[Donald A. McQuarrie, John D. Simon] Physical Chem(BookZZ.org)
1279 pág.

[Donald A. McQuarrie, John D. Simon] Physical Chem(BookZZ.org)


DisciplinaFísico-química I6.510 materiais97.886 seguidores
Pré-visualização50 páginas
consequences of the 
Uncertainty Principle are far from negligible and the classical-mechanical picture is 
not valid. This leads us to our first postulate of quantum mechanics: 
Postulate 1 
The state of a quantum-mechanical system is completely specified by a function 
1/1 (x) that depends upon the coordinate of the particle. All possible information 
about the system can be derived from 1/1 (x ). This function, called the wave 
function or the state function, has the important property that 1/J* (x) 1/1 (x )dx is 
the probability that the particle lies in the interval dx, located at the position x. 
In Postulate 1 we have assumed, for simplicity, that only one coordinate is needed 
to specify the position of a particle, as in the case of a particle in a one-dimensional 
box. In three dimensions, we would have that 1/J*(x, y, z)o/(x, y, z)dxdydz is the 
probability that the particle described by 1/1 (x, y, z) lies in the volume element dxdydz 
located at the point (x, y, z). To keep the notation as simple as possible, we will express 
most of the equations to come in one dimension. 
If there is more than one particle, say two, then 1jl*(x1' x2)1jl(x1, x 2)dx1dx2 is the 
probability that particle llies in the interval dx1 located at x1, and that particle 2 lies in 
the interval dx2 located at x2 \u2022 Postulate l says that the state of a quantum-mechanical 
system such as two electrons is completely specified by this function and that nothing 
else is required. 
Because the square of the wave function has a probabilistic interpretation, it must 
satisfy certain physical requirements. The total probabilty of finding a particle some-
where must be unity, thus 
J 1jl*(x)1jl(x)dx = 1 (4.2) 
all space 
The notation "all space" here means that we integrate over all possible values of x. 
We have expressed Equation 4.2 for a one-dimensional system; for two- or three-
dimensional systems, Equation 4.2 would be a double or a triple integral. Wave func-
tions that satisfy Equation 4.2 are said to be normalized. 
4 - 1 . T h e S t a t e o f a S y s t e m I s C o m p l e t e l y S p e c i f i e d b y i t s W a v e F u n c t i o n 
E X A M P L E 4 - 1 
T h e w a v e f u n c t i o n s f o r a p a r t i c l e r e s t r i c t e d t o l i e i n a r e c t a n g u l a r r e g i o n o f l e n g t h s a 
a n d b ( a p a r t i c l e i n a t w o - d i m e n s i o n a l b o x ) a r e 
( 
4 ) 1 / 2 n : r r x n : r r y 
1 / f ( x , y ) = - s i n _ x _ _ s i n _ Y _ 
" x " y a b a b 
n x = 1 , 2 , . . . 
n y = 1 , 2 , . . . 
S h o w t h a t t h e s e w a v e f u n c t i o n s a r e n o r m a l i z e d . 
S O L U T I O N : W e w i s h t o s h o w t h a t 
1 Q 1 b d x d y l / f * ( x , y ) l / f ( x , y ) = 
4 1 " 1 b n : r r x n : r r y 
- d x d y s i n
2 
_ x _ _ s i n
2 
_ Y _ = 1 
a b 
0 0 
a b 
o : : : : : x : : : : : a 
O : : S y : : S b 
T h i s d o u b l e i n t e g r a l a c t u a l l y f a c t o r s i n t o a p r o d u c t o f t w o s i n g l e i n t e g r a l s : 
4 1 " . n : r r x 1 b . n : r r y ? 
- d x s m
2 
_ x _ _ d y s m
2 
_ Y _ = ' = 1 
a b 
0 
a 
0 
b 
E q u a t i o n 3 . 2 6 s h o w s t h a t t h e f i r s t i n t e g r a l i s e q u a l t o a / 2 a n d t h a t t h e s e c o n d i s e q u a l 
t o b j 2 , s o t h a t w e h a v e 
4 a b 
- · - · - = 1 
a b 2 2 
a n d t h u s t h e a b o v e w a v e f u n c t i o n s a r e n o r m a l i z e d . 
