![[Donald A. McQuarrie, John D. Simon] Physical Chem(BookZZ.org) [Donald A. McQuarrie, John D. Simon] Physical Chem(BookZZ.org)](https://files.passeidireto.com/Thumbnail/a0739327-b510-4433-91c2-f02da04452fe/210/1.jpg)
[Donald A. McQuarrie, John D. Simon] Physical Chem(BookZZ.org)
Pré-visualização50 páginas
Although we have shown this proportionality only for the case of a vibrating string, it is a general result and shows that the intensity of a wave is proportional to the square of the amplitude. If we had carried everything through in complex notation instead of sines and cosines, then we would have found that En is proportional to I Dn 12 instead of just D~. Generally, there are many normal modes present at the same time, and the complete solution is (Equation 2.25) ~ nnx u(x, t) = L..- Dn cos(wnt + 4>) sin - 1 - n=l Using the fact that (see Problem 3-16) sin -- sm --dx = 0 11 nnx . mnx 0 l l ifm=/=n show that 2 2 00 E = n v p '\'n2D2 n 4[ L..- n n=l 3-32. The quantized energies of a particle in a box result from the boundary conditions, or from the fact that the particle is restricted to a finite region. In this problem, we investigate the quantum-mechanical problem of a free particle, one that is not restricted to a finite region. The potential energy V (x) is equal to zero and the Schrodinger equation is -OO<X<OO Note that the particle can lie anywhere along the x-axis in this problem. Show that the two solutions of this SchrOdinger equation are and P r o b l e m s w h e r e k = ( 2 m E ) ' I 2 h S h o w t h a t i f E i s a l l o w e d t o t a k e o n n e g a t i v e v a l u e s , t h e n t h e w a v e f u n c t i o n s b e c o m e u n b o u n d e d f o r l a r g e x . T h e r e f o r e , w e w i l l r e q u i r e t h a t t h e e n e r g y , E , b e a p o s i t i v e q u a n t i t y . W e s a w i n o u r d i s c u s s i o n o f t h e B o h r a t o m t h a t n e g a t i v e e n e r g i e s c o r r e s p o n d t o b o u n d s t a t e s a n d p o s i t i v e e n e r g i e s c o r r e s p o n d t o u n b o u n d s t a t e s , a n d s o o u r r e q u i r e m e n t t h a t E b e p o s i t i v e i s c o n s i s t e n t w i t h t h e p i c t u r e o f a f r e e p a r t i c l e . T o g e t a p h y s i c a l i n t e r p r e t a t i o n o f t h e s t a t e s t h a t 1 / 1 ' 1 ( x ) a n d 1 / f 2 ( x ) d e s c r i b e , o p e r a t e o n 1 / f / x ) a n d 1 / f 2 ( x ) w i t h t h e m o m e n t u m o p e r a t o r P ( E q u a t i o n 3 . 1 1 ) , a n d s h o w t h a t A d \u2022 1 < P l / f =-in-'~'-' = n k l / f I d x I a n d A 0 d l / f 2 P l / f = - 1 h - = - h k l / f 2 d x 2 N o t i c e t h a t t h e s e a r e e i g e n v a l u e e q u a t i o n s . O u r i n t e r p r e t a t i o n o f t h e s e t w o e q u a t i o n s i s t h a t 1 / 1 ' 1 d e s c r i b e s a f r e e p a r t i c l e w i t h f i x e d m o m e n t u m h k a n d t h a t 1 / 1 ' 2 d e s c r i b e s a p a r t i c l e w i t h f i x e d m o m e n t u m - h k . T h u s , 1 / 1 ' 1 d e s c r i b e s a p a r t i c l e m o v i n g t o t h e r i g h t a n d 1 / 1 ' 2 d e s c r i b e s a p a r t i c l e m o v i n g t o t h e l e f t , b o t h w i t h a f i x e d m o m e n t u m . N o t i c e a l s o t h a t t h e r e a r e n o r e s t r i c t i o n s o n k , a n d s o t h e p a r t i c l e c a n h a v e a n y v a l u e o f m o m e n t u m . N o w s h o w t h a t h 2 k 2 E = - 2 m N o t i c e t h a t t h e e n e r g y i s n o t q u a n t i z e d ; t h e e n e r g y o f t h e p a r t i c l e c a n h a v e a n y p o s i t i v e v a l u e i n t h i s c a s e b e c a u s e n o b o u n d a r i e s a r e a s s o c i a t e d w i t h t h i s p r o b l e m . L a s t , s h o w t h a t 1 / f ; ( x ) l / f 1 ( x ) = A~A 1 = J A 1 1 2 = c o n s t a n t a n d t h a t 1 f J ' ; ( x ) l / f 2 ( x ) = A ; A 2 = I A i = c o n s t a n t . D i s c u s s t h i s r e s u l t i n t e r m s o f t h e p r o b a b i l i s t i c i n t e r p r e t a t i o n o f 1 / f * l / f . A l s o d i s c u s s t h e a p p l i c a t i o n o f t h e U n c e r t a i n t y P r i n c i p l e t o t h i s p r o b l e m . W h a t a r e a - P a n d a - x ? 