[Donald A. McQuarrie, John D. Simon] Physical Chem(BookZZ.org)
1279 pág.

[Donald A. McQuarrie, John D. Simon] Physical Chem(BookZZ.org)


DisciplinaFísico-química I6.512 materiais97.933 seguidores
Pré-visualização50 páginas
q u a t i o n f o r t h e H e l i u m A t o m C a n n o t B e S o l v e d E x a c t l y 2 1 9 
P r o b l e m s 2 2 0 
M A T H C H A P T E R E I D e t e r m i n a n t s 2 3 1 
P r o b l e m s 2 3 8 
C H A P T E R 7 I A p p r o x i m a t i o n M e t h o d s 2 4 1 
~ 7 - 1 . T h e V a r i a t i o n a l M e t h o d P r o v i d e s a n U p p e r B o u n d t o t h e G r o u n d - S t a t e E n e r g y 
o f a S y s t e m 2 4 1 
7 - 2 . A T r i a l F u n c t i o n T h a t D e p e n d s L i n e a r l y o n t h e V a r i a t i o n a l P a r a m e t e r s L e a d s 
t o a S e c u l a r D e t e r m i n a n t 2 4 9 
7 - 3 . T r i a l F u n c t i o n s C a n B e L i n e a r C o m b i n a t i o n s o f F u n c t i o n s T h a t A l s o C o n t a i n 
V a r i a t i o n a l P a r a m e t e r s 2 5 6 
~ 7 - 4 . P e r t u r b a t i o n T h e o r y E x p r e s s e s t h e S o l u t i o n t o O n e P r o b l e m i n T e r m s o f A n o t h e r 
P r o b l e m S o l v e d P r e v i o u s l y 2 5 7 
P r o b l e m s 2 6 1 
C H A P T E R 8 I M u l t i e l e c t r o n A t o m s 2 7 5 
8 - 1 . A t o m i c a n d M o l e c u l a r C a l c u l a t i o n s A r e E x p r e s s e d i n A t o m i c U n i t s 2 7 5 
8 - 2 . B o t h P e r t u r b a t i o n T h e o r y a n d t h e V a r i a t i o n a l M e t h o d C a n Y i e l d E x c e l l e n t R e s u l t s 
f o r H e l i u m 2 7 8 
8 - 3 . H a r t r e e - F o c k E q u a t i o n s A r e S o l v e d b y t h e S e l f - C o n s i s t e n t F i e l d M e t h o d 2 8 2 
8 - 4 . A n E l e c t r o n H a s a n I n t r i n s i c S p i n A n g u l a r M o m e n t u m 2 8 4 
8 - 5 . W a v e F u n c t i o n s M u s t B e A n t i s y m m e t r i c i n t h e I n t e r c h a n g e o f A n y T w o E l e c t r o n s 2 8 5 
8 - 6 . A n t i s y m m e t r i c W a v e F u n c t i o n s C a n B e R e p r e s e n t e d b y S l a t e r D e t e r m i n a n t s 2 8 8 
8 - 7 . H a r t r e e - F o c k C a l c u l a t i o n s G i v e G o o d A g r e e m e n t w i t h E x p e r i m e n t a l D a t a 2 9 0 
8 - 8 . A T e r m S y m b o l G i v e s a D e t a i l e d D e s c r i p t i o n o f a n E l e c t r o n C o n f i g u r a t i o n 2 9 2 
@ j r h e A l l o w e d V a l u e s o f J a r e L + S , L + S - 1 , 0 0 0 , I L - S l 2 9 6 
8 - 1 0 . H u n d ' s R u l e s A r e U s e d t o D e t e r m i n e t h e T e r m S y m b o l o f t h e G r o u n d 
E l e c t r o n i c S t a t e 3 0 1 
- ! 8 - 1 1 . A t o m i c T e r m S y m b o l s A r e U s e d t o D e s c r i b e A t o m i c S p e c t r a 3 0 2 
P r o b l e m s 3 0 8 
C H A P T E R 9 I T h e C h e m i c a l B o n d : D i a t o m i c M o l e c u l e s 3 2 3 
v i i 
PHYSICAL CHEMISTRY 
@-1. The Born-Oppenheimer Approximation Simplifies the Schrodinger Equation 
for Molecules 323 
9-2. Hi Is the Prototypical Species of Molecular-Orbital Theory 325 
9-3. The Overlap Integral Is a Quantitative Measure of the Overlap of Atomic Orbitals 
Situated on Different Atoms 327 
9-4. The Stability of a Chemical Bond Is a Quantum-Mechanical Effect 329 
9-5. The Simplest Molecular Orbital Treatment of Hi Yields a Bonding Orbital and 
an Antibonding Orbital 333 
9-6. A Simple Molecular-Orbital Treatment of H2 Places Both Electrons in a 
Bonding Orbital 336 
9-7. Molecular Orbitals Can Be Ordered According to Their Energies 336 
9-8. Molecular-Orbital Theory Predicts That a Stable Diatomic Helium Molecule 
Does Not Exist 341 
9-9. Electrons Are Placed into Molecular Orbitals in Accord with the Pauli 
Exclusion Principle 342 
9-10. Molecular-Orbital Theory Correctly Predicts That Oxygen Molecules 
