concreto, onde a liberação do tráfego de veículos tem que ser rápida). No Brasil são fabricados os produtos comercias que dão pega em cerca de 15 minutos e resistência inicial de cerca de 20 MPa com uma hora de idade. O cimento aluminoso enquadra-se na categoria de endurecimento rápido. Contudo, sua pega é mais lenta, não sendo possível obter altas resistências em tão reduzido tempo. Para acelerar a pega do cimento aluminoso, pode-se adicionar cimento portland, mas com prejuízo no nível de resistência. O carbonato de lítio é um dos aceleradores de pega do cimento aluminoso. Os cimentos ultra-rápidos requerem matérias-primas diferenciadas com flúor, sulfato de cálcio, bauxita e fosfato de magnésio.
	Quando se deseja pega ultra-rápida, é suficiente o cimento portland com forte dosagem de aditivo acelerador apropriado.
 - Cimentos Naturais e Cal Hidráulica
	A cal hidráulica, o cimento natural e o cimento romano são aglomerantes hidráulicos que não são produzidos nem usados no Brasil e na maioria dos países do globo. A cal hidráulica, em particular, é produzida em poucos países como Alemanha, Áustria, Itália e República Tcheca.
	Estes produtos resultam da calcinação de calcários que contenham materiais argilosos em teor apreciável. A cal hidráulica contém menor teor de materiais argilosos. Com maiores teores de materiais argilosos no calcário, recai-se na família dos cimentos naturais. O cimento natural de pega rápida chama-se cimento romano.
	Os cimentos naturais têm pouca retração.
Características e propriedades�
Unidade�
Limites�
�
Finura�
Resíduo na peneira 75μm�
%�
≤ 6,0�
�
�
Área específica�
m2/kg�
≥ 300�
�
Tempo de início de pega�
h�
≥ 1�
�
Expansibilidade a quente�
mm�
≤ 5�
�
Resistência à compressão�
1 dia de idade�
MPa�
≥ 14,0�
�
�
3 dias de idade�
MPa�
≥ 24,0�
�
�
7 dias de idade(A)�
MPa�
≥ 34,0�
�
 
�
_235243800.unknown

Outros materiais