3 - 3 3 . D e r i v e t h e e q u a t i o n f o r t h e a l l o w e d e n e r g i e s o f a p a r t i c l e i n a o n e - d i m e n s i o n a l b o x b y a s s u m i n g t h a t t h e p a r t i c l e i s d e s c r i b e d b y s t a n d i n g d e B r o g l i e w a v e s w i t h i n t h e b o x . 3 - 3 4 . W e c a n u s e t h e U n c e r t a i n t y P r i n c i p l e f o r a p a r t i c l e i n a b o x t o a r g u e t h a t f r e e e l e c t r o n s c a n n o t e x i s t i n a n u c l e u s . B e f o r e t h e d i s c o v e r y o f t h e n e u t r o n , o n e m i g h t h a v e t h o u g h t t h a t a n u c l e u s o f a t o m i c n u m b e r Z a n d m a s s n u m b e r A i s m a d e u p o f A p r o t o n s a n d A - Z e l e c t r o n s , t h a t i s , j u s t e n o u g h e l e c t r o n s s u c h t h a t t h e n e t n u c l e a r c h a r g e i s + Z . S u c h a n u c l e u s w o u l d h a v e a n a t o m i c n u m b e r Z a n d m a s s n u m b e r A . I n t h i s p r o b l e m , w e w i l l u s e E q u a t i o n 3 . 4 1 t o e s t i m a t e t h e e n e r g y o f a n e l e c t r o n c o n f i n e d t o a r e g i o n o f n u c l e a r s i z e . T h e d i a m e t e r o f a t y p i c a l n u c l e u s i s a p p r o x i m a t e l y 1 0 - 1 4 m . S u b s t i t u t e a = 1 0 - 1 4 m i n t o E q u a t i o n 3 . 4 1 a n d s h o w t h a t a - P i s f Y ; ; ; : : : 3 X 1 0 - 2 0 k g · m · S - l p 1 0 3 104 Show that Chapter 3 I The Schrodinger Equation and a Particle In a Box a2 E = ____!?__ = 5 X 10-10 J 2m ~ 3000MeV where millions of electron volts (MeV) is the common nuclear physics unit of energy. It is observed experimentally that electrons emitted from nuclei as f3 radiation have energies of only a few MeV, which is far less than the energy we have calculated above. Argue, then, that there can be no free electrons in nuclei because they should be ejected with much higher energies than are found experimentally. 3-35. We can use the wave functions of Problem 3-29 to illustrate some fundamental symmetry properties of wave functions. Show that the wave functions are alternately symmetric and antisymmetric or even and odd with respect to the operation x --+ - x, which is a reflection through the x = 0 line. This symmetry property of the wave function is a consequence of the symmetry of the Hamiltonian operator, as we now show. The Schrodinger equation may be written as Reflection through the x = 0 line gives x --+ - x and so H(-x)l/f (-x) = E 1/f (-x) n n n Now show that H(x) = H( -x) (i.e., that His symmetric) for a particle in a box, and so show that H(x)l/f (-x) = E 1/f (-x) n n n Thus, we see that 1/fn (-x) is also an eigenfunction of H belonging to the same eigen- value En. Now, if only one eigenfunction is associated with each eigenvalue (the state is nondegenerate), then argue that 1/fn(x) and 1/f/-x) must differ only by a multiplicative constant [i.e., that 1/f.(x) = cl/fn (-x) ]. By applying the inversion operation again to this equation, show that c = ±1 and that all the wave functions must be either even or odd with respect to reflection through the x = 0 line because the Hamiltonian operator is symmetric. Thus, we see that the symmetry of the Hamiltonian operator influences the symmetry of the wave functions. A general study of symmetry uses group theory,