E v e n i f t h e i n t e g r a l i n E q u a t i o n 4 . 2 e q u a l s s o m e c o n s t a n t A = f . 1 , w e c a n d i v i d e 
1 j J ( x ) b y A 
1
/
2 
t o m a k e i t n o r m a l i z e d . O n t h e o t h e r h a n d , i f t h e i n t e g r a l d i v e r g e s ( i . e . g o e s 
t o i n f i n i t y ) , n o r m a l i z i n g 1 j J ( x ) i s n o t p o s s i b l e , a n d i t i s n o t a c c e p t a b l e a s a s t a t e f u n c t i o n 
( s e e E x a m p l e 4 - 2 b ) . F u n c t i o n s t h a t c a n b e n o r m a l i z e d a r e s a i d t o b e n o r m a l i z a b l e . 
O n l y n o r m a l i z a b l e f u n c t i o n s a r e a c c e p t a b l e a s s t a t e f u n c t i o n s . F u r t h e r m o r e , f o r 1 j J ( x ) 
t o b e a p h y s i c a l l y a c c e p t a b l e w a v e f u n c t i o n , i t a n d i t s f i r s t d e r i v a t i v e m u s t b e s i n g l e -
v a l u e d , c o n t i n u o u s , a n d f i n i t e ( c f . P r o b l e m 4 - 4 ) . W e s u m m a r i z e t h e s e r e q u i r e m e n t s b y 
s a y i n g t h a t 1 j J ( x ) m u s t b e w e l l b e h a v e d . 
E X A M P L E 4 - 2 
D e t e r m i n e w h e t h e r e a c h o f t h e f o l l o w i n g f u n c t i o n s i s a c c e p t a b l e o r n o t a s a s t a t e 
f u n c t i o n o v e r t h e i n d i c a t e d i n t e r v a l s : 
a . 
e - x 
( 0 , o o ) 
b . 
e - x 
( - o o , o o ) 
c . 
s i n -
1 
x 
( - 1 , 1 ) 
d . 
e - l x l 
( - o o , o o ) 
1 1 7 
118 Chapter 4 I Some Postulates and General Principles of Quantum Mechanics 
SOLUTION: 
a. acceptable; e-x is single-valued, continuous, finite, and normalizable over 
the interval (0, oo). 
b. Not acceptable; e-x cannot be normalized over the interval ( -oo, oo) 
because e-x diverges as x --* -oo. 
c. Not acceptable; sin- 1 xis a multivalued function. For example, 
\u2022 _ 1 n n n sm 1 = -, - + 2n, - + 4n, etc 
2 2 2 
d. Not acceptable; the first derivative of e-lxl is not continuous at x = 0. 
4-2. Quantum-Mechanical Operators Represent 
Classical-Mechanical Variables 
In Chapter 3, we concluded that classical mechanical quantities are represented by 
linear operators in quantum mechanics. We now formalize this conclusion by our next 
postulate. 
Postulate 2 
To every observable in classical mechanics there corresponds a linear operator 
in quantum mechanics. 
We have seen some examples of the correspondence between observables and operators 
in Chapter 3. These correspondences are listed in Table 4.1. 
The only new entry in Table 4.1 is that for the angular momentum. Although we 
discussed angular momentum briefly in MathChapter C, we will discuss it more fully 
here. Linear momentum is given by mv and is usually denoted by the symbol p. Now 
consider a particle rotating in a plane about a fixed center as in Figure 4.1. Let vrot 
FIGURE 4.1 
The rotation of a single particle about a fixed 
point. 
T A B L E 4 . 1 
C l a s s i c a l - m e c h a n i c a l o b s e r v a b l e s a n d t h e i r c o r r e s p o n d i n g q u a n t u m - m e c h a n i c a l o p e r a t o r s . 
O b s e r v a b l e O p e r a t o r 
N a m e S y m b o l 
S y m b o l O p e r a t i o n 
P o s i t i o n 
X 
X 
M u l t i p l y b y x 
r 
R 
M u l t i p l y b y r 
a 
M o m e n t u m 
P x 
p 
- i n -
X 
a x 
p 
p 
· ( a . a a ) 
- z 1 i I - + J - + k -
a x a y a z 
1 i 2 a z 
K i n e t i c e n e r g y K 
K 
- 2 m a x
2 
X 
X 
K K . 
T i z ( a z a z a z ) 
- 2 m a x
2 
+ a l + a z
2 
1 i 2 
= - - \ 7 2 
2 m 
P o t e n t i a l e n e r g y V ( x ) 
v ( x ) 
M u l t i p l y b y V ( x ) 
V ( x , y , z ) v ( x , . Y . z ) 
M u l t i p l y b y V ( x , y , z ) 
T o t a l e n e r g y E 
H 
r z z ( a z a z a z ) 
- 2 m a x
2 
+ a l + a z
2 
+ V ( x , y , z ) 
1 i