Are Paramagnetic 344 
9-11. Photoelectron Spectra Support the Existence of Molecular Orbitals 346 
9-12. Molecular-Orbital Theory Also Applies to Heteronuclear Diatomic Molecules 346 
9-13. An SCF-LCAO-MO Wave Function Is a Molecular Orbital Formed from a Linear 
Combination of Atomic Orbitals and Whose Coefficients Are Determined 
Self-Consistently 349 
9-14. Electronic States of Molecules Are Designated by Molecular Term Symbols 355 
9-15. Molecular Term Symbols Designate the Symmetry Properties of Molecular 
Wave Functions 358 
9-16. Most Molecules Have Excited Electronic States 360 
Problems 362 
CHAPTER 1 0 I Bonding In Polyatomic Molecules 371 
10-1. Hybrid Orbitals Account for Molecular Shape 371 
10-2. Different Hybrid Orbitals Are Used for the Bonding Electrons and the Lone Pair 
Electrons in Water 378 
10-3. Why is BeH2 Linear and H20 Bent? 381 
10-4. Photoelectron Spectroscopy Can Be Used to Study Molecular Orbitals 387 
10-5. Conjugated Hydrocarbons and Aromatic Hydrocarbons Can Be Treated 
by a n-Eiectron Approximation 390 
10-6. Butadiene Is Stabilized by a Delocalization Energy 393 
Problems 3 99 
CHAPTER 11 I Computational Quantum Chemistry 411 
11-1. Gaussian Basis Sets Are Often Used in Modern Computational Chemistry 411 
11-2. Extended Basis Sets Account Accurately for the Size and Shape of Molecular 
Charge Distributions 41 7 
11-3. Asterisks in the Designation of a Basis Set Denote Orbital Polarization Terms 422 
11-4. The Ground-State Energy of H2 can be Calculated Essentially Exactly 425 
11-5. Gaussian 94 Calculations Provide Accurate Information About Molecules 427 
Problems 434 
MATHCHAPTER F I Matrices 441 
Problems 448 
viii 
C o n t e n t s 
C H A P T E R 1 2 I G r o u p T h e o r y : T h e E x p l o i t a t i o n o f S y m m e t r y 4 5 3 
1 2 - 1 . T h e E x p l o i t a t i o n o f t h e S y m m e t r y o f a M o l e c u l e C a n B e U s e d t o S i g n i f i c a n t l y S i m p l i f y 
N u m e r i c a l C a l c u l a t i o n s 4 5 3 
1 2 - 2 . T h e S y m m e t r y o f M o l e c u l e s C a n B e D e s c r i b e d b y a S e t o f S y m m e t r y E l e m e n t s 4 5 5 
1 2 - 3 . T h e S y m m e t r y O p e r a t i o n s o f a M o l e c u l e F o r m a G r o u p 4 6 0 
1 2 - 4 . S y m m e t r y O p e r a t i o n s C a n B e R e p r e s e n t e d b y M a t r i c e s 4 6 4 
1 2 - 5 . T h e C
3
v P o i n t G r o u p H a s a T w o - D i m e n s i o n a l I r r e d u c i b l e R e p r e s e n t a t i o n 4 6 8 
1 2 - 6 . T h e M o s t I m p o r t a n t S u m m a r y o f t h e P r o p e r t i e s o f a P o i n t G r o u p I s I t s 
C h a r a c t e r T a b l e 4 7 1 
1 2 - 7 . S e v e r a l M a t h e m a t i c a l R e l a t i o n s I n v o l v e t h e C h a r a c t e r s o f I r r e d u c i b l e 
R e p r e s e n t a t i o n s 4 7 4 
1 2 - 8 . W e U s e S y m m e t r y A r g u m e n t s t o P r e d i c t W h i c h E l e m e n t s i n a S e c u l a r D e t e r m i n a n t 
E q u a l Z e r o 4 8 0 
1 2 - 9 . G e n e r a t i n g O p e r a t o r s A r e U s e d t o F i n d L i n e a r C o m b i n a t i o n s o f A t o m i c O r b i t a l s T h a t 
A r e B a s e s f o r I r r e d u c i b l e R e p r e s e n t a t i o n s 4 8 4 
P r o b l e m s 4 8 9 
( . § ; C H A P T E R 1 3 I M o l e c u l a r S p e c t r o s c o p y 4 9 5 
1 3 - 1 . D i f f e r e n t R e g i o n s o f t h e E l e c t r o m a g n e t i c S p e c t r u m A r e U s e d t o I n v e s t i g a t e D i f f e r e n t 
M o l e c u l a r P r o c e s s e s 4 9 5 
1 3 - 2 . R o t a t i o n a l T r a n s i t i o n s A c c o m p a n y V i b r a t i o n a l T r a n s i t i o n s 4 9 7 
1 3 - 3 . V i b r a t i o n - R o t a t i o n I n t e r a c t i o n A c c o u n t s f o r t h e U n e q u a l S p a c i n g o f t h e L i n e s i n